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1 Syllabus

Machine learning and quantum computing have emerged as leading technologies of the twenty-
first century and are expected to be increasingly applied to address a wide variety of chemical
and materials science challenges. The goal of this course is to introduce fundamental concepts
of machine learning and quantum computing to chemists and materials science students through
an overview of algorithms, computational methods, and applications. It is intended to empower
students to engage with this emerging field and foster the growing field of artificial intelligence for
accelerated scientific discoveries in the molecular and physical sciences.

Textbooks. Recommended textbooks for this class are:

R1:"Pattern Recognition and Machine Learning" by Christopher M. Bishop (Springer, 2006). (pdf)
(matlab)

R2: "Deep Learning" by Ian Goodfellow, Yoshua Bengio and Aaron Courville. (pdf) (github).

R3: "Deep Learning for Coders with Fastai and PyTorch: AI Applications Without a PhD" by Jeremy
Howard and Sylvain Gugger. (github)

R4: "Dive into Deep Learning" by Jeremy Howard and Sylvain Gugger. (pdf)

R5: "Quantum Computation and Quantum Information" by Michael A Nielsen and Isaac L. Chuang
(Cambridge).

R6: "An Introduction to Quantum Computing" by Phillip Kaye, Raymond Laflamme and Michele
Mosca (Oxford University Press). (pdf)

R7: "Learn Quantum Computation Using Qiskit" and notebook.

Our lecture notes will be updated according to the pace of the course and suggestions from the
students. References to the textbooks listed above are indicated in the notes as follows: [R1(190)]
indicates “from Reference 1, Page 190”.

Pytorch Tutorials and Documentation: Pytorch tutorials and Pytorch documentation will be
essential for actual implementations, complemented with tutorials for understanding and imple-
menting sequence-to-sequence (seq2seq) models .

TensorFlow Tutorials and Documentation: The TensorFlow tutorials are written as Jupyter
notebooks and run directly in Google Colab.

Scikit-learn Tutorials and Documentation: Scikit-learn is an open source machine learning
library that supports supervised and unsupervised learning. It also provides various tools for model
fitting, data preprocessing, model selection and evaluation, and many other utilities.

Qutip Tutorials and Documentation:

Qutip tutorials will be useful for simulations of light in cavities for quantum information.

Contact Information
Office hours will be held by zoom (Monday, 5:00pm). Zoom ID: 943 8610 8716, Passcode: victor

Grading: There will be no final exam for this class. The final grading evaluation is the same for
both undergraduate and graduate students: homework (40%), two mid-terms (40%) on 3/28 and
4/23, and a final project (20 %). Homework will be assigned during lectures and also through Yale
canvas. Computer assignments given on Thursdays will be due the following Thursday 9:00 am,
and will be assisted for questions during office hours on Monday.
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2 Feedforward Neural Networks

Figure (3) shows a simple example of a model neural network (NN), a so-called two-layer feedfor-
ward NN based on 3 lists of numbers x = [x0, x1, · · · xD], z = [z0, z1, · · · , zM], and y = [y1, · · · yk]

and two layers of adjustable parameters ω
(1)
jk and ω

(2)
jk . The x values are inputs that define the

values z in the so-called hidden layer of ‘neurons’, as follows:

zj = φ1

(
D

∑
k=0

ω
(1)
jk xk

)
. (1)

Here, φ1(r) is the so-called activation function that could be linear (e.g., φ1(r) = r) or non-linear
(e.g., φ1(r) = r, for r ≥ 0 and φ1(r) = 0 for r < 0), as discussed further in Sec. 2.3. The outputs y
are computed analogously,

yj = φ2

(
M

∑
k=0

ω
(2)
jk zk

)
. (2)

Figure 1: Network diagram for a two-layer feed-
forward neural network. The inputs xj, hidden
units zj, and output variables yj are represented
by nodes (artificial neurons), and the links be-
tween the nodes represent the weight parameters
ωjk. The neurons x0 = z0 = 1 are kept constant
and linked to other neurons with weights ω2

j,0

and ω1
j,0 called bias parameters. Arrows denote

the direction of information flow through the net-
work during forward propagation [R1(228)].

The resulting NN can then be parametrized by
adjusting the values of the weights ω

(1)
jk and ω

(2)
jk ,

with x0 = z0 = 1, so that for any given input
[x1, · · · , xD] we can predict the corresponding out-
put [y1, · · · , yk]. The weight ω

(l)
j0 is often called the

bias of layer l.
Examples for molecular systems could have in-

puts x defined in terms of the atomic coordinates
of a molecule while the outputs y could be the po-
tential energy, y1 = V(x), and forces yk = Fk(x)
acting on each atom (as in typical force-fields em-
ployed in molecular dynamics, or Monte Carlo simu-
lations). Another NN could have inputs xk defined in
terms of Hammett parameters for the substitutional
groups of a molecule, and the outputs xk could be
the energies of the frontier orbitals y1 = EHOMO,
y2 = ELUMO of that molecule. Alternatively, the NN
could have input numbers xk defining the name of a
molecule, or the primary sequence of a protein, ac-
cording to some dictionary or catalog while the out-
puts yk could be the properties of the molecule (e.g.,
solubility, molecular weight, toxicity, NMR chemical
shifts).

A simple way to parametrize the NN shown in
Fig. (3) is to adjust the values of ω

(1)
jk and ω

(2)
jk to

minimize the error (often called the loss) between
the predicted values yj and the correct values of out-

puts for a so-called training set of inputs for which the outputs y(a)
j are known,

ε =
K

∑
j=1

(yj − y(a)
j )2, (3)
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where yj are the calculated values of the outputs, and y(a)
j are the correct values (or labels) corre-

sponding to a given input training set. Note that ε is a function of the parameters weights ω
(1)
jk and

ω
(2)
jk since, according to Eqs. (1) and (2),

yj = φ2

(
M

∑
k′=0

ω
(2)
jk′ φ1

(
D

∑
i=0

ω
(1)
k′i xi

))
. (4)

So, we can minimize ε by adjusting the parameters ω
(l)
jk , as described below in Sec. 2.1.

2.1 Gradient Descent

The parameters of NNs are typically adjusted by using the gradient descent method, illustrated in
Fig. (2). To visualize the minimization process, we consider that the weights ω

(l)
jk are functions of

time t along the optimization process that advances with small integration time steps τ. Therefore,
the loss ε decreases along the optimization time by evolving with values ε(0), ε(τ), ε(2τ), · · · , ε(Nτ),
with Nτ the total optimization time.

Figure 2: Minimization of the loss by gradient descent.

Given an initial set of randomly
assigned values, the adjustable pa-
rameters ω

(l)
jk are updated along the

direction of minus the gradient of the
loss with respect to the parameters,

∂ω
(l)
jk

∂t
= − ∂ε

∂ω
(l)
jk

, (5)

where s parametrizes the evolution of
parameters, as follows:

ω
(l)
jk (t + τ) = ω

(l)
jk (t)− ∂ε

∂ω
(l)
jk

τ, (6)

with the learning rate parameter τ
defined as a small positive number.

Such a choice of gradients en-
sures that ε decreases monotonically since

ε(t + τ) = ε(t) + ∑
jkl

∂ε

∂ω
(l)
jk

∂ω
(l)
jk

∂t
τ,

= ε(t)−∑
jkl

∣∣∣∣∣∣
∂ω

(l)
jk

∂t

∣∣∣∣∣∣
2

τ.

(7)
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2.1.1 Stochastic Gradient Descent

The minimization of the error between the predicted and correct values of the outputs, for a training
set of K inputs requires the evolution of the weights ω

(l)
ik , according to Eqs. (6) and (3), as follows:

ω
(l)
ik (t + τ) = ω

(l)
ik (t)− ∂ε

∂ω
(l)
ik

τ,

= ω
(l)
ik (t)−

K

∑
j=1

∂(yj − y(a)
j )2

∂ω
(l)
ik

τ,

(8)

which is the so-called standard (or ’batch’) gradient descent, corresponding to the batch of K
outputs. However, when K is very large, evaluating the sums of gradients becomes very expensive.

The stochastic gradient descent (SGD) reduces the computational cost at every iteration by
randomly sampling a subset of j output values at every step (effectively applying dropout on the
outputs). Therefore, the key difference compared to standard gradient descent is that only a
portion of the output data is used to approximate the gradient of the loss, and that portion is
picked randomly at each step.

2.1.2 Exercise: Gradient Descent

Figure 3: Diagram of a two-layer feedforward
neural network for linear regression of sin(x) as
a third-order polynomial.

To illustrate the gradient descent method as ap-
plied to optimize the parameters of a model, opti-
mize the linear coefficients of a third-order polyno-
mial ypred(x) = ∑3

j=0 cjxj, to approximate the output
y(x) = sin(x) for an input of 2000 equally spaced
values of x in the range x = [−π, π].

Go through the Pytorch tutorials learning with
examples and see how to formulate the linear re-
gression problem in terms of the parametrization of
a 2-layer feedforward linear NN.

Solution: Download the Jupyter notebook for the so-
lution from Exgradientdescent.ipynb where you can
have a first exposure to the concepts that we will dis-
cuss in subsequent sections and the basic aspects
of Pytorch, including:

• The concept of a PyTorch tensor

• How to define a neural network with learnable parameters (or weights).

• Forward propagation: How to process the input through the network

• How to compute the loss (how far the output is from being correct)

• Backward propagation: How to compute the gradients of the loss w.r.t. the parameters of the
network.

• How to update the weights of the network, typically using a simple update rule: weight =
weight - learning_rate.
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2.2 Colab, Python, Tensorflow, Keras and Pytorch

Several software libraries and computational packages are currently available for high level im-
plementations of machine learning methods, including pytorch, torch , tensorflow, and keras. A
comparison of these three popular deep learning frameworks can be found here. Pytorch is the
newer framework (based on Torch and open-sourced on GitHub in 2017 by Facebook’s AI research
group). Pytorch’s popularity is rapidly growing among AI researchers due to simplicity, flexibility,
efficient memory usage, speed, and dynamic computational graphs.

For this class, I recommend working in the Google Colab environment, so you can run your
codes in Google’s computers. In Colab, everything you need is already installed, or you can upload
by mounting your Google drive as shown in the Navigating_tutorial.ipynb.zip Jupyter notebook for
which you need to have the following csv file in the same folder. A brief (and fun) tutorial on how
to work with RDKit at Google Colab is available at the RDKitEH.ipynb.zip notebook.

Figure 4: Examples of SMILES representations
of molecules.

These notebooks also introduce the SMILES no-
tation for representation of molecules in terms of
strings of characters, which can be converted into
lists of numbers to input molecules into neural net-
works.

The SMILEs notation follows the following rules
(examples shown in Fig. 4):

1. Atoms are represented by their atomic sym-
bols.

2. Hydrogen atoms are omitted (are implicit).

3. Neighboring atoms are represented next to
each other.

4. Double bonds are represented by ‘=’, triple
bonds by ‘#’.

5. Branches are represented by parentheses.

6. Rings are represented by allocating digits to
the two connecting ring atoms.

7. Aromatic rings are indicated by lower-case let-
ters.

Stereochemistry information can be included with brackets as described here. There is also an
RDKit wrapper for handling stereochemistry, called RDChiral.

Molecules can also be represented by features defined according to the type of atoms and their
corresponding neighborhoods in the molecular structure, using the extended-connectivity finger-
prints (ECFPs), also known as circular fingerprints available at DeepChem. The main properties
of ECFPs are that (i) they are defined by considering circular atom neighborhoods (Fig. 17, mid-
dle panel, Sec. 5); (ii) they are rapidly calculated; (iii) they represent substructures; (iv) they can
account for a huge number of different molecular features (including stereochemical information);
and (v) they represent both the presence and absence of functionality.

I also recommend brushing up your python knowledge with the excellent tutorial provided
in Sec. 24, adapted by Kevin Zakka for the Spring 2020 edition of cs231n, and available at
Python_tt.ipynb.
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2.3 Activation Functions

Figure 5 shows some of the most commonly used activation functions which are essential building
blocks of neural networks.

2.3.1 Linear Activation

Figure 5: Activation Functions for Artificial Neural Networks
[Copyright ©2014-2020 Sebastian Raschka].

The so-called ’Adaline’ activation,
or linear regression function, pro-
duces only linear models (i.e.,
model NN without hidden layers),
since the output is always a sim-
ple linear combination of the input
data,

yj =
M

∑
i=0

ω
(2)
ji

D

∑
i=0

ω
(1)
ik xk

=
D

∑
k=0

(
M

∑
i=0

ω
(2)
ji ω

(1)
ik

)
xk

(9)

so even models with multiple hid-
den layers with linear activation
functions are equivalent to mod-
els without hidden layers. There-
fore, to go beyond simple linear re-
gression models, it is imperative to
include non-linear activation func-
tions (i.e., functions φ(z) with non-
constant derivatives).

2.3.2 Non-linear Activation

Two representative examples of non-linear activation functions, listed in Fig. 5 are the Logistic
sigmoid and the ReLU functions. The main difference between these two activation functions is
that the derivative of the sigmoid φ(z) = 1/(1 + e−z) is smaller than 1, in fact φ′(z) ≤ 1/4 since
φ′(z) = e−z/(1 + e−z)2, while the derivative of the ReLU is always equal to 1 when z > 0. As
we discuss later in Sec. 2.3.3, activation functions with φ′(z) < 1 can be problematic since they
lead to the so-called vanishing gradient problem. As shown in Sec. 2.3.3, the gradients of the
loss with respect to the weights are proportional to the product of the derivatives of the activation
functions, and multiplying derivatives of activation functions that are < 1 leads to gradients of
the loss that approximately equal to zero. So, the parameters of the NN cannot be adjusted and
the NN cannot be trained. A solution to that problem has been the implementation of the ReLU,
φ(z) = max(0, z), and Leaky ReLU, φ(z) = max(0.01 z, z), activation functions that overcome the
vanishing gradient problem since their derivatives are always equal to 1 when z > 0. So, the ReLU
function has enabled training of NNs with many layers and thus the emergence of the field of deep-
learning briefly described for image recognition in the following Youtube. The softplus function is
essentially a smooth ReLU activation (i.e., with continuous gradients).
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An important observation is that non-linear activation functions, such as ReLU, introduce cor-
relations between different inputs since all of the inputs of a neuron combined determine whether
its argument is z > 0. So, the activation correlates the various inputs.

2.3.2.1 Classification and Non-linear Regression Problems Supervised learning problems involved
training data sets that include both the inputs and the corresponding labels. Pattern recognition
of a class or type (e.g., type of amino acid, class of organic molecule, etc.) in which the aim is to
assign each input one of a finite number of discrete categories (e.g., one of the 20 types of nat-
ural amino acids, or one of the various types of organic molecules, etc.) are called classification
problems. In contrast when the desired output consists of continuous variables (e.g., the solubility
value, the NMR chemical shift value, etc., based on the input molecular structure), then the task is
called regression. Other examples of regression could be the prediction of the yield of a chemical
reaction based on inputs corresponding to the concentrations of reactants, the temperature, and
the pressure [R1(3)]. Non-linear activation functions are essential for both non-linear regression
and classification problems.

Logistic Sigmoid: Nonlinear activation functions are typically used for output layers of classification
problems. For example, the logistic sigmoid function φ(zk) = 1/(1 + e−zk) is typically used for
binary classification (e.g., is the molecule toxic or not, is it flammable or not, etc.), predicting one
class when φ > 0.5 and the other when φ ≤ 0.5.

Softmax: The softmax activation function φ(zk) = exp(zk)/ ∑j exp(zj) is a multiclass generaliza-
tion of the logistic sigmoid that outputs a normalized probability distribution over the predicted
output classes (e.g., 97% probability that the molecule is and aldehyde, 2% probability that is a
ketone, 1% that in an alcohol). The softmax function is typically used in conjunction with loss
functions such as the KL divergence or cross-entropy, described below. For classification prob-
lems, the loss defined by the cross-entropy or the KL divergence allow for faster training than the
sum-of-square differences as well as improved generalization [R1(235)].

KL Divergence and Cross-Entropy: The Kullback-Leibler (KL) divergence is defined, as follows:

KL(p‖φ) = −∑
k

p(zk)log2(φ(zk)/p(zk)) = H(p, φ)− H(p), (10)

where H(p) = −∑k p(zk)log2(p(zk)) is the entropy corresponding to the target probabilities p(zk),
and

H(p, φ) = −∑
k

p(zk)log2(φ(zk)). (11)

is the cross entropy. Both functions allow for comparisons of two discrete probability distributions
and are commonly used for training models to produce outputs corresponding to a target distribu-
tion. Note that minimizing the KL divergence corresponds exactly to minimizing the cross-entropy
since the entropy H(p) of the target distribution does not depend on the adjustable weights.

2.3.2.1.1 Optional Exercise: Use the bound log(x) ≤ x− 1 to show that the KL divergence is
always ≥ 0 (Gibbs Inequality). Therefore, the cross-entropy is always larger or equal than H(p),
and equal to H(p) when the two distributions are the same.
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2.3.3 Vanishing Gradient Problem

The gradients of the loss ε with respect to the adjustable parameters ω
(l)
jk , introduced in Sec. 2.1,

are computed according to the chain rule:

∂ε

∂ω
(l)
jk

=
K

∑
i=1

∂ε

∂yi

∂yi

∂ω
(l)
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. (12)

For example, according to Eq. (4),
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Therefore, the gradient of the loss with respect to ω
(1)
jk is obtained, as follows:
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∂ω
(1)
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=
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∑
i=1

∂ε

∂yi
ω

(2)
ij xk, (14)

Figure 6: Dense neural network with mul-
tiple hidden layers, with input neurons cor-
responding to the pixels intensities of hand
written numbers reshaped by vectorization
into a 1-dimensional array.

which is proportional to the product of two gradients of
activation functions. Analogously, for a NN with 3 layers
(i.e., 2 hidden layers) we would have gradients defined,
as follows:
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(1)
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=
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∑
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∑
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∂yi

M

∑
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ω
(3)
ik′ ω

(2)
k′ j xk,

(15)

which are clearly proportional to the product of 3 gradi-
ents of activation functions, making the gradient of the
loss very small when the gradients of the activation func-
tions are < 1. Therefore, deep neural networks with
multiple hidden layers (Fig. 6) typically rely on ReLU
or Leaky ReLU activation functions that enable efficient
training since they do not suffer from the vanishing gra-
dient problem. Fig. 6 also shows that a 2-dimensional
array of data, corresponding to the 28× 28 intensities of pixels of hand written numbers can be
vectorized –i.e., reshaped as a 1-dimensional array of 784 neurons.
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2.3.4 Validation, Cross Validation and Bootstrapping

Validation of the model is essential to ensure that the NN works well on data that has not been
used during the training process. Therefore, it is important to keep aside a portion of the data that
is not used for training, and use it for testing and validation to ensure that the loss of the training
and testing sets are comparable.

A simple approach is to split it into 70:30, as shown in Fig. 7 (left), which is a fine procedure
when there is enough data so long as the split ensures that the training and testing samples have
the same distribution (e.g., randomized).

Figure 7: Left: Splitting of data into training and test-
ing sets. Right: Representation of the sampling proce-
dure implemented in k-fold cross-validation method.

When we have limited data, the simple
splitting procedure described above might in-
troduce bias in the parametrization of the NN
since the training set might miss some key
sample points. So, neither the training set dis-
tribution nor the testing set might be represen-
tative of the original data set. Therefore, with
limited data, it might be necessary to imple-
ment cross-validation.

The k-fold cross validation method, rep-
resented in Fig. 7 (right panel), is a pop-
ular resampling procedure that generates a
less biased model even when having limited
data since it ensures that every data point from the original dataset is included in the
training and testing sets. Rather than splitting the data into 70:30, the data is split ran-
domly into k folds (k is typically between 5-10). At each iteration, all but one of the folds
are used for training while the fold that was not used for training is used for validation.
The process is repeated until every fold has been included in the testing set. Finally, all k validation
results are averaged (a process often called bagging).

Figure 8: Bootstrap sampling of N batches of data by
drawing n points at random from X with replacement,
so some points in X may be replicated in XB, whereas
other points in X may be absent from XB.

Bootstrap sampling is another method
commonly used when there is limited amount
of data to generate models with less bias and
less overfitting, a problem discussed in Sec.
2.6.2. Bootstrap sampling also enables quan-
tification of uncertainty of the predictions. Sim-
ilarly to cross-validation, bootstrap sampling
generates multiple data sets as follows [R1
(23)]. Suppose our original big data set con-
sists of N data samples X = x1, ..., xN (Fig. 8).
We create a data set XA by drawing n sam-
ples at random from X. Then, we create XB by
drawing n samples at random from X, with re-
placement, so that some points in XA may be
replicated in XB, whereas other points in XA
may be absent from XB. The process is re-
peated N times to generate N data sets, each
of size n and each obtained by sampling from
the original data set X. Predictions from all data sets are averaged (a process called bootstrap
aggregation, or bagging) and the prediction uncertainty is estimated with the standard deviation.
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2.3.4.1 Exercise: Bootstrapping To see how bootstrapping can reduce the variance of an estima-
tion by simply averaging multiple estimations, we consider the problem of estimating the average
value of rolling a fair dice (i.e., average of the uniform distribution for the six possible outcomes
1-6). Compute the average by rolling the dice N = 1000 times and show that the distribution of
outcomes is uniform with variance σ2. Repeat the process a large number of times and show that
the average of the averages exhibits a normal distribution with a variance ε2 = σ2/N.

• Show that the distribution of outcomes is uniform, since the dice is fair. Obtain the mean of
outcomes, which is close to 3.5 and variance σ2 = 3.

• Compute the distribution of averages obtained by repeating that calculation 2,000 times and
show that the distribution of means is a Gaussian with variance ε2 = σ2/N = 0.003.

This is a demonstration of the Central Limit Theorem at work. The theorem states that the dis-
tribution of a sufficiently large number of means obtained with N samples drawn with replacement
from any arbitrary distribution with variance σ2, is a Gaussian with variance ε2 = σ2/N.
Solution: Download the Jupyter notebook with the solution from dice.ipynb.

2.4 Tutorial Assignment on Hammett Neural Networks with Keras/TensorFlow

[This tutorial assignment has been designed and developed by Jessica Freeze] The tutorial on how to
build and execute a Hammett neural network with Keras/TensorFlow for prediction of frontier orbital
energies of tungsten-benzylidyne catalysts using Hammett parameters as input descriptors can be
downloaded as a notebook: Assignment_1_NeuralNetworks.ipynb pdf

2.5 Tutorial Regressive Models for Chemical Predictions with Scikit-Learn

Here’s a Scikitlearn.zip with the notebooks An introduction to Machine Learning with Scikit Learn.pdf
and Robust And Calibrated Estimators With Scikit Learn In Machine Learning.pdf. Unzip the file
in your colab folder and update the name of your google folder (in each notebook). Furthermore,
the file Introducing_Scikit_Learn.ipynb.zip contains the notebook Introducing Scikit Learn.pdf .

[Tutorial assignment developed by Jessica Freeze] The tutorial on how to implement regressive
models with Scikit-Learn for chemical properties predictions can be downloaded as a notebook:
RegressiveLinearModelsForChemistryPrediction.ipynb, pdf.

2.6 Prediction of Molecular Toxicity by Linear Classification with DeepChem

A turn-key tutorial on how to make predictions of molecular toxicity with respect to 12 different
assays, using a classification neural networks with DeepChem, can be downloaded as a notebook:

04_Molecular_Fingerprints.ipynb, 04_Molecular_Fingerprints.pdf
The 2-layer NN is trained with Tox21, a database that contains information about the toxicity

of molecules with respect to 12 different assays. The input molecular features are defined ac-
cording to the type of atoms and their corresponding neighborhoods in the molecular structure,
using the extended-connectivity fingerprints (ECFPs), also known as circular fingerprints available
in DeepChem. The main properties of ECFPs are that (i) they are defined by considering circu-
lar atom neighborhoods (Fig. 17, middle panel, Sec. 5); (ii) they are rapidly calculated; (iii) they
represent substructures; (iv) they can account for a huge number of different molecular features
(including stereochemical information); and (v) they represent both the presence and absence of
functionality.
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2.6.1 Training

Figure 9: Representation of the training iterative pro-
cedure implemented for parametrization of neural net-
works by forward and backward propagation.

Figure 9 illustrates the typical iterative proce-
dure implemented for training of neural net-
works. The training data is typically divided
into N batches. The training process is initiated
with the first batch of data that is input for for-
ward propagation, a process that initializes the
weights (often randomly chosen weights) and
computes the values of neurons in the hidden
and output layers. The resulting output values
are then compared to the actual labels of the
input data to compute the loss, introduced by
Eq. (3), and the gradient of the loss with re-
spect to the weights, according to Eq. (12). The gradients are then used for back propagation, the
process that updates the weights by the gradient descent optimizer. Having updated the weights,
the second batch is input and the forward and backward propagation steps are applied. The pro-
cess is repeated for each batch until the first epoch is completed. Then, the loss is computed and
if it is not sufficiently low the weights are further optimized by processing more epochs.

2.6.2 Overfitting Problem

Figure 10: Top: Increasing complexity de-
creases the loss of training and testing sets
until reaching the bias trade-off point. In-
creasing the complexity further leads to
overfitting. Bottom: Increasing the number
of adjustable parameters introduces oscilla-
tions to reduce the loss of the noisy training
data, increasing the loss of the testing set.

The design of neural networks is usually based on pre-
viously developed successful neural networks or the re-
sult of work based on trial and error to tune the hyper-
parameters that define the number of layers, the number
of neurons per layer, and the types of layers. The neural
network is designed to achieve minimum loss for both the
training and validation/testing data. The loss of the train-
ing set can always be minimized by increasing the com-
plexity of the network, increasing the number of layers
and number of neurons per layer. However, increasing
too much the number of adjustable parameters can lead
to the problem of overfitting where increasing the com-
plexity reduces the loss of the training set but increases
the loss of the validation data set, as shown in Fig. 10.
By trial an error, one can increase the complexity and
reach the ideal complexity range where the error for the
validation/testing data is minimum, making sure not to fall
into overfitting range where the error for the testing data
set increases. 1

1Double descent: An interesting discussion of the issue of double descent can be watched at the following Youtube. It is shown
that approximating the sine function with noise, using d basis functions and Ridge regularization for a modest batch of 20 points for
training and a large testing set exhibits the phenomenon of double descent. The reconstruction error goes to zero when the number
of basis functions (neurons) is 20 or larger, although the testing error increases significantly near 20 due to overfitting. Nevertheless,
increasing the number of basis functions even further decreases the testing error (showing the double descent phenomenon) because
the regularization error is made smaller since a larger set of weights with small values can have a smaller Frobenius norm than a
smaller set).
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2.6.3 Regularization

Dropout is a simple regularization method, commonly used for reducing the number of adjustable
parameters in artificial neural networks.

Figure 11: Top: Dilution by ’dropout’, a technique that re-
duces the number of adjustable parameters by simply omitting
randomly chosen weights (i.e., links), dropping them out of
the training process. Bottom: Representation of complex solu-
tions, obtained by overfitting with dense neural networks (left),
as compared to simple solutions obtained by regularization.

Randomly chosen weights are sim-
ply omitted or ’dropped out’ by zero-
ing them during the training process,
as shown in Fig. 11. The technique
is also called random pruning and be-
longs to the family of dilution meth-
ods (i.e., methods based on adding
damping noise to the parameters of the
model).

Other regularization techniques are
typically included in most optimiza-
tion methods used for parametrization
of neural networks, including L2 reg-
ularization (called Ridge Regression)
where the loss includes an additional
term to penalize according to the sum
of the squares of the weights. For ex-
ample, for the 2-layer NN introduced
in Sec. 2, the loss for Ridge regres-
sion would be: ε = ∑K

j=1(yj − y(a)
j )2 +

λ
(

∑i,k(ω
(1)
ik )2 + ∑i,k(ω

(2)
ik )2

)
. L1 reg-

ularization (also called Lasso Regres-
sion), by adding a term to the loss pro-
portional to the sum of absolute values
of the weights: ε = ∑K

j=1(yj − y(a)
j )2 +

λ
(

∑i,k ω
(1)
ik + ∑i,k ω

(2)
ik

)
.

The main difference between Ridge and Lasso regressions is that Lasso leads to sparse rep-
resentations (with more coefficients equal to zero), since the regularization term introduces an
aggressive gradient of the loss with respect to small coefficients, as defined by λ. In contrast, the
corresponding gradient in Ridge regression is 2λωjk –i.e., proportional to the small value of the
coefficients ωjk.

Note that the regularization terms added to the loss, transform the problem into a more con-
strained problem with fewer possible solutions, eliminating for example solutions with large oscil-
lations, as shown in Fig. 10, allowing us to find a simple solution). In general, we look for simple
solutions since data collected from systems is usually very simple and the experiments corre-
spond to weak perturbations leading to an observable response that is very simple either linear in
the perturbational field or of very low order.
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3 Clustering and Regression Algorithms

3.1 Random Forest

Random forest is a recursive algorithm for classification of data into subgroups, using a ’forest’ of
decision binary trees with branches defined by selected features of the data (Fig. 12). Therefore,
the algorithm involves an unsupervised process that profiles data samples into subgroups, after
having created decision trees for classification based on selected features.

A simple example is a data set of molecules that we might want to classify into subgroups
of certain toxicity, solubility, etc., by analyzing their features. At the same time, the classification
process is used to build decision trees that enable classification. Molecules with unknown proper-
ties are run through the decision trees to find out in which leaf they end up branching out. Their
properties are inferred from the properties of the molecules that usually branch out into that leaf.

Each tree is created by using a subset of the training data set (sampled with replacement),
according to an iterative procedure defined by the following steps:

1. Randomly choose n features of the data to be analyzed as potentially splitting features,
according to steps 2 and 3.

2. For each feature, find the splitting point that minimizes the entropy (or, linearized entropy,
called Gini impurity as discussed in Sec. 3.1.1). 2

3. Split the data into 2 subgroups, using the feature with best performance.

4. Stop, if stopping criterion is met (e.g., the entropy decrease is smaller than a given threshold,
or some other stopping criteria is met such as the maximum depth of the tree has been
reached, or the number of samples in the node is smaller than a minimum value, etc., to
ensure that the tree does not classify noise). Otherwise, goto 1 and repeat the process for
the generated subgroups.

Figure 12: Schematic representation of the forest of binary de-
cision trees generated by the random forest algorithm, and the
outcome prediction for a testing sample (blue).

Clearly, the algorithm subdivides
the data into subgroups, each of
which with more uniform population
(i.e., more pure in a certain type of
feature) than the complete subset of
data used for construction of the tree.
The purity of the subgroups can then
be exploited to classify a sample of
unknown type by running it through
the decision tree and assigning to its
type, the type of data corresponding
to the subgroup where the sample
branched out. Running the unknown
sample through all of the trees of the
forest and averaging the results from
all trees gives the ensemble average
sample classification either as a majority vote, or otherwise a weighted vote based on the level of
confidence for the prediction from each tree.

2Alternatively, one can simply choose a random splitting point (a variation of the method called extremely randomized trees).
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As described above, the random forest algorithm is a random subspace method for ensemble
learning where correlations between prediction estimators (trees) are suppressed by training the
trees on random samples of data and random selection of features instead of using entire fea-
ture set. The bootstrap aggregation, or bagging, combines the predictions produced by several
learners into an ensemble that performs better than the original learners.

3.1.1 Entropy and Gini

The entropy of a tree node k with Nk elements of Nt possible types is defined, as follows:

Sk = −
Nt

∑
j=1

pjklog2(pjk), (16)

where pjk = n(j, k)/Nk is the likelihood that an element of node k is of type j, as defined by the
number n(j, k) of elements of type j in node k over the total number Nk of elements in that node.

The so-called Gini impurity measure Gk of node k is defined as the linearized entropy, obtained
by approximating log2(pjk) by its first order expansion around pjk = 1 (i.e., using the expansion
log2(pjk) ≈ log2(1) + (pjk − 1) + · · · = pjk − 1): Gk = −∑Nc

j=1 pjk(pjk − 1) = 1− ∑Nc
j=1 p2

jk. Note
that Gk = Sk = 0 when all of the elements of node k are of a single type i (i.e., the composition
is pure in type i). In addition, both Sk and Gk are maximum when all the possible types have
equally probable, (i.e., with probability p(j|k) = 1/Nt), and the composition is maximally impure.
Therefore, both Sk and Gk are equally valuable as metrics of impurity. In practice, however, Gk is
more popular since it is less expensive to compute.

3.2 K-means Algorithm

The k-means clustering algorithm classifies the samples of a data set into K subgroups of elements
that happen to be closer to the centroid of their cluster than to the centroids of any of the other
K− 1 clusters, as defined by a given measure of distance.

The k-means clustering procedure can be described, as follows. Starting with the complete
data set, K centroids are defined at random in the space of features,

1. Assign samples to their corresponding nearest centroid.

2. Recompute the centroid of each cluster according to their own samples.

3. Stop, if stopping criterion is met (e.g., the composition of each cluster has not changed).
Otherwise, goto 1.

The number of clusters that defines the most unbiased classification, as determined by the
composition of the clusters, is typically the number of clusters that maximizes the entropy SK =
−∑K

j=1 ∑Nt
i=1 pijlog2(pij), where pij = n(i, j)/Nj is the likelihood that an element of cluster j is of

type i, as defined by the number n(i, j) of elements of type i in cluster j over the total number
of elements Nj in that cluster. The maximum entropy principle gives the most unbiased distribu-
tion since an inference made on the basis of incomplete information should be drawn from the
probability distribution that maximizes the entropy, subject to the constraints on the distribution.
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3.3 K-Nearest Neighbors Algorithm

The K-nearest neighbors (KNN) algorithm is a classification method based on the plurality vote
of the K nearest neighbors, in the space of features (K-NN classification). It can also be used
as a regression method based on the average of the properties of the K nearest neighbors (K-
NN regression). The average, or the vote, can also be weighted inversely proportionally to the
distances of the sample to each of its K nearest neighbors. The underlying assumption of the
method is that samples that are close together in the space of features have similar properties.

3.4 Unsupervised Classification Assignment: K-means and Random Forest

[This tutorial assignment has been designed and developed by Jessica Freeze] The assignment for un-
supervised classification can be downloaded as a notebook UnsupervisedClassification.ipynb or
UnsupervisedClassification.pdf

20

https://en.wikipedia.org/wiki/K-nearest_neighbors_algorithm
https://batistalab.com/classes/CHEM584/Assignment3_UnsupervisedLearning.zip
https://batistalab.com/classes/CHEM584/Assignment_3_UnsupervisedClassification.pdf


4 Convolutional Neural Networks (CNN): Alphafold

Regularization can also be accomplished by convolution, as shown in Fig. 13 for the convolution of
a 7 × 7 neural layer, using a 3 × 3 convolutional kernel of weights ωk,l.

Figure 13: Top: Convolution of a 7× 7 neural layer,
using a 3× 3 kernel with stride=1, padding=0, and di-
lation=1 to generate a 5× 5 convoluted layer. Middle:
Animation of convolution. Bottom: Comparison of
convolution layers obtained with 3× 3 kernels, with
dilation = 1 (left) and dilation = 2 (right), respectively.

Starting with the kernel placed at the top-left
corner of the input layer, the input neurons
overlapping with the kernel are multiplied with
the corresponding kernel weights and the prod-
ucts are summed to generate the value of the
neuron z′i,j at the convoluted layer, aligned with
the center of the kernel:

z′i,j = φ

(
3

∑
k=1

3

∑
l=1

zi+k,j+lωk,l

)
, (17)

where φ is an activation function responsible
for the so-called ‘detector stage’. The kernel is
then displaced to overlap with other neurons in
the input layers and the same weights of the
convolution kernel ωk,l are used to generate
the value of another neuron in the convoluted
layer, according to Eq. (17).

The process is then repeated until the
whole input layer is convoluted, as seen by
clicking in the animation of the lower panel of
Fig. 13. Convolution is often followed by a
pooling layer that ’summarizes’ sections of the
convoluted layer into a single output value for
example by computing the average of the val-
ues of the convoluted layer, or the maximum
value (maxpooling). Pooling is often applied
since it makes the output invariant with respect
to global changes in the same image such as
translation or rotation of the input in applica-
tions to image processing.

When compared to feedforward NN layers,
CNN offer significant advantages for enhanced
performance since they typically include fewer
links between neurons (i.e., sparcity), and
fewer parameters (i.e., shared weights). Even
for the simple example shown in Fig. 13, we
note that a feedforward transformation from
7× 7 to 5× 5 layer would require 7× 7× 5× 5
weights, while the CNN requires only 3 × 3
since the same parameters are shared by all
of the transformations that generate the con-
voluted layer. In addition, the CNN introduces
sparsity of connectivity, with much fewer links between input and output neurons. Note, for ex-
ample, that the neuron at the top-left corner of the input layer is linked only to the neuron at the
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top-left corner of the output layer in that CNN, while it would be linked to all neurons of the output
layer in a corresponding dense feedforward network.

Convolution layers are defined by the hyperparameters of the kernel (parameters defined by
the user), shown in Fig. 13 (bottom panel), including the kernel dimensions as defined by the
height (kh) and width (kw) for a 2-dimensional kernel, the stride (s) (ı.e., the step size for striding
across the input layer), the padding (p) (or, border parameter defining whether the kernel stops
when it reaches the border or beyond), and the dilation rate (d) defining the spacing between the
elements of the kernel. The resulting dimensions (width Wout and height Hout ) of the resulting
convoluted layer can be computed in terms of the kernel parameters and the width Win and height
Hin of the input layer, as follows:

Wout =

[
Win + 2× p− d× (kw − 1)− 1

s
+ 1
]

Hout =

[
Hin + 2× p− d× (kh − 1)− 1

s
+ 1
] (18)

When the input has Cin channels (e.g., pixel intensities for blue, red and green), the kernel can
have multiple channels and transform the input into an output layer with a single channel. Further,
Cout kernels can be applied to generate an output layer with Cout channels, as shown in Fig. 14.

Figure 14: Convolution of a Win × Hin input layer
with Cin channels using multiple kw × kh kernels to
generate the Wout×Hout output layer with Cout chan-
nels.

Convolutional layers are particularly suit-
able for extracting features, as in applications
to image processing. For example, the edges
of an image can be generated simply by con-
volution of the image with a 3× 3 kernel with
positive and negative values,

k =

 1 0 −1
0 0 0
−1 0 1

 . (19)

In addition, convolution has valuable proper-
ties for image processing since it commutes
with translation (i.e., the shift of an input simply
leads to a shifted output) and thus generates
similar outputs for similar inputs. In addition,
convolutions are local due to the finite scope
of the kernel and, therefore, preserve the local
structure of the input. Various different convo-
lution kernels are typically applied so that vari-
ous different features can be extracted.

The development of the CNN AlexNet, shown in Fig. 15 (top panel), and its celebrated victory
in the 2012 ImageNet Large Scale Visual Recognition Challenge (ILSVRC) has revolutionized the
field of deep learning. The network achieved a top-5 performance with 15.3% error for recogni-
tion and classification of images of 1000 categories, including about 1,200 image per category.
AlexNet, with 5 convolutional layers and 3 fully connected layers, has shown that the depth of
the model is essential for high performance. Furthermore, AlexNet laid the foundation for the tra-
ditional CNN scheme based on a convolutional layer followed by an activation function followed
by a max pooling operation, although the pooling operation is sometimes omitted to preserve the
spatial resolution of the image. Training of AlexNet, with 61 million parameters, and 600 million
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connections, as summarized here was possible due to the utilization of graphics processing units
(GPUs), and the feasibility of parallelizing the convolutions based on two pathways representing
the split between two GPUs (Fig. 15 (top panel)).

Figure 15: Top: CNN AlexNet for image recogni-
tion, including 5 convolutional layers, and 3 fully con-
nected layers. The two pathways represent the split
between two GPUs. Middle: Representation of VGG
and Google ResNet networks. Bottom: Diagram of
AlphaFold1, including a CNN that generates the 2-
dimensional contact map of distances dcnn

jk between
amino acid residues j and k, and a function that com-
putes the position of alpha carbons and thus the inter-
residue distances, as a function of torsion angles.

Since AlexNet, the state-of-the-art in CNN
architectures has gone deeper and deeper
(i.e., AlexNet has only 5 convolutional lay-
ers, while the VGG network has 19 lay-
ers, and GoogleNet (also codenamed Incep-
tion_v1) has 22 layers) (Fig. 15, middle panel).
Training even deeper neural networks has
been enabled by the discovery of residual
layers that skip over convolutional layers to
avoid the vanishing gradient problem, resulting
in one of the most ground-breaking develop-
ments in the last few years. ResNet allowed
training of thousands of layers.

Convolutional neural networks have made
a significant contribution toward solving the
folding protein challenge, with the develop-
ment of AlphaFold1, a neural network (Fig. 15,
bottom panel) for prediction of 3-dimensional
protein structures. AlphaFold1 created high-
accuracy structures for 24 out of 43 free
modeling domains, in the blind assessment
of the state of the field competition Critical
Assessment of Protein Structure Prediction5
(CASP13), whereas the next best achieved ac-
curacy for only 14 out of 43 domains. This link
provides a notebook to play with AlphaFold.

The AlphaFold1 neural network takes a 2-
dimensional input based on the protein primary
sequence of amino acid residues and features
of the amino acids, and implements a CNN that
generates the 2-dimensional contact map of
distances dcnn

jk between amino acid residues j
and k. The predicted dcnn

jk values are then used
to calculate the protein backbone torsional an-
gles φ and ψ of all residues by gradient de-
scent optimization of a function x = G(φ, ψ)
that computes the coordinates xj of all alpha
carbons j and thus the inter-residue distances
djk = ‖xj − xk‖. SGD optimization minimizes
the loss between djk and dcnn

jk w.r.t. φ and
ψ. More recently, the CNN of AlphaFold1 has
been replaced by an attention transformer, ex-
ploiting advances in natural language processing developments, discussed in Sec. 7.1, leading to
the development of AlphaFold2 with performance higher than 87 % at the CASP14 assessement.
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4.1 3-dimensional CNN with Squeeze-and-Excitation

[This section was written by Mr. Greg Kyro]
The use of attention, a context-based weighting technique analogous to cognitive attention,

has been shown to improve performance in many deep learning models. Squeeze-and-Excitation
Networks won the ImageNet Large Scale Visual Recognition Challenge 2017 for image classifi-
cation, and have been shown to significantly improve accuracy at a minimal increase in computa-
tional cost in many high-performing CNNs such as MobileNets and ShuffleNet. A squeeze-and-
excitation (SE) block incorporates attention by performing channel-wise feature recalibration. The
spatial dimensions for each channel are condensed to a single number via average pooling, and
then passed through a network of two fully connected layers with ReLU activation after the first
layer and sigmoid activation after the second. Finally, the resulting vector elements are used as
multiplicative weights for the corresponding channels of the input data.

Figure 16: 3D-CNN architecture used in HAC-Net. Gray arrows and text
refer to data and their transformations. Black arrows and text refer to com-
ponents of the model architecture. We begin with protein and ligand struc-
tural files, voxelize the heavy atoms into a grid of size 48×48×48×19,
and then perform a series of convolutions to generate a binding affinity
prediction in the form of pKD. The convolutional process is shown in (A).
The function of the squeeze-and-excitation (SE) blocks that we incorporate
to employ channel-wise attention is visually depicted in (B).

A deep learning model
for predicting protein-ligand
binding affinity, HAC-Net,
utilizes a 3-dimensional con-
volutional neural network
that incorporates SE blocks
to yield highly accurate pre-
dictions of pKD from pro-
tein and ligand structural
files (Fig. 16). Protein and
ligand atoms are first em-
bedded into a 3-dimensional
spatial grid, each voxel of
which corresponds to ei-
ther a vector of atomic fea-
ture elements or 0s, de-
pending on the presence or
absence of an atom cen-
ter, respectively. The in-
put volume dimensions are
48×48×48×19, where 48
corresponds to the length
of each spatial dimension of
the voxel grid and 19 corresponds to the number of channels (i.e., the length of the feature vec-
tor). This information is presented to the 3D-CNN as a 4-dimensional array. We utilize the atomic
feature set first presented by Pafnucy:

• 9 bits (0 or 1) encoding atom types: B, C, N, O, P, S, Se, halogen and metal
• 1 integer (1, 2, or 3) for atom hybridization
• 1 integer counting the number of bonds with heavy atoms
• 1 integer counting the number of bonds with heteroatoms
• 5 bits (0 or 1) encoding hydrophobic, aromatic, acceptor, donor and ring
• 1 float for partial charge
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Each convolutional filter is applied over the input signal according to the following equation:

output[x′, y′, z′] = bias +
kx

∑
h=1

ky

∑
i=1

kz

∑
j=1

F

∑
f=1

filter[h, i, j, f ] · input[x + h, y + i, z + j, f ] (20)

One filter will therefore generate a 3-dimensional output array. By applying multiple indepen-
dent filters to a given input, the length of the channel dimension of the output can be modulated,
where each filter produces a channel of the output. An SE block begins with a standard convolu-
tion of the type described above. The values of each channel are then averaged across all spatial
dimensions, yielding a 1-dimensional vector with each index corresponding to a channel:

zc =
1

Lx · Ly · Lz

Lx−1

∑
i=0

Ly−1

∑
j=0

Lz−1

∑
k=0

u[i, j, k, c] (21)

where u and z correspond to the 4-dimensional output of the convolution and the 1-dimensional
row vector containing the average value of each channel, respectively. Next, z is passed through
a network of fully connected layers with ReLU activation after the first layer and sigmoid activation
after the second, producing a transformed vector of the same length as the original:

s = sigmoid(ReLU(zW1)W2) (22)

where W1 (F × F/16) and W2 (F/16 × F) are the weight matrices for the two fully connected
layers, and F is the number of channels. Finally, each element of s is used as a multiplicative factor
for the corresponding channel of u:

x[i, j, k, c] = scu[i, j, k, c] (23)

In this way, the model learns to optimally weight the various features based on a transformation
of their collective average values, which can be regarded as a self-attention mechanism on the
channels.

All of the source code, as well as tutorial notebooks to run HAC-Net are available through
GitHub.
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5 Graph Convolutional Networks (GCN)

Figure 17: Top: GCN with two hidden layers for
predicting a molecular property (e.g., solubility).
Middle: Representation of the molecule with a
graph where nodes correspond to atoms, colored
according to their circular fingerprints, and edges
link the nodes according to the molecular con-
nectivity. Bottom: Adjacency matrix defining the
edges of the graph as determined by the molecular
connectivity.

Graph convolutional networks (GCN) are ideally
suited for describing molecules, since molecules
can be represented by graphs (i.e., nodes con-
nected by edges). The nodes are defined by
N× F(j) matrices H(j), corresponding to N atoms
with F(j) features (Fig. 17). The edges (bonds) are
defined by the N × N adjacency matrix, A (with
Ajk = 1, if atoms j and k are linked, and Ajk = 0,
otherwise). The adjacency martix defines the de-
gree matrix, as follows: Di,l = δi,l ∑k Ai,k, a diag-
onal matrix defining the number of edges of each
node.

The features H(j) of nodes in hidden layer j are
computed with so-called propagation rules, de-
scribed later in this section, pooling transforma-
tions (represented by red arrows in Fig. 17, top)
that compute the features of each node by convo-
lution with those of its neighbors as defined in the
previous layer (j − 1). The convolutional kernels
are defined by F(j−1) × F(j) matrices of weights
ω(j−1), corresponding to the numbers F(j−1) and
F(j) of features in layers j − 1 and j, respectively
(vide infra). The weights are trained by gradient
descent to ensure that the final output of the GCN
matches the labels of a training set of molecules
(all of them defined by their corresponding graphs
although with common atomic features).

Inputs: The features are initialized as defined ac-
cording to the atom types and their corresponding
neighborhoods in the molecular structure as en-
coded, for example, by the extended-connectivity
fingerprints (ECFPs), also known as circular fin-
gerprints available at DeepChem. The main prop-
erties of ECFPs are that (i) they are defined by
considering circular atom neighborhoods (Fig. 17,
middle panel); (ii) they are rapidly calculated; (iii)
they represent substructures; (iv) they can ac-
count for a huge number of different molecular
features (including stereochemical information);
and (v) they represent both the presence and ab-
sence of functionality. Also, a differentiable gen-
eralization of circular fingerprints has been devel-
oped and is available at DeepChem, among other
molecule featurizers.
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5.1 Propagation Rules

Each hidden layer of features H(j), with H(0) = X, is obtained from the previous layer, according to
a propagation rule H(j) = f (A, H(j−1)ω(j−1)). In general, f (A, H(j−1)ω(j−1)) = φ(C(A, H(j−1)ω(j−1))),
where C is a convolution that aggregates the features of each node with those of its linked neigh-
bors, using weights that are optimized by gradient descent. The activation φ is typically a ReLU
function. Often, the adjacency matrix is incremented with the identity (Ã = A+ I) to aggregate the
features of the central node with those of its neighbors during the computation of hidden layers.

Examples of popular propagation rules are:
(i) the sum rule (AHω) computes the features of the i-th node in the j-th hidden layer as the

entries of the i-th row of the convolution of A and H(j−1), as follows:

C(A, H(j−1)ω(j−1))i =
N

∑
k=1

Ai,k H(j−1)
k ω(j−1). (24)

(ii) the mean rule (D−1AHω) averages the values of the neighbors and scales the average
with the node degree, as follows:

C(A, H(j−1)ω(j−1))i =
N

∑
l=1

D−1
i,l

N

∑
k=1

Ai,k H(j−1)
k ω(j−1),

=
N

∑
k=1

D−1
i,i Ai,k H(j−1)

k ω(j−1),

(25)

where Di,l = δi,l ∑k Ai,k are the elements of the degree matrix. The resulting normalization allows
for balanced training of all weights regardless of the node degree (i.e., atom covalency), keeping
the aggregated feature on the same order or magnitude as the input features to avoid the problem
of exploding gradients. (iii) the spectral rule (D−1/2 AD−1/2Hω) normalizes the features of a node,
not only taking into consideration the degree of the node, but also the degree of its neighbors, as
follows:

C(A, H(j−1)ω(j−1))i =
N

∑
l=1

D−1/2
i,l

N

∑
k=1

Ai,k

N

∑
l′=1

D−1/2
k,l′ H(j−1)

k ω(j−1),

=
N

∑
k=1

D−1/2
i,i Ai,kD−1/2

k,k H(j−1)
k ω(j−1).

(26)

Therefore, the spectral rule also keeps the features roughly on the same scale as the input fea-
tures. The main difference when compared to the mean rule is that it weighs more strongly neigh-
bors with low-degree and lower if they have a high-degree. So, it s particularly useful when low-
degree neighbors provide more useful information than neighbors with high-degree.

5.2 Prediction of NMR Chemical Shifts by Graph Convolutional Networks

[This tutorial has been designed and developed by Mr. Cantarella (Haote) Li, based on the recent publi-
cation by Eric Jonas and Stefan Kuhn, J Cheminform (2019) 11:50 Rapid prediction of NMR spec-
tral properties with quantified uncertainty] A PyTorch tutorial showing how to implement a Graph
Convolutional neural network for predictions of NMR chemical shifts of molecules using molecular
graphs with atomic features as inputs, can be downloaded as a notebook: GCN_NMR_Cantarella.zip.

27

https://en.wikipedia.org/wiki/Degree_matrix
https://batistalab.com/classes/CHEM584/GCN_NMR.pdf
https://batistalab.com/classes/CHEM584/GCN_NMR.pdf
https://batistalab.com/classes/CHEM584/GCN_NMR_Cantarella.zip


5.3 Prediction of Solubilities by Graph Convolutional Networks with DeepChem

A turn-key tutorial on how to make predictions of molecular solubilities using Graph Convolutional
neural networks with DeepChem, using molecular graphs as inputs, can be downloaded as a
notebook:

• 01_The_Basic_Tools_of_the_Deep_Life_Sciences.ipynb,

• 01_The_Basic_Tools_of_the_Deep_Life_Sciences.pdf

5.4 Introduction to classification by Graph Convolutional Networks with DeepChem

A turn-key tutorial on how to classify molecular structures using Graph Convolutional neural net-
works with DeepChem, using molecular graphs as inputs, can be downloaded as a notebook:

• 06_Introduction_to_Graph_Convolutions.ipynb ,

• 06_Introduction_to_Graph_Convolutions.pdf
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6 Recurrent Neural Networks (RNN)

Figure 18: Folded (left) and unfolded (right) repre-
sentations of a recurrent neural network layer where
the inputs xt are processed in a sequence, one at a
time, to generate an output value Ot as well as a hid-
den state ht that is combined with the next input xt+1
to produce the next element of the output, and a hid-
den state ht+1 that is passed and combined with the
next input to continue the process until the end of the
input sequence.

Up to this point, we have discussed feedfor-
ward networks, convolutional neural networks
and graph convolutional networks for super-
vised learning. Those networks take all of the
input values of the input layer at once and pre-
dict a single output corresponding to the input
values. In contrast, recurrent neural networks
(RNN) take one input value at a time, and re-
currently produce outputs in context of all the
previously processed input values. So, RNN’s
are ideally suited for predicting the next ele-
ment of a sequence as for the problem of com-
pleting a sentence (i.e., fill in the blank). For ex-
ample, if the input is ’TNT is’ the output would
be ’explosive’, or if the input is ’H2S is called’
the output would be ’hydrogen sulfide’). Isn’t
that cool? Obviously, a RNN model trained with
enough sentences from chemistry books and
publications would be quite useful. So, can we build it? What is the structure of an RNN?

One way of looking at the structure of a RNN is as a linear chain of feedforward neural networks
(from left to right in Fig. 18). From bottom to top, each feedforward network has an input layer
(green), hidden layer (blue) and output (red) from bottom to top. The key distinct structural aspect
of the RNN is that the hidden layers of the feedforward networks are connected with directional
links from left to right. In each feedforward layer, the input generates a hidden state ht = φ(Uxt +
Vht−1 + b) by using an input xt and the hidden state ht−1 from the previous feedforward layer.
The activation function is typically φ = tanh for which φ′ = (1− φ2). So, for each input at a time,
a feedforward generates an output ot = c + Wht, and passes the hidden state to the next layer.
So, in contrast to feedforward and convolutional neural networks, RNNs generate a Markov chain
of hidden states ht determined by the current input xt and the hidden state ht−1 which in turn is
determined by all previous inputs x1, x2, · · · xt−1. So, each output is determined from all previous
inputs. Regularization is achieved by sharing the same parameters for all times.

Training a RNN can be tricky since the gradient of the loss L associated with a large number
N of iterative composition steps with ht = φ(Uxt + Vht−1 + b), can quickly vanish, or diverge. To
see the origin of this difficulty, let us compute the gradient of L with respect to the hidden states,
for the simple example where ot = Wht, with L = L(otN , otN−1 , · · · , ot0),

∂L
∂htN−1

=
∂L

∂otN−1

W +
∂L

∂otN

∂otN

∂htN

∂htN

∂htN−1

=
∂L

∂otN−1

W +
∂L

∂otN

WVφ′,

=
∂L

∂otN−1

W +
∂L

∂otN

WV(1− (φ(Uxt + Vht−1 + b))2).
(27)

So, the gradient with respect to htN−1 depends on V. Analogously, we can show that the gradient of
L with respect to htN−2 depends on V2, and with respect to ht0 depends on VN. So, for sufficiently
large N, the gradients either vanish when V < 1, or diverge when V > 1, and very quickly! In
fact, exponentially quickly with the number of steps N. Multiple strategies have been explored to
address this numerical challenge.
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Echo State Network: One simple approach that also works as a regularizer is the so-called echo
state network where constraints are imposed on the parameters W, V and U so that the gradients
will not vanish or diverge. For example, training only W, with V = U = 1 and φ = ReLU.
Clipping Gradients: Another approach is the so-called clipping gradient method where a maximum
value for the gradient is imposed and the weights are evolved with a value of the gradient that is
the minimum between the actual gradient and the maximum allowed value. That trick often helps
to prevent the divergent gradient problem. Those are problematic since they tend to evolved the
weights with big jumps into undesired regions of the parameter space where the loss is very high
and the gradients are even higher thus preventing any reasonable convergence. However, the
clipping gradient method is not a panacea, so we need other approaches.
Long Delays: Another approach is called long delays, where the hidden states are not connected
to the nearest neighbors but rather to the second, or to the n-th neighbor. That design delays the
process of vanishing or diverging gradients since the gradients would no longer depend on VN but
rather on VN/n.
Leaky Units: Another approach is based on the so-called leaky units where the hidden units sum-
marizing the past are defined, as follows: ht,j =

(
1− 1

τj

)
ht−1,j +

1
τj

φ(Uxt + Vht−1 + b), where
the index j labels various different components of the vector ht. Note that the model has two
limits, including the limit of τj = 1 where the model is equivalent to the standard RNN with
ht,j = φ(Uxt + Vht−1 + b), and the limit when τj → ∞ where ht,j = ht−1,j hidden values are
passed as in the echo state model, with V = 1. Implementing different values of τj for different
directions j, allows to implement the influence of the past differently along different components j
corresponding to different features of the model.
Gated RNN: Starting with the Long Short-Term-Memory (LSTM) algorithm, the Gated Recurrent
Units (GRU) method proposed in 2014, and the many different variations that have been devel-
oped during the past few years address the central issue of either forgetting the past or allowing
information from previous steps to pass through a gate and influence the current hidden state.

GRUs are more recent and more flexible than LSTM. Rather than updating the hidden units
ht,j = φ(Uxt + Vht−1 + b) as in the standard RNN, GRUs are based on so-called ‘gate units’. The
original version by Cho et al introduced the so-called update gate layer zt = σ(U(z)xt + V(z)ht−1)
usually defined with a sigmoid activation function, and a reset gate that resets the memory to forget
the past. It is similarly defined although with different weights rt = σ(U(r)xt + V(r)ht−1) that can
be open or closed, for letting information flow, or not. Here, U(r), V(r), U(z), and V(z) are weight
matrices that are learned. The gates update the hidden layer, as follows:

ht = zt ◦ ht−1 + (1− zt) ◦ h̃t,

h̃t = tanh(Wxt + U(rt ◦ ht−1)),
(28)

where the symbol ◦ in the first term corresponds to the element-wise Hadamard product of ele-
ments of vector zt times corresponding elements of vector ht−1 in the same position. The tempo-
rary memory h̃t = tanh(Wxt + U(rt ◦ ht−1)) is defined just by xt when the reset gate rt is closed
(equal to 0) and therefore zeroes the vector Uht−1 that brings information from the past. Many
other variations of GRUs have been proposed.

The equations for LSTM are more complicated with various types of gates which provide furher
flexibility at combining current information with information from the past. In fact, GRU was devel-
oped to simplify LSTM for problems where extra flexibility was not necessary. Nevertheless, in
practice, LSTM and GRU are implemented as modules that take inputs ht and xt and generate
output ht+1, as implemented for example in PyTorch with torch.nn.RNN and torch.nn.GRU.
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7 Autoencoders

Figure 19: Schematic representation of an autoen-
coder, constructed by connecting two neural networks
with a layer called the latent space.

Autoencoders are made by connecting two
neural networks with a bottleneck layer called
latent space, as shown in Fig. 19. Autoen-
coders are typically trained for reconstruction
of the input by minimizing the loss defined by
the difference |x− x̂| between the input x and
the output x̂, for example, in applications to
data compression. The underlying dimension-
ality reduction when transforming x ∈ Rd to
z ∈ Rn with the encoder neural network is
analogous to the transformation z = UTx of
principal component analysis (PCA) where U
is a d × n matrix. The reconstruction with the
decoder neural network is analogous to the
transformation x̂ = Uz, with UUT = I. Au-
toencoders can operate like PCA when they
are built with linear activation. However, they
can also be more general (i.e., generalizations
of PCA) by including multiple layers with non-
linear activation functions. Autoencoders can
also be overcomplete, when the latent space is larger than the input space (i.e., n > d). A possible
application of overcomplete autoencoders is noise reduction since the trivial ‘solution’ obtained by
copying the input into the latent space, and from latent vector to the output would not reconstruct
the clean image simply because the input is noisy.
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7.1 RNN, CNN and Multi-Head Attention Autoencoders

Autoencoders have been applied to the problem of sequence to sequence reconstruction/translation,
as analyzed by Sutskever et al also described with LSTM RNNs for both the encoder and decoder
networks (Fig. 20, top) by the excellent online tutorial. The corresponding transformer based on
multi-head attention (Fig. 20, bottom) has been introduced by the article Attention is All You Need
also analyzed by the online tutorial. The attention transformer of text and images has generated
the amazing GPT transformers, demonstrating design ’creativity’, already applied by companies.
Beyond captioning and avocado sofas, AI creativity can also generate innovative hypotheses be-
yond the imagination of humans.

Figure 20: Schematic representations of the sequence to sequence autoen-
coders based on RNNs with teacher forcing (top) and multi-head attention
(bottom).

In those implementa-
tions, the input is a sen-
tence that is tokenized (i.e.,
broken into the constituent
words and symbols which
are embedded (i.e., con-
verted to numbers) with
the nn.Embedding Py-
Torch module as 256 en-
try vectors) while the out-
put is the corresponding
sentence in a different lan-
guage. The resulting trans-
former is trained by teacher
forcing, with an additional
input to the decoder corre-
sponding to the translated
sentence (Fig. 20).

We note that the con-
text vector generated in la-
tent space by the LSTM
encoder summarizes not
only the content of the
sentence, as defined by
the words and symbols,
but also the relative order
of the sequence of words
which is essential for the
meaning of the sentence.

Analogous transformers
can also be achieved by
using non-RNN encoders
and decoders, including
convolutional models and
multi-head attention that
are much faster because
all of the input values of the
sequence are provided at the same time. Furthermore, contrary to the RNNs that require a slow
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sequential training process, the convolutional models and multi-head attention schemes have the
advantage that can be parallelized, so they can be trained much faster than RNNs.

7.1.1 Attention Mechanism

Figure 21: Schematic representation of the
multi-head attention module with h parallel at-
tention processes.

Figure 20 (lower panel) shows the implementation
of the autoencoder for sequence to sequence pre-
diction based on the so-called multi-head attention
mechanism (Figure 21). Instead of using an RNN
for getting dependency between input values, the
encoder implements self-attention to captures in-
formation of each input token in context of the se-
quence, as described below.

Input to Attention: Figure 20 (lower panel) shows
that each element of the input sequence (i.e., each
input token) is embedded into a vector and com-
bined with a vector that provides the position of
that token i in the sequence (i.e., a positional en-
coding vector), generating the input vector xj. Key,
query and value vectors (ki = Wkxi, qi = Wqxi and
vi = Wvxi, respectively) are then generated from xi
using learnable weights Wk, Wq and Wv.

Dot-Product Attention: The key and query vectors
are used to compute softmax attention values

wij = exp(scoreij))/ ∑
kl

exp(scorekl),

from the score of similarity scoreij = qT
i k j is higher

when i and j are correlated elements of the input
(related elements of the input). These attention val-
ues wij define the level of alignment between input
tokens, and thus the level of attention that the i-th input should pay to the value vj of the j-th token,
as follows wvi = ∑j wijvj. These weighted value vectors are then passed by a linear layer with
learnable weights Wo to produce the attention output context vector, as follows: o = Wo · wv.

Parallel Multi-Head: The so-called ’multi-head’ implementation applies the attention mechanism
in parallel to various components of the input and then concatenates and linearly transforms the
output into the expected dimension for the context vector, as shown in Figure 21. Such a parallel
implementation allows for attending to different parts of the sequence differently.

Example: Image Captioning The jupyter notebook provides a code for image captioning, as de-
scribed in the github, a fundamental task in vision-language understanding, where the model
predicts a textual informative caption to a given input image, as described in this article.
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7.2 Variational Autoencoders (VAE) and Generative Adversarial Networks (GAN)

Variational autoencoders (VAE) are generalized versions of autoencoders where the decoder re-
ceives an input sample from a uniform or Gaussian distribution and generates an output that
resembles the type of labels used in the training. One form of VAE is based on a context vector
defining the parameters of a desired probability distribution that generates the input data for the
decoder. In that case, the model could be trained with a loss defined by the reconstruction error
plus the KL divergence between the desired sampling distribution and the distribution defined by
the context vector. The Gaussian distribution allows for analytic computation of the gradients of
the KL divergence.

A decoder of a generative model can also be parametrized to take samples from a uniform, or
Gaussian distribution and generate outputs with a distribution similar to the distribution that charac-
terizes the labels of the training set. The similarity between the two distributions can be measured
by the so-called maximum mean discrepancy (MMD) distance described below in Sec. 7.2.1.

Figure 22: Schematic representation of the GAN model
based on a generator from latent space and a discriminator.

Another form of generative models
are the generative adversarial networks
(GAN) that also feed a decoder with data
from a uniform or Gaussian distribution
and generate outputs that resemble the
distribution of labels, as applied to molec-
ular design. GAN are trained by using an
adversarial classifier that is trained to be-
come better and better at distinguishing
between the generated data and the la-
bels while the generator is trained to be-
come better at generating data that the
discriminator cannot discriminate from the
original data. A tutorial on how to train a GAN model with MNIST is available here, and a version
with conditional generation with additional inputs to the generator and discriminator to condition
the output. Also, Python-GAN provides a wonderful discussion and Pytorch implementation.

Both VAE and GAN models provide generative methods based on sampling functions capable
of feeding the decoder with inputs that generate new samples resembling the type of data used
in the training set. For example, when the model is trained with pictures of human faces, the
decoder generates outputs that resemble human faces. When the training set is based on small
drug like molecules, such as those from the Zinc library, the sampling process generates drug like
molecules, as shown in the tutorials mentioned below. Isn’t that amazing?

VAE Implementation with Pytorch on Colab: [Tutorial designed and developed by Mr. Haote Li]
A turn-key tutorial on how to implement the VAE transformer, based on multi-head attention and
MMD to generate small drug like molecules, such as those from the Zinc library can be downloaded
as the following notebook: VAE_Tutorial.zip.

CVAE Implementation with Pytorch on Colab: [Tutorial designed and developed by Mr. Haote Li]
A turn-key tutorial on how to implement the conditional VAE transformer, based on multi-head
attention and MMD to generate small drug like molecules with specific properties, such molecules
similar to those in the Zinc library with a specific solubility can be downloaded as the following
notebook: TCVAEtutorial.zip.
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7.2.1 Maximum Mean Discrepancy Method

The goal of this section is to introduce the so-called maximum mean discrepancy (MMD) method
for comparisons of distribution functions, using the radial basis function (RBF) kernel.

We consider n samples xj from distribution function p(xj) and m samples yk from distribution
function q(yk). Each of the samples is transformed according to a transformation φ and the means
of the transformed data are computed, as follows: µp = ∑n

j=1 φ(xj) and µq = ∑m
k=1 φ(yk) to obtain

the MMD distance between the two distributions dpq = |p − q|2 as estimated by the distance
between the two means, dpq = |µp − µq|2:
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(29)

where the radial basis function (RBF) kernel K(xj, yk′) = exp(−|xj − yk′ |2)/(2σ2), with the hyper-
parameter σ defining the variance, ensures matching of all of the moments of the two distributions.
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7.3 Time Series Prediction: Dynamical Mode Decomposition

The goal of this section is to introduce the so-called dynamical mode decomposition (DMD)
method to predict the evolution of a dynamical system, after learning the principal modes of prop-
agation from observations of a time series of data v1, v2, · · · , vn, collected at n times tj = (j− 1)τ,
equally spaced by time intevals τ. Typically, the instantaneous data vj is an array of N numbers
with N � n. When vj are the concentrations of components of a mixture at time tj during a
chemical reaction, the task is to predict the evolution of concentrations at subsequent times after
analyzing the evolution during the first n time steps.

The DMD method finds the eigenvalues λk and eigenvectors Γk of the eigenvalue problem

AΓk = λkΓk, (30)

where A is the N × N transformation matrix defined by the following equation,

Y = AX, (31)

where X = v1, v2, · · · , vn−1, and Y = v2, v3, · · · , vn are the matrices of data collected at n equally
spaced times tj = jτ, with j = 1 − n. We note that A can be diagonalized according to the
similarity transformation Γ† AΓ = λ, where λ is the diagonal matrix of eigenvalues, and Γ the
matrix of eigenvectors of A.

Linear Model: The dynamics describing the evolution of the data is simulated by considering that
X is a continuous time-dependent variable,

X(τ) = AX(0), (32)

with A = eAτ defined as the propagator so

X(t) = eAtX(0), (33)

and Ẋ(t) = AX(t). Note that λ = Γ†eAτΓ = eΓ†AΓτ, showing that Γ also diagonalizes A since the
exponential of a matrix is diagonal only if the matrix is diagonal. Thus, A and A have the same
eigenvalues λk and eigenvectors Γk.

Any arbitrary initial state of the data of interest X(0) = Ψ0 can then be expanded in the basis
of eigenvectors of A, as follows:

Ψ0 =
ñ

∑
k=1

ckΓk, (34)

where the coefficients ck = ∑j S−1
kj 〈Γj|Ψ0〉 are computed in terms of the inverse of the overlap

matrix Skj = 〈Γk|Γj〉, since the eigenvectors Γj are not orthogonal when the matrix A is not sym-
metric, or Hermitian. The dynamics of the system can then be propagated, according to Eq. (33),
as follows:

Ψt = eAtΨ0 =
ñ

∑
k=1

ckeAtΓk,

=
ñ

∑
k=1

ckeλktΓk.

(35)

Eigenvalues and Eigenfunctions: The eigenvalues and eigenvectors of A are efficiently computed,
according to the DMD method, by using the singular value decomposition svd of X, as follows.
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We introduce the substitution X = UΣVT into Eq. (31), where U is the matrix of eigenvectors
of XXT with diagonal matrix of eigenvalues Σ2 since XXT = (UΣVT)(VΣUT) = UΣ2UT, thus
XXTU = UΣ2. Analogously, we can show that V is the matrix of eigenvectors of XTX with the
same diagonal matrix of eigenvalues Σ2. The elements of Σ2 thus define the entries of Σ (the
so-called singular values) which can be all positive (since Σ2 defines Σ out of an arbitrary phase).
Singular values smaller than a given threshold ε can be neglected to keep only ñ ≤ n non-zero
singular values larger than a desired threshold value, ε. Dropping out singular values smaller than
ε is a form of regularization that filters out noise in the data and define a reduced dimensionality
model that can be solved very efficiently.

Substituting the svd X = UΣVT into Eq. (31), we obtain: Y = AUΣVT, where U is an N × ñ
matrix. Having, U, Σ and V, we can compute the small ñ× ñ matrix Ã = UT AU, as follows:

Ã = UTYVΣ−1. (36)

Considering that according to Eq. (30), AΓk = Γkλk, we obtain UÃUTΓk = Γkλk, so

ÃΓ̃k = Γ̃kλk, (37)

with
Γ̃k = UTΓk. (38)

Solving Eq. (37), we obtain the ñ eigenvalues λk and eigenstates Γ̃k, corresponding to the first
ñ eigenvalues and eigenstates of the large N × N matrix A since Ã and A are related by the
similarity transformation Ã = UT AU. Furthermore, we can obtain the first ñ eigenvectors Γk of A,
from the eigenvectors of Ã, according to Eq. (38), as follows: Γk = UΓ̃k.

Alternatively, when λk 6= 0, we can compute Γk, as follows:

Γk = λ−1
k YVΣ−1Γ̃k, (39)

since Γk = UΓ̃k, and AΓk = λkΓk, so, λ−1
k AUΓ̃k = Γk. Furthermore, Y = AX, so Γk =

λ−1
k YX−1UΓ̃k, and considering that X = UΣVT and X−1 = VΣ−1UT, we obtain Γk = λ−1

k YVΣ−1Γ̃k
which proves Eq. (39).

Alternatively, the eigenstates of A can also be written, as follows:

Γ̄k = λkΓk,

= YVΣ−1Γ̃k,
(40)

since any multiple of the eigenstate Γk is also an eigenstate.

Exercise: Implement the DMD method for analyzing and predicting the evolution of a 2-dimensional
Gaussian ψ(x, y) = e−(x−xe(t))2−(y−ye(t))2

with an oscillatory dynamics defined by xe(t) = 0.5cos(wxt)
and ye(t) = 0.1cos(wyt), with wx = π/t and wy = 0.5+ π/t, where t = 30 is the total propagation
time.

Solution: The following python script shows the implementation of the DMD method for analyzing
the evolution of a 2-dimensional Gaussian. The script also includes the tt implementation which
requires installation of scikit tt as described at https://github.com/PGelss/scikit_tt.

import numpy as np
import os
import sys
import scipy.linalg as lin
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from scikit_tt.tensor_train import TT
import scikit_tt.data_driven.tdmd as tdmd
import matplotlib.pyplot as plt
import scikit_tt.utils as utl
import time as _time
def gau(r,r0):

x=r-r0
return(np.exp(-x**2))

def dmd_exact(x_data, y_data):
# decompose x
u, s, v = lin.svd(x_data, full_matrices=False, overwrite_a=True,

check_finite=False, lapack_driver='gesvd')
# construct reduced matrix
reduced_matrix = u.T @ y_data @ v.T @ np.diag(np.reciprocal(s))
# find eigenvalues
eigenvalues, eigenvectors = lin.eig(reduced_matrix, overwrite_a=True,

check_finite=False)
# sort eigenvalues
ind = np.argsort(eigenvalues)[::-1]
dmd_eigenvalues = eigenvalues[ind]
# compute modes
dmd_modes = y_data @ v.T @ np.diag(np.reciprocal(s)) \
@ eigenvectors[:, ind] @ np.diag(np.reciprocal(dmd_eigenvalues))
# overlap matrix
nm = np.size(dmd_eigenvalues)
S = np.zeros((nm,nm),dtype=complex)
for j in range(nm):

for k in range(nm):
S[j][k]=np.vdot(dmd_modes[:,j],dmd_modes[:,k])

# invert S
Sinv = lin.inv(S)
return S, Sinv, dmd_eigenvalues, dmd_modes

nt=30
npt=50
nmo=4
wx=np.pi/npt
wy=np.pi/npt + .5
dz=4/npt
z=(np.arange(npt)-npt/2)*dz
# generate time dependent data
data = np.zeros((npt,npt,nt))
for k in range(nt):

rx=0.7*np.cos(k*wx)
ry=0.3*np.cos(k*wy)
for i in range(npt):

for j in range(npt):
data[i][j][k] = gau(z[i],rx) * gau(z[j],ry)

# visualize time-dependent data
nt2=nt
stri=np.int(nt/nt2)
f = plt.figure(figsize=plt.figaspect(1.))
for j in range(nt2):
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i=j*stri
ax = f.add_subplot(1, 1, 1, aspect=0.5)
ax.imshow(np.real(data[:, :,i]), cmap='jet')
plt.axis('off')
plt.pause(.25)
plt.clf()

# construct tensors y and x corresponding to y = A x
number_of_snapshots = data.shape[-1] - 1
x = data[:, :, 0:number_of_snapshots].reshape(\

data.shape[0] * data.shape[1], number_of_snapshots)
y = data[:, :, 1:number_of_snapshots + 1].reshape(\

data.shape[0] * data.shape[1], number_of_snapshots)

# apply exact DMD
S, Sinv, eigenvalues_dmd, modes_dmd = dmd_exact(x, y)
# Check S*Sinv
#print("ov=",S.dot(Sinv)

# reshape result for comparison
modes_dmd = modes_dmd.reshape([data.shape[0], data.shape[1], \
number_of_snapshots])

# plot 4 modes
f = plt.figure(figsize=plt.figaspect(1.75))
for j in range(nmo):

ax = f.add_subplot(2, 2, j + 1, aspect=0.5)
ax.imshow(np.real(modes_dmd[:, :,j]), cmap='jet')
plt.axis('off')
ev = eigenvalues_dmd[j]
plt.title(r'$\lambda ~ = ~ $' + str("%.2f" % np.real(ev)) + '+' + \

str("%.2f" % np.imag(ev)) + r'$i$')

# tt DMD implementation
# construct x and y tensors and convert to TT format
x = TT(data[:, :, 0:number_of_snapshots, None, None, None])
y = TT(data[:, :, 1:number_of_snapshots + 1, None, None, None])
# define lists
eps=0
eigenvalues_tdmd = [None]
modes_tdmd = [None]
# apply exact TDMD TT
eigenvalues_tdmd, modes_tdmd = tdmd.tdmd_exact(x, y, threshold=eps)
# convert to full format for comparison and plotting
modes_tdmd = modes_tdmd.full()[:, :, :, 0, 0, 0]
# plot 4 modes
ff = plt.figure(figsize=plt.figaspect(1.75))
for j in range(nmo):

ax = ff.add_subplot(2, 2, j + 1, aspect=0.5)
ax.imshow(np.real(modes_tdmd[:,:,j]), cmap='jet')
plt.axis('off')
ev = eigenvalues_tdmd[j]
plt.title(r'$\lambda ~ = ~ $' + \

str("%.2f" % np.real(ev)) + '+' + \
str("%.2f" % np.imag(ev)) + r'$i$')
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# Expansion coefficients of initial state in terms DMD modes
rx=0.7
ry=0.3
nm=np.size(eigenvalues_dmd)
nm2 = 20
#print("np.size(eigenvalues_dmd)=",nm)
ck=np.zeros(nm,dtype=complex)
for k in range(nm2):

for i in range(npt):
for j in range(npt):

for jj in range(nm):
ck[k] = ck[k] + Sinv[k][jj]*np.conjugate(modes_dmd[i,j,jj]) \

* gau(z[i],rx) * gau(z[j],ry)
# time-dependent reconstructed data
data = np.zeros((npt,npt,nt),dtype=complex)
for k in range(nt):

norma=0.0
for i in range(npt):

for j in range(npt):
for kk in range(nm2):

aa = np.angle(eigenvalues_dmd[kk])
ra = np.absolute(eigenvalues_dmd[kk])
data[i][j][k] = data[i][j][k] + \

modes_dmd[i,j,kk] * ck[kk] * ra**k * np.exp(1j*k*aa)
norma = norma + data[i][j][k] * dz**2

print("norma2=",norma)
# visualize time-dependent reconstructed data
f = plt.figure(figsize=plt.figaspect(1.))
for j in range(nt):

ax = f.add_subplot(1, 1, 1, aspect=0.5)
ax.imshow(np.real(data[:, :,j]), cmap='jet')
plt.axis('off')
plt.pause(.25)
plt.clf()

plt.show()
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7.4 Hybrid Quantum-Classical Neural Network

Figure 23: Schematic representation of a hybrid
quantum-classical neural network where the quantum
layer evolves a quantum state by using unitary trans-
formations parametrized by the output of the previous
(classical) layer, and the expectation value computed
with the evolved quantum state provides the activation
values for the next (classical) layer in the network.

This section shows how to include a quantum
layer into a neural network and create a so-
called hybrid quantum-classical neural network
(QCNN), as described in the qiskit tutorial.

Figure 23 shows the implementation of a
quantum hidden layer by using a quantum cir-
cuit that evolves a given input quantum state
using unitary transformations parametrized by
the output of a previous classical layer in the
neural network. The result of measurements
of the evolved quantum state provides expec-
tation values that are used as inputs for a sub-
sequent classical layer in the neural network.
In Figure 23, σ is a nonlinear function and hi
is the value of neuron i at each hidden layer.
R(hi) represents any rotation of the quantum
state about an angle equal to hi, while y is the
final prediction generated from the network.

A tutorial notebook with the implementation
of the hybrid QCNN with PyTorch, as applied to
the classification of images of two types of dig-
its (0 or 1) from the MNIST dataset is available
at vic_hqcnn.ipynb.zip and vic_hqcnn.pdf. For
simplicity, the quantum circuit evolves a single
qubit and involves a single trainable parameter
θ corresponding to the unitary Ry-rotation by
the angle θ:

Ry(θ) =

cos
θ

2
−sin

θ

2

sin
θ

2
cos

θ

2

 (41)

Since the quantum circuit involves 1 parameter, it is necessary to ensure the network condenses
neurons down to size 1, which is accomplished by creating a typical CNN with two fully-connected
layers. The value of the last neuron of the fully-connected layer is fed as the parameter θ into the
quantum circuit. The circuit measurement then serves as the final prediction for 0 or 1, as provided
by a σz measurement.

The tutorial also includes examples of quantum circuits for implementation of quantum algo-
rithms that we will discuss in future lectures, that could be run on a classical quantum simulator,
or on the IBM quantum computer after setting up an account.

What about backpropagation? how do we calculate gradients when the quantum circuit is
involved. We can view the quantum circuit as a black box and the gradient of this black box
with respect to its parameters can be calculated by finite differences, incrementing the inputs θ
of the quantum circuit by ±s. The gradient is simply the difference between our quantum circuit
evaluated at θ + s and θ − s. Thus, we can systematically differentiate our quantum circuit as part
of a larger backpropogation routine. This closed form rule for calculating the gradient of quantum
circuit parameters is known as the parameter shift rule.

41

https://qiskit.org/textbook/ch-machine-learning/machine-learning-qiskit-pytorch.html
http://yann.lecun.com/exdb/mnist/
https://batistalab.com/classes/CHEM584/vic_hqcnn.ipynb.zip
https://batistalab.com/classes/CHEM584/vic_hqcnn.pdf
https://quantum-computing.ibm.com/
https://www.ibm.com/quantum-computing/?p1=Search&p4=43700050385922729&p5=b&gclid=CjwKCAiAyc2BBhAaEiwA44-wW0b9uUDdraYvLLZMCKHIST1KEnd67P8DCmN9PdxW_efDhZ8_Id-MvRoC0IkQAvD_BwE&gclsrc=aw.ds
https://arxiv.org/pdf/1905.13311.pdf


7.5 Variational Optimization with Hybrid Neural Networks

The goal of this subsection is to explain how to use the hybrid quantum-classical neural network,
shown in Fig. 23, to find the ground state of a molecule described by a Hamiltonian Ĥ.

The ground state is typically obtained according to the variational theorem by optimization of
the parameters θ that define a trial wavefunction |Ψ(θ)〉 = Û(θ)|0〉, so that the expectation value of
the energy Eθ = 〈Ψ(θ)|Ĥ|Ψ(θ)〉 is as small as possible. Therefore, we can initialize the input layer
as a single neuron with input x1 = 1, a linear hidden layer with as many neurons as necessary
parameters θ for the unitary transformations that would be applied in the quantum circuit. Each of
the qubits are rotated with parameters defined by the activation of the hidden layer. The resulting
quantum state is then used to compute the loss, defined as the expectation value of the energy.

7.5.1 Quantum Computation

The expectation value of the energy can be computed by quantum phase estimation, as described
later in Sec. 17.2, using the following quantum circuit:

|0〉 QFTn • QFT−1
n → Ej, pj

|Ψ(θ)〉 U |Ψ(θ)〉

(42)

where U = e−iHτ/h̄ and Eθ = 〈Ψ(θ)|Ĥ|Ψ(θ)〉 = ∑j pj Ej.

7.5.2 Hybrid Quantum-Classical Computation

The expectation value of the energy can also be computed with a classical computer by comput-
ing a single point with Ψ(θ) using a standard software for electronic structure calculations (e.g.,
Gaussian, PySCF, etc.) leading to a hybrid quantum-classical method.

7.5.3 Variational Quantum Eigensolver

A particular case of the hybrid quantum-classical methodology is the so-called variational quan-
tum eigensolver (VQE) method, where the quantum circuit is a variational form to facilitate the
implementation by using as few parameters as possible.

Implementation on the IBM Quantum: A turn-key tutorial on how to implement the VQE algo-
rithm with Qiskit-Nature on Colab or the IBM Quantum is available as a qiskit-nature tutorial, and
can be downloaded as a notebook: QiskitNature_vic.ipynb.zip, pdf. In addition, the following
tutorials provide examples of QiskitNature as applied to calculations of HF electronic structure
HF_vic.ipynb.zip, pdf as well as vibrational structure, pdf and 03_ground_state_solvers.zip, pdf. I
recommend going through those notebooks after familiarization with the qiskit syntax explained in
the beautiful online tutorials.
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8 Qubits and Gates

Figure 24: Bloch representation of an arbitrary
qubit |ψ〉.

This section introduces the representation of qubits
as points on the surface of a unit sphere (the so-
called Bloch sphere). The states of qubits can be
represented in the basis of eigenstates |0〉 and |1〉
of the σz operator,

σz =

(
1 0
0 −1

)
, (43)

with eigenvectors

|0〉 =
(

1
0

)
, |1〉 =

(
0
1

)
, (44)

with eigenvalues 1 and −1, respectively, since
σz|0〉 = |0〉 and σz|1〉 = −|1〉. Therefore, an arbi-
trary qubit |ψ〉 can be represented in that basis as
follows:

|ψ〉 = α|0〉+ β|1〉, (45)

with α and β two complex numbers whose squares
give the probability of observing the qubit in state |0〉 and |1〉, respectively. Therefore, α2 + β2 = 1.

When both α and β are real numbers, we can represent them with a single real number 0 ≤
θ ≤ π, as follows: α = cos θ

2 and β = sin θ
2 . An arbitrary state can be represented with two real

numbers: 0 ≤ θ ≤ π, and 0 ≤ φ < 2π, as follows (Fig. 24):

|ψ〉 = cos
θ

2
|0〉+ eiφ sin

θ

2
|1〉 =

cos
θ

2

sin
θ

2
eiφ

 . (46)

Therefore, all qubit states can be represented by a point on the sphere of unit radius, while the
operators are represented by the axes. For example, the state |0〉 is represented by the point on
the z axis with z = 1, while the state |1〉 is also on the z axis with z = −1.

8.1 Single qubit gates

Single qubit gates are unitary transformations represented by 2× 2 matrices that rotate the qubit
on the Bloch sphere, without changing the norm. An example is the NOT gate X = σx that converts
|0〉 into |1〉, and viceversa. For example,

X|0〉 =
(

0 1
1 0

)(
1
0

)
=

(
0
1

)
= |1〉 (47)

Another example is the Hadamard gate H = (σx + σz)/
√

2,

H =
1√
2

(
1 1
1 −1

)
, (48)
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that transforms |0〉 into |+〉 = 1√
2
(|0〉+ |1〉), and |1〉 into |−〉 = 1√

2
(|0〉 − |1〉).

Therefore, the Hadamard gate transforms |s1〉 with s ∈ {0, 1}, as follows:

H|s1〉 = 2−1/2 (|0〉+ (−1)s1 |1〉) ,

= 2−1/2 ∑
x∈{0,1}

(−1)s1·x|x〉. (49)

8.2 Rotations

The Pauli matrices σx, σy and σz define the rotation operators,

Rr(θ) = e−i θ
2 σr = cos

(
θ

2

)
I − i sin

(
θ

2

)
σr (50)

that rotate any qubit state by an angle θ about the axis r = {x, y, z}. Equation (50) can be
obtained by Taylor expansion, since the square of a Pauli matrix is equal to the identity (i.e.,
σ2

r = I). Therefore, e−i θ
2 σr = cos( θ

2 σr)− i sin( θ
2 σr), with cos( θ

2 σr) = 1− 1
2!

(
θ
2 σr
)2

+ 1
4!

(
θ
2 σr
)4

+ · · · =
1− 1

2!

(
θ
2

)2
+ 1

4!

(
θ
2

)4
+ · · · = cos( θ

2 ). Analogously, sin( θ
2 σr) =

θ
2 σr − 1

3!

(
θ
2 σr

)3
+ 1

5!

(
θ
2 σr

)5
+ · · · =

θ
2 −

1
3!

(
θ
2

)3
σr +

1
5!

(
θ
2

)5
σr + · · · = sin( θ

2 ) σr.
As an example, we consider the rotation of |0〉 by an angle θ about the y axis, implemented as

follows:

e−i θ
2 σy |0〉 = cos

θ

2
|0〉 − i sin

θ

2
σy |0〉 (51)

or

e−i θ
2 σy |0〉 =

cos
θ

2
−sin

θ

2

sin
θ

2
cos

θ

2

(1
0

)
(52)

In particular, when θ = π/2, the state |0〉 that points along the z axis (as shown in Fig. 24) is
rotated about the y axis by π/2 so it becomes |+〉 pointing along the x axis (i.e., the eigenstate of
σx with eigenvalue equal to 1), as follows:

e−i π
4 σy |0〉 = 1√

2

(
1 −1
1 1

)(
1
0

)
=

1√
2

((
1
0

)
+

(
0
1

))
=

1√
2
(|0〉+ |1〉) = |+〉 (53)

Note that the rotation of |0〉 by θ = −π/2 generates the state |−〉 = 1√
2
(|0〉 − |1〉), corresponding

the eigenstate of σx with eigenvalue equal to −1. Analogously, rotation of the state |1〉 by θ = π/2
generates the state −|−〉 = e±iπ|−〉, corresponding to minus the eigenstate of σx with eigenvalue
equal to −1 (also pointing in the same direction as |−〉, although it is multiplied by a global phase
e±iπ):

e−i π
4 σy |1〉 = 1√

2

(
1 −1
1 1

)(
0
1

)
=

1√
2

(
−
(

1
0

)
+

(
0
1

))
=

1√
2
(−|0〉+ |1〉) = −|−〉 (54)

We note that rotation operators can be computed with a variety of gates. For example, we can
implement a rotation about the y axis, as follows: Ry(−π/2) = Hσx, since

1√
2

(
1 1
1 −1

)(
0 1
1 0

)
=

1√
2

(
1 1
−1 1

)
(55)
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In the previous section, we showed that a state in the basis of σx, (i.e., |+〉 and |−〉) can be rotated
to the basis of σz by applying the Hadamard gate. Analogously, a state in the basis of σy can be
rotated to the basis of σz by applying the following gate:

Rx(π/2) =
1√
2

(
1 −i
− i 1

)
(56)

Note that a set of eigenvectors of σy can be defined as |y+〉 = (|0〉 + i|1〉)/
√

2 and |y−〉 =

(i|0〉+ |1〉)/
√

2 since σy|y+〉 = |y+〉 and σy|y−〉 = −|y−〉:

σy|y+〉 =
1√
2

(
0 −i
i 0

)(
1
i

)
=

1√
2

(
1
i

)
= |y+〉, (57)

and

σy|y−〉 =
1√
2

(
0 −i
i 0

)(
i
1

)
=

1√
2

(
− i
− 1

)
= −|y−〉, (58)

Those eigenstates of σy are transformed into eigenstates of σz, as follows:

Rx(π/2)|y+〉 = 1
2

(
1 −i
− i 1

)(
1
i

)
=

(
1
0

)
= |0〉, (59)

and

Rx(π/2)|y−〉 = 1
2

(
1 −i
− i 1

)(
i
1

)
=

(
0
1

)
= |1〉. (60)

Analogously, we can rotate a state in the basis of |0〉 and |1〉 to the basis of |y+〉 and |y−〉 by
applying the rotation matrix,

Rx(−π/2) =
1√
2

(
1 i
i 1

)
, (61)

which is the inverse of Rx(π/2). Therefore, σy can be applied according to the following similarity
transformation, σy = Rx(−π/2)σzRx(π/2) since

Rx(−π/2)σzRx(π/2) =
1√
2

(
1 i
i 1

)(
1 0
0 −1

)
1√
2

(
1 −i
− i 1

)
=

(
0 −i
i 0

)
. (62)

8.3 Multiple qubits

The state of a register with mutliple qubits is defined by the tensor product of the states of the
qubits. A simple example is the state of a register with only two qubits in states |0〉 and |1〉,
respectively. In that case, the state of the register is the |0〉 ⊗ |1〉 which can also be written as
|0〉|1〉, or simply as |01〉. In vector representation, it is written as follows:

|01〉 = |0〉 ⊗ |1〉 =
(

1
0

)
⊗
(

0
1

)
=


0
1
0
0

 (63)
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8.3.1 The CNOT gate

The controlled NOT gate, or CNOT gate, is defined by the following matrix:3

CNOT = |0〉〈0| ⊗ I + |1〉〈1| ⊗ X =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 , (64)

where |0〉〈0| = (I + Z)/2 and |1〉〈1| = (I − Z)/2. Note that CNOT is a 2-qubit gate that flips the
second qubit (i.e., the target qubit) only when the first one (i.e., the control qubit) is |1〉 by applying
a sum mod(2), as follows: 4

|x〉 • |x〉
|a〉 |a⊕ x〉

(65)

It is essential in the construction of quantum circuits since it can entangled qubits, as follows:

∑x αx|x〉 •
}

∑x αx|x〉|a⊕ x〉
|a〉

(66)

Note that for the resulting superposition state, measurement of the first qubit determines the out-
come of a measurement of the second qubit, and viceversa.

8.3.1.1 Phase kickback: An interesting case is when the ancilla qubit |a〉 is initialized as |−〉 =
(|0〉 − |1〉)/

√
2. Remember that the NOT gate transforms |0〉 into |1〉, and |1〉 into |0〉, so the NOT

gate transforms |−〉 into −|−〉. As a result, the CNOT gate flips the sign of the second qubit only
when the first one is |1〉, so the outcome is, as follows:

∑x αx|x〉 • ∑x(−1)xαx|x〉
}

∑x αx|x〉|−〉(−1)x

|−〉 |−〉
(67)

Note that the second qubit remains unchanged since the phase is kicked back to the first qubit,
the so-called phase ‘kickback’ trick implemented in many quantum algorithms.

8.3.2 Conditional gates: expectation values and correlation functions

Conditional gates are generalizations of the CNOT gate, where a gate is applied to a second set
of qubits only when the control qubit is |1〉 (represented by a black circle in Fig. 26), or only when
the control qubit is |0〉 (represented by a white circle in Fig. 26).

8.3.2.1 Expectation values: Hadamard test The circuit of the Hadamard test, shown in Fig. 25,

3Implementation on the IBM Quantum: A turn-key tutorial on how to define quantum circuits with Qiskit on Colab or the
IBM Quantum is available as a Qiskit tutorial, and can be downloaded as a notebook CNOT_vic.ipynb, and CNOT_vic.pdf.

4The CNOT gate cannot be constructed by single qubit gates: This statement is important because it shows that single qubit
gates are not universal, since at least the CNOT cannot be computed by single qubit gates. One line Proof: Assume single qubit
operators are universal. Then there must exist some A⊗ B = CNOT = (P0 ⊗ I) + (P1 ⊗ X), with P0 = |0〉〈0| and P1 = |1〉〈1|.
Therefore, A00B = I, A11B = X, and A01B = A10B = 0. Since A00B = I then A00 must be 1, and B = I. But, A11B = X, so
A11 = 1 and B = X, in contradiction to the previous statement. So, there is no set of single qubit gates such that A⊗ B = CNOT.
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Figure 25: Measurement of the expectation
value Re[〈Ψ|U|Ψ〉 by measuring the ancilla
qubit.

provides the expectation value Re[〈Ψ|U|Ψ〉 upon
measurement of the ancilla qubit. This can be
shown by considering that the state of the circuit,
right after the first Hadamard gate and before the
control unitary is applied, is 1√

2
(|0〉|Ψ〉 + |1〉|Ψ〉).

So, right after the control unitary is applied, the state
becomes 1√

2
(|0〉|Ψ〉+ |1〉U|Ψ〉), and after the sec-

ond Hadamard is applied, we obtain:

1
2
((|0〉+ |1〉)|Ψ〉+(|0〉− |1〉)〉U|Ψ〉) = 1

2
(|0〉(1+U)|Ψ〉+ |1〉(1−U)|Ψ〉).

Measurement of the ancilla with σZ gives 1 with probability P1 = 1
4 〈Ψ|(1 + U†)(1 + U)|Ψ〉, and

−1 with probability P−1 = 1
4 〈Ψ|(1−U†)(1−U)|Ψ〉. Therefore, the average expectation value is

1
4 〈Ψ|(1+U†)(1+U)− (1−U†)(1−U)|Ψ〉 = 1

4 〈Ψ|(1+U +U† +U†U− 1+U +U†−U†U)|Ψ〉 =
1
2 (〈Ψ|U|Ψ〉+ 〈Ψ|U|Ψ〉†) = Re[〈Ψ|U|Ψ〉].

8.3.2.2 Non-Unitary Observables: What to do when the operator U is not unitary? Note that so
far we have assumed that U is unitary (Fig. 25). However, how should we proceed if we want to
compute the expectation value of a non-unitary operator as, for example, the expectation value of
the position x̄ = 〈ψ|x̂|ψ〉 ? In that case we can compute 〈ψ|e−iλx̂|ψ〉 and 〈ψ|eiλx̂|ψ〉 and make use
of the following equations in the limit when λ is sufficiently small (i.e., limλ→0):

〈ψ|x̂|ψ〉 ≈ 1
4λ2 〈ψ|(e

−iλx̂ − eiλx̂)(eiλ − e−iλ)|ψ〉. (68)

Equation (68) can also be applied to compute correlation functions of non-unitary operators A(t0)
and B(t1), as follows:

〈ψ|B(t1)A(t0)|ψ〉 ≈
1

4λ2 〈ψ|(e
−iλB(t1) − eiλB(t1))(eiλA(t0) − e−iλA(t0))|ψ〉. (69)

8.3.2.3 Correlation functions Here, we show that conditional gates A and B can be applied to
measure the correlation function,

CAB = 〈Ψ0|A†B|Ψ0〉, (70)

by measuring the expectation value 〈2σ+〉 for an ancilla qubit according to the circuit shown in
Fig. 26 (panel a). This can be shown by considering that |+〉 = 1√

2
(|0〉+ |1〉), so the initial state

is ||Ψi〉 = |+〉|Ψ0〉 = 1√
2
(|0〉|Ψ0〉 + |1〉|Ψ0〉). Thus, the final state is ||Ψ f 〉 = 1√

2
(|0〉A|Ψ0〉 +

|1〉B|Ψ0〉). Therefore, the measurement of the ancilla qubit with respect to 2σ+ = σx + iσy, can be
computed as follows:

〈2σ+〉 = 2√
2
(〈Ψ f ||σ+|0〉A|Ψ0〉+ 〈Ψ f ||σ+|1〉B|Ψ0〉), (71)

with σ+|0〉 = 0, and σ+|1〉 = |0〉. So,

〈2σ+〉 = 2√
2
〈Ψ f ||0〉B|Ψ0〉,

= 〈Ψ0|A†B|Ψ0〉.
(72)
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(a)

(b, two-time correlation)

(c, three- and n-time correlation)

Figure 26: Measurement of the correlation
function CAB = 〈Ψ0|A†B|Ψ0〉 (panel a), the
two-time correlation function CAB(t1, t2) =
〈Ψ0|A(t2)B(t1)|Ψ0〉 (panel b), and the n-
time correlation function C(t1, t2, . . . , tn) =
〈Ψ0|On(tn) · · ·O2(t2)O1(t1)|Ψ0〉 (panel c) by
measuring 〈2σ+〉 of the ancilla.

Analogously, we can define B(t1) = U†
t1

BUt1 and

A(t2) = U†
t2

AUt2 (where Ut = e−
i
h̄ Ĥt) to obtain:

CAB(t1, t2) = 〈Ψ0|A(t2)B(t1)|Ψ0〉,
= 〈Ψ0|U†

t2
AUt2U†

t1
BUt1 |Ψ0〉,

= 〈Ψ0|U†
12AU12B|Ψ0〉,

(73)

with U12 = Ut2−t1 . So, CAB(t1, t2) can be deter-
mined according to the circuit shown in Fig. 26
(panel b) by measuring the expectation value 〈2σ+〉
for an ancilla qubit. Note that both circuits shown
in panel (b) are equivalent since U12 can be applied
in two consecutive steps, by first conditioning the
first qubit to be |1〉 and then |0〉 (top, b), or uncon-
ditionally (bottom, b). Here, we note the final state
is ||Ψ f 〉 = 1√

2
(|0〉A†U12|Ψ0〉 + |1〉U12B|Ψ0〉). So,

the measurement of the ancilla qubit with respect to
2σ+ = σx + iσy is computed analogously, as follows:

〈2σ+〉 = 2√
2
(〈Ψ f ||σ+|0〉A†U12|Ψ0〉

+ 〈Ψ f ||σ+|1〉U12B|Ψ0〉),
(74)

with σ+|0〉 = 0, and σ+|1〉 = |0〉. So,

〈2σ+〉 = 2√
2
〈Ψ f ||0〉U12B|Ψ0〉,

= 〈Ψ0|U†
12AU12B|Ψ0〉.

(75)

Next, we define C(t1) = U†
t1

CUt1 B(t2) =

U†
t2

BUt2 and A(t3) = U†
t3

AUt3 to obtain:

CABC(t1, t2, t3) = 〈Ψ0|A(t3)B(t2)C(t1)|Ψ0〉,
= 〈Ψ0|U†

t3
AUt3U†

t2
BUt2U†

t1
CUt1 |Ψ0〉,

= 〈Ψ0|U†
13AU23BU12C|Ψ0〉,

(76)

with U12 = Ut2−t1 , U23 = Ut3−t2 and U13 = Ut3−t1 . Therefore, the final state is ||Ψ f 〉 =
1√
2
(|0〉A†U13|Ψ0〉+ |1〉U23BU12C|Ψ0〉). So, the measurement of the ancilla qubit with respect to

2σ+ = σx + iσy, gives (Fig. 26, c):

〈2σ+〉 = 2√
2
(〈Ψ f ||σ+|0〉A†U13|Ψ0〉

+ 〈Ψ f ||σ+|1〉U23BU12C|Ψ0〉),
= 〈Ψ0|U†

13AU23BU12C|Ψ0〉.

(77)
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The n-time correlation function, C(t1, t2, . . . , tn) = 〈Ψ0|On(tn) · · ·O2(t2)O1(t1)|Ψ0〉, is obtained
as follows (Fig. 26, c):

〈2σ+〉 = 2√
2
(〈Ψ f ||σ+|0〉O†

nU1n|Ψ0〉+ 〈Ψ f ||σ+|1〉Un−1nOn−1 · · ·U23O2U12O1|Ψ0〉),

= 〈Ψ0|U†
1nOnUn−1nOn−1 · · ·U23O2U12O1|Ψ0〉.

(78)

8.3.3 Hadamard Gate

The Hadamard gate for multiple qubits transforms each of the qubits according to the Hadamard
gate. A simple example is the Hadamard transformation for a register with only n = 2 qubits for
which the Hadamard gate is represented, as follows: H⊗2 = H ⊗ H. When applied to a register
initialized in the |00〉 state, we obtain:

H⊗2|00〉 = H|0〉 ⊗ H|0〉 = |+〉 ⊗ |+〉,

=
1√
2
(|0〉+ |1〉)⊗ 1√

2
(|0〉+ |1〉) = 1

2
(|00〉+ |01〉+ |10〉+ |11〉),

=
1√
2

∑
x1∈{0,1}

|x1〉 ⊗
1√
2

∑
x2∈{0,1}

|x2〉 =
1

2n/2 ∑
x1,x2∈{0,1}

|x1x2〉,

=
1

2n/2 ∑
x∈{0,1}2

|x〉.

(79)

Analogously, for n = 2 with |s〉 = |s1s2〉, we obtain that according to Eq. (49):

H⊗2|s〉 = H⊗2|s1s2〉 = H|s1〉 ⊗ H|s2〉,

=
1√
2
(|0〉+ (−1)s1 |1〉)⊗ 1√

2
(|0〉+ (−1)s2 |1〉),

=
1√
2

∑
x1∈{0,1}

(−1)s1·x1 |x1〉 ⊗
1√
2

∑
x2∈{0,1}

(−1)s2·x2 |x2〉,

=
1

2n/2 ∑
x1,x2∈{0,1}

(−1)s1·x1+s2·x2 |x1x2〉,

=
1

2n/2 ∑
x∈{0,1}2

(−1)s·x|x〉.

(80)

For n qubits, the Hadamard gate transforms the state |00 · · · 0〉, or simply as |0〉, as follows:

H⊗n|0〉 = 1
2n/2 ∑

x∈{0,1}n

|x〉 (81)

Also, it is important to note that the Hadamard gate is its own inverse, so H⊗nH⊗n = 1 and
therefore the Hadamard transform of a uniform superposition generates the state |0〉, as follows:

H⊗n|0〉 = H⊗n 1
2n/2 ∑

x∈{0,1}n

|x〉 = |0〉 (82)
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8.3.4 Tensor Product of Pauli Matrices

As an example of the application of Hadamard and rotation matrices, we show below a circuit for
applying the tensor product of 3 Pauli matrices σx ⊗ σy ⊗ σz to an arbitrary state of 3 qubits:

H • • H

Rx(π/2) • • Rx(−π/2)

• •
|0〉 σz |0〉

(83)

Note that we have transformed σx and σy to σz operations, according to the following substitutions:
σx = HσzH, and σy = Rx(−π/2)σzRx(π/2). Also, the same circuit can be used to apply any
function f (σx ⊗ σy ⊗ σz) products of Pauli matrices simply by applying f (σz) to the ancilla qubit
instead of applying σz.

As a simple exercise, we show that the unitary eiσx⊗σz can be implemented according to the
following circuit:

H • • H

eiσz

(84)

According to Eq. (50), and considering that σx = HσzH and HH = I, we obtain:

eiσx⊗σz = c I ⊗ I + i s σx ⊗ σz,
= c HH ⊗ I + i s HσzH ⊗ σz,

= (H ⊗ I)eiσz⊗σz(H ⊗ I),

(85)

where c = cos(1), and s = sin(1). Therefore, to demonstrate the validity of the circuit, we need to
prove that:

eiσz⊗σz = CNOT(c I ⊗ I + i s I ⊗ σz)CNOT, (86)

with CNOT = |0〉〈0| ⊗ I + |1〉〈1| ⊗ σx, giving

eiσz⊗σz = c I ⊗ I + i s CNOT(I ⊗ σz)CNOT),
= c I ⊗ I + i s (|0〉〈0| ⊗ σz + |1〉〈1| ⊗ σxσzσx),
= c I ⊗ I + i s (|0〉〈0| ⊗ σz − |1〉〈1| ⊗ σz),
= c I ⊗ I + i s σz ⊗ σz,

(87)

which agrees with Eq. (85) and therefore proves Eq. (86). Analogously, one can prove any circuit
of the type shown in Eq. (83).
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9 Grover’s Algorithm

The goal of this section is to introduce Grover’s algorithm , an algorithm that can find a specific
state out of N possibilities in

√
N steps. Considering that a classical search algorithm would have

to check one by one each of the possible states, it would take on average N/2 steps and N − 1
steps in the worst case. So, the Grover’s algorithm is quadratically faster than a classical search.
It is particularly useful when there is a large number of possible states (so the target state is hard
to find ‘the needle in the haystack’) although it is easy to check whether a given state is the target
state of interest, or not. For that case, one can define a function f (x) = 1 when x is the desired
state (’the needle’) and f (x) = 0, otherwise. With f (x), we can define the so-called ‘oracle’
operator Ô = eiπ f (x̂) that changes the sign of the component along the target state, as follows:
Ô|x〉 = −|x〉 when |x〉 is the desired state. Otherwise, it leaves the state unchanged: Ô|x〉 = |x〉.

Figure 27: Geometric representation of the first
iteration of Grover’s algorithm. The initial su-
perposition state |s〉 is rotated by an angle θ to-
wards the target vector |11〉 by first applying the
oracle Ô that changes the sign of the component
along the direction of the target state |11〉, and
then the diffusion operator D̂ that changes the
sign of the component perpendicular to the uni-
form superposition |s〉.

Algorithm: Starting with a uniform superposition
|s〉 = N−1/2 ∑N

x=1 |x〉 of all possible states |x〉, the
algorithm repeatedly applies the oracle followed by
the so-called diffusion operator,

|D̂〉 = 2|s〉〈s| − I, (88)

that changes the sign of the component perpendic-
ular to |s〉.
Simple Example: A simple example is a system with
N = 4 possible states, prepared in the uniform su-
perposition

|s〉 = 1√
N
(|00〉+ |10〉+ |01〉+ |11〉), (89)

with an oracle designed to change the sign of the
|11〉 component (e.g., Ô = I − 2|11〉〈11|), as fol-
lows:

Ô|s〉 = 1√
N
(|00〉+ |10〉+ |01〉 − |11〉), (90)

Remarkably, the state D̂Ô|s〉 is more aligned with
the target state |11〉 than the initial state |s〉, as
shown geometrically in Fig. (27). The procedure is
repeated

√
N times to maximize the alignment with

the desired state.

Number of queries: For the simple example of 4
states, introduced above, Grover’s algorithm trans-
forms the initial superposition into the target state |11〉 in one step, thus outperforming a classical
search that would need on average 2 steps –i.e., log2(#states). We note that

〈11|s〉 = 1√
N

, (91)

so
Ô|s〉 = |s〉 − 2√

N
|11〉, (92)
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and

D̂
(
|s〉 − 2√

N
|11〉

)
= (2|s〉〈s| − I)

(
|s〉 − 2√

N
|11〉

)
. (93)

Therefore,

D̂Ô|s〉 = (2|s〉〈s|)
(
|s〉 − 2√

N
|11〉

)
−
(
|s〉 − 2√

N
|11〉

)
(94)

=
(
2|s〉 − 4

N |s〉
)
− |s〉+ 2√

N
|11〉 (95)

= N−4
N |s〉+

2√
N
|11〉 (96)

so for a system with 2 qubits, N = 4, we obtain (D̂Ô)n|s〉 = |11〉 when n = 1.
More generally we note that, according to Fig. 27, the projection of (D̂Ô)n|s〉 along the direction

of |11〉 is sin((2n+ 1) θ
2 ), with θ

2 = 1√
N

. To maximize the projection, we need to have (2n+ 1) θ
2 = π

2 .

So, (2n + 1) 1√
N
= π

2 and when n is large, 2n 1√
N
≈ π

2 , giving n ≈ π
√

N
4 . So, remarkably, n ≈

√
N

when N is large –i.e., quadratically faster than the classical search where n is of order N.
Another way of showing that n ≈

√
N for large N is by considering how much the amplitude

of the target state x∗ is amplified by one step of the algorithm, when its amplitude is αx∗ = 2−1/2

and therefore the average amplitude is ᾱ ≈ (2−1/2 + N2−1/2N−1/2)/N ≈ (2N)−1/2 since the
average amplitude of all other states x∗ 6= x is 2−1/2(N − 1)−1/2 ≈ (2N)−1/2. Upon applying
the oracle, we obtain αx∗ = −2−1/2, as shown in Fig. (28), bottom panel and inverting about
the mean ᾱ by applying D̂, we increase its amplitude to 2−1/2 + 2ᾱ (i.e., we increment by 2ᾱ =
2(2N)−1/2 = (N/2)−1/2). Therefore, the number of steps necessary to reach an amplitude of
2−1/2 by increments of the order of (N/2)−1/2 is n = 2−1/2/(N/2)−1/2 =

√
N. So, the algorithm

finds the solution with 50% probability in O(
√

N) steps.

Inversion about the mean: As shown below, the effect of the diffusion operator on an arbitrary state
|ψ〉 = ∑x αx|x〉, is to change the sign of the component perpendicular to the initial superposition
state which is equivalent to inverting the amplitudes relative to their mean value (i.e., amplitude
inversion about the mean), as follows:

D̂
N

∑
x=1

αx|x〉 =
N

∑
x=1

(2ᾱ− αx)|x〉, (97)

with ᾱ = N−1 ∑N
j=1 αj the amplitude mean value. According to Eq. (97), D̂ inverts the amplitudes

about the mean since (αx − ᾱ) = −((2ᾱ− αx)− ᾱ) (Fig. 28). To obtain Eq. (97), we consider the
uniform superposition |s〉 = N−1/2 ∑N

x=1 |x〉, so D̂ = 2|s〉〈s| − I = 2N−1 ∑N
x=1 ∑N

y=1 |y〉〈x| − I, and

D̂|ψ〉 = 2N−1
N

∑
x=1

N

∑
y=1
|x〉

N

∑
x′=1

αx′〈y|x′〉 −
N

∑
x′=1

αx′ |x′〉,

=
N

∑
x=1
|x〉2N−1

N

∑
y=1

αy −
N

∑
x=1

αx|x〉,

=
N

∑
x=1

(2ᾱ− αx) |x〉.

(98)

Quantum Circuit: The oracle Ô = (−1) f (j) produces a phase inversion on the amplitude of the
target state while leaving all the other amplitudes unchanged. It can be implemented by using the
so-called phase kickback algorithm, according to the following circuit:
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Figure 28: Two examples showing how D̂ inverts the amplitudes αx about the mean ᾱ.

∑x αx|x〉 U f

}
∑x αx|x〉| f (x)⊕ b〉

|b〉
∑x αx|x〉 U f

∑x αx(−1) f (x)|x〉
|−〉 |−〉

Figure 29: Quantum circuit exploiting the phase kickback algorithm for implementing the unitary U f

corresponding to the conditional phase inversion oracle Ô = (−1) f (x) using |b〉 = |−〉 as the second
set of qubits. The state |x〉|b〉 is transformed by the unitary, as follows: U f |x〉|b〉 = |x〉| f (x) ⊕ b〉.
When |b〉 = |−〉 (right panel), we obtain: U f |x〉|−〉 = |x〉(−1) f (x)|−〉 since b is unchanged when
f (x) = 0 (i.e., f (x) ⊕ b = b) while f (x) = 1 transforms the state |−〉 = 2−1/2(|0〉 − |1〉) into
2−1/2(| f (x)⊕ 0〉 − | f (x)⊕ 1〉) = 2−1/2(|1〉 − |0〉) = (−1)|−〉.

Uniform superposition: The uniform superposition can be prepared by starting with all qubits in the
state |0〉 and applying the Hadamard operator to each qubit, as follows: Ĥ⊗2|00〉 = (Ĥ1⊗ Ĥ1)|00〉,
since the Hadamard operator Ĥ1 = 1√

2
(σ̂z + σ̂x) transforms |0〉 into the symmetric linear combi-

nation |+〉 = 1√
2
(|0〉+ |1〉). The Hadamard transformation is also its own inverse, so applying it

to the uniform superposition generates the state with all qubits in state |0〉. Furthermore, applying
it to an arbitrary state, the Hadamard transform rotates it leaving the component of the uniform
superposition pointing along the direction |0〉. The resulting rotation can be exploited to apply
the diffusion operator to an arbitrary state by first applying the Hadamard transform (or inverse
quantum Fourier transform) to have the component of the uniform superposition pointing along
the direction of |0〉, inverting the phases of all components orthogonal to |0〉 and then applying the
Hadamard transform (or quantum Fourier transform) to leave the state with its original orientation,
according to the following circuit:
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∑x αx|x〉
Ug

∑x αx(−1)g(x)|x〉

|−〉 |−〉

∑x αx|x〉 H⊗n

Ug
H⊗n ∑x(2α− αx)|x〉

|−〉 |−〉

∑x αx|x〉
U f

H⊗n

Ug
H⊗n D̂Ô ∑x αx|x〉

|−〉 |−〉

Figure 30: Top Left: Quantum circuit for inversion of the phases of all components orthogonal to |0〉 by
implementing the unitary Ug = (−1)g(x), where g(x) = 0 if |x〉 = |00 · · · 0〉 and g(x) = 1, otherwise.
Top Right: Quantum circuit for inverting the amplitudes about their mean, according to the diffusion op-
erator D̂ = 2|s〉〈s| − I, by first applying a Hadamard gate that rotates the state to leave the component
of the uniform superposition pointing along the direction |0〉, applying Ug to invert the phases of all other
components, and then applying a Hadamard that rotates the state back to the original orientation. Bottom:
Quantum circuit for implementation of one step of the Grover’s algorithm.

Oracle operator: To explain how to construct Ô in terms of unitary operators for the example
described above, we note that

− |1〉 = Ĥ1σ̂x Ĥ1|1〉. (99)

since the Hadamard operator Ĥ1 = 1√
2
(σ̂z + σ̂x) transforms |1〉 into the antisymmetric linear combi-

nation |−〉 = 1√
2
(|0〉 − |1〉), the NOT operator x̂ changes the sign of the state |−〉 = 1√

2
(|0〉 − |1〉)

(by changing |0〉 into |1〉 and |1〉 into |0〉), and applying the Hadamard operator to |−〉 returns the
original state |1〉. By using CNOT instead of NOT, as shown in the circuit, below:

•
H H

(100)

we change the sign of |1〉 in the second qubit only when it is preceded by the control qubit |1〉, as
necessary when applying Ô to the uniform superposition, according to Eq. (90).

Diffusion operator: The diffusion operator changes the sign of all of the terms orthogonal to the
uniform superposition. Therefore, it is possible to implement it by first orienting the state along
a convenient direction where it is easier to change the sign of the orthogonal state and then
rotate it back to its original orientation. For example, rotating the state Ô|s〉 so that its component
along the direction of the uniform superposition points along one of the computational states (e.g.,
along the |00〉 direction) so one can change the sign of all of the terms that are orthogonal to
that direction (e.g., |00〉) and then rotate the resulting state back so that the component along the
superposition state points back along its original direction. As mentioned above, to rotate a state
so that its component along the uniform superposition points to the direction |00〉 we need to apply
the Hadamard gate H⊗2.

The circuit introduced by Eq. (100) changes the sign of the component along the |11〉 direction.
The analogous circuit but with a NOT gate previously applied to the first qubit (and subsequently
applied as well to avoid modifying that qubit) would change the sign of the term along |01〉, as
follows:

X • X

H H

(101)

and the same circuit but with an exchanged roles for the control and target qubits would change
the sign of the term associated with the direction |10〉, as follows:
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H H

X • X

(102)

so, the complete diffusion operator D̂ can be implemented, as follows:

H • X • X H H H

H H H H H X • X H

(103)

which can be simplified, as follows:

H • X • X H

H X • X H

(104)

since ĤĤ = I.

Implementation on the IBM Quantum: A turn- key tutorial on how to implement the Grover’s al-
gorithm with Qiskit on Colab or the IBM Quantum is available as a Qiskit tutorial, and can be
downloaded as a notebook: grover_vic.ipynb.zip, and grover_vic.pdf. For a tutorial on visualiza-
tion, please, check the following link, including a discussion on the Qsphere representation.

Matlab function: The gsa.m Matlab function simulates the Grover algorithm.
Grover Optimization: Grover’s quantum computational search procedure can provide the basis for
implementing adaptive global optimization algorithms. An example of such methods is the Grover
adaptive search (GAS) algorithm where the global minimum of a cost function V is iteratively
searched for with an adaptive oracle, as follows. Given an initial state |j0〉 and its corresponding
expectation value V0 = 〈j0|V|j0〉, the oracle Ô = eiπ f (j) is defined with f (j) = 1 for states |j〉
with expectation value 〈j|V|j〉 < V0. Applying the Grover algorithm to a uniform superposition, we
find a state |j1〉 whose expectation value V1 < V0 after r = π

√
N/4 rotations. The oracle is then

adapted with f (j) = 1 for states |j〉 with 〈j|V|j〉 < V1, and the process is iterated m times until
convergence to find the global minimum state |m〉 with Vm < Vm−1 < · · · < V0.

Figure 31: Isomers of linoleate.

As an example of Grover minimiza-
tion (Fig. 31), we consider the problem of
finding the configuration of a conjugated
polyene chain with Cartesian atomic co-
ordinates x1, · · · xn, assuming that bond-
lengths and bending angles are known but
the 1-4 dihedrals are yet to be determined
since their π or −π (cis or trans) configu-
rations must fulfill a constraining set S of
interatomic distances dij = ‖xi − xj‖ de-
termined by NMR. If all interatomic dis-
tances are determined, then the problem
is trivial and can be solved in n steps.
However, the problem is NP-hard when
only some of the distances are known.

Therefore, we need to find the coordinates x1, · · · xn that minimize the following cost function:

g(x1, x2, · · · , xn) = ∑
(i,j)εS

(dij − ‖xi − xj‖)2, (105)
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and thus make g = 0. We note that only n− 3 dihedrals have to be specified to define all inter-
atomic distances, since all bond-lengths and bending angles are given and the positions of the first
3 atoms are defined by the bond-lengths and bending angles. Since each dihedral can be either
cis or trans, we have a total of 2n−3 possible configurations, with only some of them satisfying Eq.
(105).

To implement the Grover optimization algorithm, we prepare a register with n− 3 qubits in a
uniform superposition, where the state |0〉 of the j-th qubit corresponds to the cis state of the j-th
dihedral and |1〉 corresponds to the trans state of that dihedral. The oracle Ô = eiπ f (j) is defined
so that f (j) = 1 if state |j〉 satisfies Eq. (105) and f (j) = 0, otherwise.

9.1 Supplement I: Average Deviation Caused by the Oracle

The goal of this subsection is to show that

Dj =
N−1

∑
x=0
‖ψx

j − ψj‖2 ≤ 4j2, (106)

where |ψj〉 = ∑y αy,j|y〉|φy〉, with |ψx
j 〉 = UOx|ψj−1〉 and |ψj〉 = U|ψj−1〉. According to Eq. (106),

the averaged squared deviation Dj caused by j calls to the oracle, relative to the state evolving
with an empty-oracle, increases no faster than O(j2).

Solution: Defining Ux = UOx and ∆U = U −Ux, we obtain:

|ψj〉 = (∆U + Ux)|ψj−1〉,
= ∆U|ψj−1〉+ Ux|ψj−1〉,
= ∆U|ψj−1〉+ |ψx

j 〉,
(107)

so, |ψj〉 − |ψx
j 〉 = ∆U|ψj−1〉. Now, substituting |ψj−1〉 = U|ψj−2〉 = (∆U + Ux)|ψj−2〉 into Eq.

(107), we obtain:

|ψj〉 = ∆U|ψj−1〉+ Ux|ψj−1〉.
= ∆U|ψj−1〉+ Ux∆U|ψj−2〉+ U2

x |ψj−2〉,
= ∆U|ψj−1〉+ Ux∆U|ψj−2〉+ |ψx

j 〉,
(108)

so, |ψj〉 − |ψx
j 〉 = ∆U|ψj−1〉+ Ux∆U|ψj−2〉.

Now, substituting |ψj−2〉 = U|ψj−3〉 = (∆U + Ux)|ψj〉 into Eq. (108), we obtain:

|ψj〉 = ∆U|ψj−1〉+ Ux∆U|ψj−2〉+ U2
x |ψj−2〉,

= ∆U|ψj−1〉+ Ux∆U|ψj−2〉+ U2
x(∆U + Ux)|ψj−3〉,

= ∆U|ψj−1〉+ Ux∆U|ψj−2〉+ U2
x∆U|ψj−3〉+ |ψx

j 〉,
(109)

Therefore, |ψj〉 − |ψx
j 〉 = ∆U|ψj−1〉+ Ux∆U|ψj−2〉+ U2

x∆U|ψj−3〉.
Analogously, we can repeat the procedure j times to obtain: |ψj〉 − |ψx

j 〉 = U0
x∆U|ψj−1〉 +

Ux∆U|ψj−2〉+ U2
x∆U|ψj−3〉+ · · ·+ U(j−1)

x ∆U|ψ0〉 = ∑
j−1
k=0 Uk

x∆U|ψj−1−k〉, so

‖|ψj〉 − |ψx
j 〉‖ = ‖

j−1

∑
k=0

Uk
x∆U|ψj−1−k〉‖,

= ‖
j−1

∑
k=0

U j−1−k
x ∆U|ψk〉‖.

(110)
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Now, we show that

‖|ψj〉 − |ψx
j 〉‖2 = ‖

j−1

∑
k=0

U j−1−k
x ∆U|ψk〉‖2 ≤ j

j−1

∑
k=0
‖U j−1−k

x ∆U|ψk〉‖2, (111)

as follows. We consider that ∑
j−1
i,k=0(ak − ai)

2 = ∑
j−1
i,k=0(a2

k + a2
i − 2akai), so

j−1

∑
i,k=0

(ak − ai)
2 =

j−1

∑
i,k=0

a2
k +

j−1

∑
i,k=0

a2
i − 2

j−1

∑
i,k=0

akai,

= j
j−1

∑
k=0

a2
k + j

j−1

∑
i=0

a2
i − 2

j−1

∑
i,k=0

akai,

= 2j
j−1

∑
k=0

a2
k − 2‖

j−1

∑
k=0

ak‖2,

(112)

and solving for ‖∑
j−1
k=0 ak‖2, we obtain:

‖
j−1

∑
k=0

ak‖2 = j
j−1

∑
k=0

a2
k −

1
2

j−1

∑
i=0

j−1

∑
k=0

(ak − ai)
2. (113)

Considering that (ak − ai)
2 are positive numbers, we obtain the following bound:

‖
j−1

∑
k=0

ak‖2 ≤ j
j−1

∑
k=0

a2
k . (114)

Therefore, according to Eqs. (114) and (110) with ak = ‖U
j−1−k
x ∆U|ψk〉‖, we obtain:

‖
j−1

∑
k=0

U j−1−k
x ∆U|ψk〉‖2 ≤ j

j−1

∑
k=0
‖U j−1−k

x ∆U|ψk〉‖2,

≤ j
j−1

∑
k=0
‖∆U|ψk〉‖2,

≤ j
j−1

∑
k=0
‖|ψk+1〉 − |ψx

k+1〉‖2,

(115)

where the second line of Eq. (115) was obtained by considering that Ux is unitary so U†
xU = 1

and thus (U j−1−k
x )†U j−1−k = 1.5 So, ‖U j−1−k

x ∆U|ψk〉‖2 = 〈ψk|(∆U)†(U j−1−k
x )†U j−1−k

x ∆U|ψk〉 =
‖U j−1−k

x ∆U|ψk〉‖2 = 〈ψk|(∆U)†∆U|ψk〉 = ‖∆U|ψk〉‖2. Now, according to Eq. (??), we obtain:

‖
j−1

∑
k=0

U j−1−k
x ∆U|ψk〉‖2 = ‖|ψj〉 − |ψx

j 〉‖2 ≤ 4j
j−1

∑
k=0
‖αx,k‖2. (116)

Therefore, summing over all possible strings x, we obtain:

∑
x
‖|ψj〉 − |ψx

j 〉‖2 ≤ 4j
j−1

∑
k=0

∑
x
‖αx,k‖2,

≤ 4j2,

(117)

since ∑x ‖αx,j‖2 = 1.

5Unitary trick. For any unitary operator U (i.e., for which U†U = 1) we have ‖U|ψ〉‖2 = ‖|ψ〉‖2 since = ‖Uψ‖2 =
〈ψ|U†U|ψ〉 = 〈ψ|ψ〉 = ‖ψ‖2.
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9.2 Supplement II: Optimal Number of Queries

Show that the number of queries j necessary to identify one out of a sufficiently large number N
of possible states with probability of at least 50 % is bound by j ≥ c

√
N, with c a small constant.

Solution:
We require ‖〈x|ψx

j 〉‖2 ≥ 1/2 for any x to have at least 50 % of successfully identifying x out of
N possibilities regardless of x. Replacing |x〉 by eiθ |x〉 does not change the probability of success,
so we can assume 〈x|ψx

j 〉 = ‖〈x|ψx
j 〉‖. To obtain the bound we compute the distance,

Dj = ∑
x
‖ψx

j − ψj‖2,

= ∑
x
‖(ψx

j − x)− (ψj − x)‖2,

= ∑
x
‖(ψx

j − x)‖2 + ‖ψj − x‖2 − 2‖ψj − x‖‖ψx
j − x‖cos(θ),

= ∑
x

u2
x + ∑

x
v2

x − 2 ∑
x

uxvx,

(118)

where ux = |ψx
j 〉 − |x〉 and vx = |ψj〉 − |x〉, so

Ej = ∑
x
‖(ψx

j − x)‖2,

= ∑
x

u2
x = u · u,

(119)

and

Fj = ∑
x
‖(ψj − x)‖2,

= ∑
x

v2
x = v · v,

(120)

and u · v = ∑x uxvx. Furthermore, u · v = |u||v|cos(θ) ≤ |u||v|, since cos(θ) ≤ 1, so

∑
x

uxvx ≤ |u||v| =
√

∑
x

u2
x

√
∑
x

v2
x. (121)

Substituting Eqs. (119), (120) and (121) into Eq. (118), we obtain:

Dj ≥ Ej + Fj − 2
√

EjFj = (
√

Fj −
√

Ej)
2. (122)

In addition, we have the following bounds for Ej and Fj:

Ej = ∑
x
‖|ψx

j 〉 − |x〉‖2,

= ∑
x
〈ψx

j |ψx
j 〉 − 〈ψx

j |x〉 − 〈x|ψx
j 〉+ 〈x|x〉,

≤∑
x
(1− 2√

2
+ 1).

≤ N(2−
√

2),

(123)
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Furthermore, for any normalized state |ψj〉 and complete set of orthonormal states |x〉, we have

Fj = ∑
x
‖|ψj〉 − |x〉‖2,

= 2N − 2 ∑
x
‖〈ψj|x〉‖cos(θx),

≥ 2N − 2 Max(∑
x
‖〈ψj|x〉‖),

(124)

To maximize ∑x ‖〈ψj|x〉‖ with the constraint ∑x ‖〈ψj|x〉‖2 = 1, we maximize the function f (c0, · · · cN−1) =

∑N−1
x=0 cx + γ(1−∑N−1

x=0 c2
x), with respect to cy = ‖〈x|ψj〉‖, as follows:

∂ f
∂cy

= 1− γ2cy = 0, (125)

giving cy = 1/(2γ) for all y, and since ∑N−1
y=0 c2

y = 1 = N/(4γ2), we obtain γ =
√

N/2 and
cy = 1/

√
N. Therefore, according to Eq. (124),

Fj ≥ 2N − 2N/
√

N = 2N − 2
√

N. (126)

Substituting Eq. (123) and (126) into Eq. (122), we obtain:

4j2 ≥ Dj ≥ (
√

Fj −
√

Ej)
2,

≥
(√

2N − 2
√

N −
√

N(2−
√

2)
)2

,

≥ 4N − 2
√

N − N
√

2− 2
√

N
√
(2N − 2

√
N)(2−

√
2),

≥ N

(
4− 2

√
1
N
−
√

2− 2

√
(2− 2√

N
)(2−

√
2)

)
,

(127)

So, for sufficiently large N, we obtain:

j ≥
√

N

√√√√4−
√

2− 2
√

2(2−
√

2)

4
,

(128)

9.3 Supplement III: Average Success Probability of Grover’s Algorithm

Show that the Grover’s algorithm has an average probability p of finding the quantum state in one
of the N possible states given by the following equation:

2N − 2
√

pN − 2
√

N(N − 1)(1− p) = Dj =
N−1

∑
x=0
‖ψx

j − ψj‖2 ≤ 4j2, (129)

where |ψx
j 〉 =

√
p|x〉+

√
1−p
N−1 ∑y 6=x |y〉, with |ψj〉 = 1√

N ∑N−1
y=0 |y〉. Therefore, asymptotically and

for p = 1 Eq. (129) gives the lower bound j ≥
√

N
2 .
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Solution: Computing the difference |ψx
j 〉 − |ψj〉, we obtain:

|ψx
j 〉 − |ψj〉 =

(
√

p− 1√
N

)
|x〉+

(√
1− p
N − 1

− 1√
N

)
∑
y 6=x
|y〉, (130)

so

N−1

∑
x=0
‖|ψx

j 〉 − |ψj〉‖2 =
N−1

∑
x=0

(
√

p− 1√
N

)2

+

(√
1− p
N − 1

− 1√
N

)2

(N − 1),

= N
(
√

p− 1√
N

)2

+ N

(√
1− p
N − 1

− 1√
N

)2

(N − 1),

= Np +
N
N
− 2
√

pN + N(1− p) + (N − 1)− 2

√
N(1− p)
(N − 1)

(N − 1),

= −2
√

pN + 2N − 2
√

N(1− p)(N − 1),

(131)

Therefore, for sufficiently large N, the Grover’s algorithm finds one out of N states in
√

N queries,
which according to Eq. (128) is optimal. For example, to find one state out of N with > 50%, we
need:

j ≥

√
N
2
−
√

2N
(1 +

√
N − 1)

4
. (132)
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10 Iterative Power Algorithm: Classical Amplitude Amplification

The goal of this section is to introduce the iterative power algorithm (IPA) that can be thought
of as classical computing analogue of a quantum computing algorithm, where an initial state is
transformed so that a measurement can reveal the answer to the problem with high probability.
We illustrate IPA as applied to global optimization and factorization.

A simple application involves finding the global minimum of the asymmetric double well poten-
tial V(r) = −0.5 ∗ r2 + 1.0/(16.0 ∗ 1.3544) ∗ r4 + 0.1 ∗ r, shown in the figure.

To find the global minimum, according to the IPA: (1) initialize a pointer state, such as the
Gaussian ψ(r) = π−1/4e−r2/2 illustrated in the figure (left panel); (2) use the pointer state to
compute the expectation value of V(r), as follows: Vm = 〈ψ|V|ψ〉; (3) update the pointer state
by projecting out the amplitude components where V(r) > Vm, as follows: ψ(r) → ψ(r) × [1−
sgn(V(r) − Vm)], and normalize the resulting pointer state (middle panel); (4) Goto (2). Iterate
until reaching convergence. The right panel of the figure shows the resulting pointer obtained after
15 iterations. It can be used to reveal the position of the global minimum rm = 〈ψ|r|ψ〉 and the
value of the potential at the minimum Vm = 〈ψ|V|ψ〉. Alternatively, the oracle could be defined to
transform the state, as follows: ψ(r)→ ψ(r)× exp(−V(r))/‖ψ(r)× exp(−V(r))‖.

We note that IPA is a particular version of amplitude amplification, as defined by an oracle that
iteratively projects and renormalizes the pointer state. It can also be applied for factorization when
using the remainder as the cost function in the subspace of prime numbers.

The tarball file that can be downloaded from here includes several versions of the implementa-
tion of the IPA introduced in this section, as applied to global optimization in a double well potential
(ttdw.py), in a 4-well potential (tt4w.py), in a multiple well (ttmw.py), revealing a transition state
proximal to the global minimum (ttts.py), geometry optimization of a cluster of atoms linked by har-
monic oscillators (ttho.py and ftho.py), geometry optimization of a H2 molecule using pyscf for the
Hartree-Fock calculations (gh2.py), and factorization (gfa.py). Note that some of the programs re-
quire Ivan Oseledets’ tensor train toolbox that can be installed from http://github.com/oseledets/ttpy
or Alex Gorodetsky’s functional train C3 package. Furthermore, the H2 example requires PySCF.

10.1 Convergence

The goal of this section is to compare the convergence rate of the IPA and Grover’s algorithms.

1 = |vk|2 = (N − 1)
(

λ2

λ1

)2k

v2
k,max + v2

k,max,

= v2
k,max

(
1 + (N − 1)

(
λ2

λ1

)2k
)

,
(133)
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vk,max =
1√

1 + (N − 1)
(

λ2
λ1

)2k
≥ 1√

2
,

(134)

√
N ≥ k ≥

ln
( 1

N−1

)
2ln
(

λ2
λ1

) (135)

(
1

N − 1

) 1
2
√

N
≥ λ2

λ1
(136)

The logarithmic scaling is comparable to or better than in optimal quantum search algorithms
(e.g., the Grover quantum search method, where the number of queries necessary to amplify the
amplitude of one out of N possible states scales as O(

√
N).

11 Bernstein-Vazirani Algorithm: Exponential Speedup from Superpositions

The goal of this section is to explain the Bernstein-Vazirani algorithm. It is one of the earliest quan-
tum algorithms that was able to demonstrate exponential speedup relative to the fastest possible
solution achievable with a classical computer. The algorithm introduces fundamental concepts of
superposition states that are essential for understanding many other quantum algorithms.

The Bernstein-Vazirani algorithm solves the following problem. Given a function f (x) = s · x
as a black box that transforms the n-bit string |x〉 into a single bit f (x) = {0, 1} using the secret
string |s〉 = |s1s2 · · · sn〉, find the n bits of |s〉, namely s1, s2, · · · sn by evaluating f as fewer times as
possible.

We note that the classical solution requires n calls to the function because the string is com-
posed of n bits and each call to the function returns a single bit (note that to reveal the bit sj of
the secret string one would call the function with |x1x2 · · · xn〉 such that xk = δjk for j = 1, 2, . . . , n).
Remarkably, the quantum computing solution based on the Bernstein-Vazirani algorithm requires
a single evaluation of the function, using the quantum circuit shown in Fig. 32. Can you believe it?

|0〉

H⊗n
U f

H⊗n

= s1
 |s〉

|0〉 = s2
· · · ·· · · ·· · · ·
|0〉 = sn

|−〉

Figure 32: Quantum circuit for the Bernstein-Vazirani algorithm where the U f applies a sequence of c-NOT
gates, with the ancilla qubit as a target and the qubits j corresponding to sj = 1 as the controls. Each of
those c-NOT gates effectively transforms the state |+〉 previously prepared by the Hadamard gate into |−〉,
so the subsequent Hadamard transforms it into |1〉. Therefore, a measurement of each of those qubits j
yields sj = 1.
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To understand how the algorithm works, we first note that the Hadamard gate applied on n
qubits, H⊗n = H ⊗ H ⊗ · · · ⊗ H, transforms the n-bit string |s〉 = |s1s2 · · · sn〉, as follows:

H⊗n|s〉 = ∑
x∈{0,1}n

(−1)s·x

2n/2 |x〉, (137)

as shown below in Sec. 11.1. Also, the Hadamard transform is its own inverse (i.e., |s〉 =
H⊗nH⊗n|s〉). Therefore, the Bernstein-Vazirani algorithm first prepares the state H⊗n|s〉 by mak-
ing a single call to f (x), and then reveals the string |s〉 by applying the Hadamard transform and
measuring.

To prepare the state H⊗n|s〉, we initialize n working qubits as |0〉 and the ancilla qubit |a〉
as |−〉, and we apply the Hadamard transform to the working qubits to put them in the uniform
superposition state, according to Eq. (137):

|−〉H⊗n|00 · · · 0〉 = |−〉 ∑
x∈{0,1}n

1
2n/2 |x〉,

= ∑
x∈{0,1}n

1
2n/2 |−〉|x〉.

(138)

Next, we evaluate the function f (x) with the n working qubits still in the uniform superposition,
and we transform the ancilla qubit by performing a control-NOT operation with f (x), as follows:
|a⊕ f (x)〉. The strings |x〉 for which f (x) = 0 leave the ancilla qubit unchanged, while the strings
for which f (x) = 1 transform |−〉 = 1√

2
|0〉 − 1√

2
|1〉 into (−1)|−〉 = 1√

2
|1〉 − 1√

2
|0〉. Therefore, the

resulting state is

U f |−〉H⊗n|00 · · · 0〉 = ∑
x∈{0,1}n

1
2n/2 (−1) f (x)|−〉|x〉,

= |−〉 ∑
x∈{0,1}n

1
2n/2 (−1) f (x)|x〉,

= |−〉 ∑
x∈{0,1}n

1
2n/2 (−1)s·x|x〉

(139)

with the working qubits in the desired state. Applying a Hadamard gate to the working qubits thus
reveals the secret string s.

11.1 Hadamard Transform of Arbitrary Strings

To show that

H⊗n|s〉 = ∑
x∈{0,1}n

(−1)s·x

2n/2 |x〉, (140)

we consider first the simple case of 2-bit string |s〉 = |s1 s2〉, where sj = {0, 1}. When s1 = s2 = 0,
we have s · x = s1 · x1 + s2 · x2 = 0, regardless of the values of x1 and x2. So, Eq. 140 gives
the expected result H⊗2|00〉 = | + +〉 = 1√

2
(|00〉 + |01〉 + |10〉 + |01〉). Next, when s1 = 1 and

s2 = 0, we have H⊗2|10〉 = | −+〉 = 1√
2
(|00〉+ |01〉 − |10〉 − |11〉). Note that if both the input and

output strings have a 1 in the same position, then the output is multiplied by (−1). That pattern of
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negative signs is properly captured by the term (−1)s·x. As an exercise, check that the pattern of
negative signs is confirmed for the input string |11〉, and then work out 3-bit strings.

To show that the Hadamard gate is reversible, we compute

H⊗nH⊗n|s〉 = ∑
y∈{0,1}n

∑
x∈{0,1}n

(−1)s·x

2n/2
(−1)y·x

2n/2 |y〉,

= ∑
x∈{0,1}n

∑
y=s

(−1)s·x

2n/2
(−1)y·x

2n/2 |y〉+ ∑
x∈{0,1}n

∑
y 6=s

(−1)s·x

2n/2
(−1)y·x

2n/2 |y〉,
(141)

Therefore,

H⊗nH⊗n|s〉 = ∑
x∈{0,1}n

(−1)s·x

2n/2
(−1)s·x

2n/2 |s〉+ ∑
x∈{0,1}n

∑
y 6=s

(−1)s·x

2n/2
(−1)y·x

2n/2 |y〉,

= |s〉 ∑
x∈{0,1}n

1
2n + ∑

x∈{0,1}n
∑
y 6=s

(−1)s·x

2n/2
(−1)y·x

2n/2 |y〉,

= |s〉+ ∑
y 6=s

∑
x∈{0,1}n

(−1)(y+s)·x

2n |y〉,

= |s〉+ ∑
y 6=s

∑
x⊥(y+s)

(−1)(y+s)·x

2n |y〉+ ∑
y 6=s

∑
x‖(y+s)

(−1)(y+s)·x

2n |y〉,

= |s〉+ ∑
y 6=s

∑
x⊥(y+s)

1
2n |y〉+ ∑

y 6=s
∑

x‖(y+s)

(−1)
2n |y〉,

(142)

where the second and third term cancel each other since exactly half of the strings x are orthogonal
to s + y.

Implementation on the IBM Quantum: A turn-key tutorial on how to implement the Vazirani al-
gorithm with Qiskit on Colab or the IBM Quantum is available as a Qiskit tutorial, and can be
downloaded as a notebook: vic_vazirani.ipynb, or vic_vazirani.pdf.

12 Phase Kickback

An important step introduced by Eq. (139), is the factorization of |−〉 that multiplies all strings |x〉,
leaving behind its phase (−1) f (x) as acquired during the conditional-f (XOR) operation when going
from the first to the second row of that equation. As a result, the ancilla |−〉 remained unchanged
while its acquired phase was ’kicked back’ to the strings of the superposition. Such a procedure
that transfers the phase acquired by a qubit to another qubit(s) in a superposition state is called
’phase kickback’ and is exploited by many quantum algorithms.

A simple illustrative example of phase kickback is the conditioned implementation of the unitary
U = e−

i
h̄ Ĥt that transforms the state |φk〉, as follows: U|k〉 = e−iθk |k〉, with θk = Ekt/h̄. When

applied to a qubit prepared in state |k〉, conditioned to the state of another qubit prepared in a
superposition state (e.g., |+〉), we transfer the phase θk to this other qubit, as follows:

|+〉 • 1√
2
|0〉+ e−iθk 1√

2
|1〉

|k〉 U |k〉
(143)

since
(

1√
2
|0〉+ 1√

2
|1〉
)

cU|k〉 = 1√
2
|0〉|k〉+ 1√

2
|1〉e−iθk |k〉 =

(
1√
2
|0〉+ 1√

2
|1〉e−iθk

)
|k〉.
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13 Hadamard Gate with Beam Splitters: Mach-Zehnder interferometer

This section introduces the beam splitter, as applied to the implementation of a Hadamard gate
and phase shifter in an optical interferometer. These optical elements are important since any gate
can be implemented just by using beam splitters, phase shifters, photodetectors and single photon
sources, allowing for universal quantum computing, as shown by the KLM protocol introduced
by Knill, Laflamme and Milburn. The optical interferometer provides a very accessible way of
analyzing gates and the ‘magic’ of quantum superposition states exploited by quantum computing.

A beam splitter is a crystal that splits an incoming beam of light into two outgoing beams of
intensities Ic = |Eout

c |2 and Id = |Eout
d |2, as shown in (Figure 33). The incoming electric fields

Figure 33: Beam splitter, a crystal that splits incoming beams with intensities Ia = |Ein
a |2 and Ib = |Ein

b |2
into outgoing beams of intensities Ic = |Eout

c |2 and Id = |Eout
d |2.

Ein
a and Ein

b could correspond to two different beams, or two modes of a single beam (e.g., two
different states of polarization).

The outgoing beam Eout
c results from the partial reflection of incident beam Ein

a and partial
transmission of beam Ein

b , with reflection and transmission coefficients given by the scattering
matrix elements Sac = Reiφac and Sbc = Teiφbc , respectively. Analogously, the outgoing beam Eout

d
results from the partial reflection of incident beam Ein

b and partial transmission of beam Ein
a with

reflection and transmission coefficients given by the scattering matrix elements Sbd = Reiφbd and
Sad = Teiφad , respectively. Energy conservation, Ia + Ib = Ic + Id (i.e., conservation of photons),
requires that R2 + T2 = 1 and φad − φbd + φbc − φac = π.

A simple example of a scattering matrix that splits incoming beams 50-50 into each of the
possible outgoing directions with energy conservation is the matrix where R = T = 1/

√
2, with

φbd = −π and φad = φbc = φac = 0 (i.e., the Hadamard matrix):

BS1 =

(
1√
2

1√
2

1√
2
− 1√

2

)
(144)

Another S matrix that splits incoming beams in each of the possible outgoing directions with energy
conservation has R = T = 1/

√
2, and φac = −π, where φad = φbc = φbd = 0,

BS2 =

(
− 1√

2
1√
2

1√
2

1√
2

)
(145)

To illustrate how the beam splitters transform an incoming state, we consider first an incoming

beam with Ein
a = 0 and Ein

b = 1, or
(

0
1

)
, as shown in Fig. (34). The outgoing beams after
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Figure 34: A beam splitter splits an incoming beam with Ein
a = 0 and Ein

b = 1 into outgoing beams with
Eout

c = 1/
√

2 and Ed = −1/
√

2.

BS1 have Ein
c = 1/

√
2 and Ein

d = −1/
√

2, or
(

1/
√

2
−1/
√

2

)
with 50% intensity on each outgoing

beam and a well-defined relative phase (i.e., Eout
c = 1/

√
2 and Eout

d = 1/
√

2eiπ). This example is
very similar to the double-slit experiment, with the beam splitter functioning as a simplified version
of a double-slit. The relative phases of the outgoing beams are important since they determine
the interference phenomena that rules the behavior of the outgoing state, for example, as the
beams pass through another BS1, as shown in Fig. (35). Note that the second BS1 transforms

Figure 35: A beam splitter splits an incoming beam with Ein
a = 0 and Ein

b = 1 into outgoing beams with
Eout

c = 0 and Ed = 1.

the state
(

1/
√

2
−1/
√

2

)
into the output state

(
0
1

)
which is identical to the initial state due to full

constructive interference in the lower mode and no intensity in the top one (rather than getting a
50-50 distribution as one would expect in the absence of interference). This is the expected result
since the Hadamard matrix is its own inverse.

Changing the second beamsplitter by BS2, as shown in Fig. (36) provides another example
that illustrates the essential role of the phases. Here, we obtain full constructive interference in
c, and no intensity in d. These examples show that beam splitters can be used to generate a
variety of states. In fact, when combined with phase shifters, we can generate arbitrary states,
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Figure 36: A beam splitter splits an incoming beam with Ein
a = 0 and Ein

b = 1 into outgoing beams with
Eout

c = −1 and Ed = 0.

as shown below. But first, let us show what happens to the intensity of beam d if we block one of
the branches, right before passing through the second beamsplitter, as shown in Fig. (37). Note

Figure 37: A beam splitter splits an incoming beam with Ein
a = 0 and Ein

b = 1 into outgoing beams with
Eout

c = −1 and Ed = 0.

that the lower branch of the state
(

1/
√

2
−1/
√

2

)
generated by BS1 is absorbed, thus, generating

the state
(

1/
√

2
0

)
that is transformed by BS2 into

(
−1/2

1/2

)
. Remarkably, we increased the

intensity of beam d by actually blocking one of the branches!

Elitzur-Vaidman test: The remarkable effect of the block, responsible for increasing the intensity
in channel d, is the basis of the Elitzur-Vaidman thought experiment. Consider a fragile precious
molecule that is destroyed when it absorbs a photon (and absorbs photons with 100 % quantum
yield). In contrast, a defective state of the molecule does not absorb photons and is not destroyed.
So, if the molecule is defective and is positioned like the block in Fig. 37 we get the intensities of
Fig. 36 (i.e, no photons are ever detected in channel d). When the molecule is good and is placed
as the block in Fig. (37), it is destroyed 50% of the times, since a photon from b has only 50%
probability of hitting the block. If it is not destroyed, it is because the photon went through the other
branch after BS1. In that case, the probability of detecting a photon in channel d is equal to 1/4,
as shown in Fig. (37). So, if we detect a photon in channel d we know the molecule is good, as
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reported by a photon that never interacted with the molecule!

Hong-Ou-Mandel effect This effect is another manifestation of interference at a beam splitter
demonstrated in 1987 by three physicists from the University of Rochester: Chung Ki Hong, Zhe Yu
Ou and Leonard Mandel. The experiment shows that the incidence of two indistinguishable pho-
tons, one from a and the other from b as described by the incident state |ψin〉 = 1√

2
(|01〉+ |10〉),

produces either both photons in c or both in d, with 50-50 probability, according to the outgoing
entangled state |ψout〉 = 1√

2
(|00〉 − |11〉) (Fig. 38). Never one photon coming out from c and the

other from d.

Figure 38: Experiment demonstrating the Hong-Ou-Mandel effect: when two indistinguishable photons
strike a beam splitter, one from a and the other from b, they both come out of the same channel, either both
from c, or both from d, with 50-50 probability. Never one from c and the other from d.

Mathematically, we can show this remarkable result, as follows. We build a symmetrized initial

state with one photon in a (i.e., |1〉 =
(

1
0

)
) and one in b (i.e., |0〉 =

(
0
1

)
), as follows:

|ψin〉 = 1√
2
(|0〉|1〉+ |1〉|0〉), where |0〉|1〉 =

(
0
1

)
⊗
(

1
0

)
=


0
0
1
0

, and |1〉|0〉 =
(

1
0

)
⊗

(
0
1

)
=


0
1
0
0

, defining the initial state |ψin〉 = 1√
2


0
1
1
0

.

Applying the Hadamard gate H⊗2 = H ⊗ H to |ψin〉, we obtain:

|ψout〉 = 1
23/2


1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1




0
1
1
0

 = 1√
2


1
0
0
−1

 = 1√
2
(|00〉 − |11〉).

Therefore, |〈01|ψout〉|2 = |〈10|ψout〉|2 = 0, while |〈00|ψout〉|2 = |〈11|ψout〉|2 = 1
2 .

Phase-Shift: Another interesting experiment is the effect of a piece of glass that introduces a
phase-shift in one of the branches, as shown in Fig. 39. The phase shift is described by the

gate Z(φ) =

(
1 0
0 eiφ

)
. The phase-shift can be measured by counting the number of photons

detected at c and d (i.e., measuring the relative intensity of beams c and d).
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Figure 39: Mach-Zehnder interferometer demonstrating the effect of a phase shift on the detected field
amplitudes Eout

c and Eout
d .

Note that the lower branch of the state generated by BS1,
(

1/
√

2
e−iπ/

√
2

)
gets a phase-shift

and becomes
(

1/
√

2
e−i(π−φ)/

√
2

)
, so it is transformed by BS2 into

(
(−eiφ − 1)/2
(−eiφ + 1)/2

)
. Therefore,

the intensity ratio Ic/Id = (1 + cos(φ))/(1− cos(φ)) is a simple function of the phase shift.
This method of measuring the phase-shift introduced on a beam of light by a sample, as deter-

mined by mixing the signal with a reference beam that comes from the same source as the beam
that went through the sample, is called optical homodyne detection. It has the main advantage of
using the reference beam (the so-called local oscillator) to compensate for any fluctuations in the
light source.

14 Deutsch Algorithm

The goal of this section is to explain the so-called Deutsch algorithm that exploits the phase kick-
back trick to determine if a function f : {0, 1} → {0, 1} is constant (ı.e., f (0) = f (1), and thus
f (0)⊕ f (1) = 0), or not constant (i.e., ‘balanced’ since f (0) 6= f (1), so f (0)⊕ f (1) = 1) by mak-
ing a single query to the function f , as shown in the circuit below. This is a remarkable result since
any classical algorithm would have to call f twice to determine whether it is constant, or not. To

|0〉 H
U f

H

|−〉

Figure 40: Quantum circuit for implementing the Deutsch algorithm.

see how the algorithm works, we note that the initial state |ψ0〉 = |0〉|−〉 is transformed into state
|ψ1〉 by the first Hadamard gate, as follows:

|ψ1〉 =
1√
2
(|0〉+ |1〉) |−〉,

=
1√
2
|0〉|−〉+ 1√

2
|1〉|−〉.

(146)
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When applying the function f to ψ1, we obtain:

|ψ2〉 = Û f |ψ1〉,

=
1
2
|0〉 (|0⊕ f (0)〉 − |1⊕ f (0)〉) + 1

2
|1〉 (|0⊕ f (1)〉 − |1⊕ f (1)〉) ,

(147)

We note that (|0⊕ f (0)〉 − |1⊕ f (0)〉) = (−1) f (0) (|0〉 − |1〉) regardless of whether f (0) = 0 or
f (0) = 1 since 1⊕ 1 = 0 and 1⊕ 0 = 1. Therefore,

|ψ2〉 =
(−1) f (0)

2
|0〉 (|0〉 − |1〉) + (−1) f (1)

2
|1〉 (|0〉 − |1〉) ,

= (−1) f (0) 1√
2

(
|0〉+ (−1) f (0)⊕ f (1)|1〉

)
|−〉,

(148)

Factorizing (−1)− f (0) which is equal to (−1) f (0), we obtain:

|ψ2〉 = (−1) f (0) 1√
2

(
|0〉+ (−1) f (0)⊕ f (1)|1〉

)
|−〉. (149)

When f (0)⊕ f (1) = 0, the first qubit is in the state |+〉, so a Hadamard transformation makes it
|0〉, and when f (0)⊕ f (1) = 1, the first qubit is |−〉, so the Hadamrad transformation makes it |1〉.
Therefore, a measurement of the first qubit can determine whether the function is constant, or not.

15 Deutsch-Jozsa Algorithm

The goal of this section is to explain the Deutsch-Jozsa algorithm, one of the earliest quantum
algorithms that was able to demonstrate quantum advantage relative to classical computing. It
determines whether a function f (x) : {0, 1}n → {0, 1} is constant (regardless of x) or balanced
(1 for exactly half of the input domain and 0 for the other half) by making a single query to the
function, according to the following circuit: Note that right before the query to the function, the

|0〉 H⊗n
U f

H⊗n

|1〉 H

Figure 41: Quantum circuit for implementing the Deutsch-Jozsa algorithm.

state is
|ψ〉 = 1√

2n ∑
x∈{0,1}n

|x〉|−〉. (150)

and after the query is

|ψ〉 = 1√
2n ∑

x∈{0,1}n

(−1) f (x)|x〉|−〉. (151)

Therefore, after applying the Hadamard gate, we obtain:

|ψ〉 = 1
2n ∑

x∈{0,1}n

(−1) f (x) ∑
y∈{0,1}n

(−1)x·y|y〉|−〉. (152)
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When f (x) is constant, we obtain:

|ψ〉 = ± 1
2n ∑

y∈{0,1}n

|y〉 ∑
x∈{0,1}n

(−1)x·y|−〉. (153)

where the expansion coefficient for |y| = |0〉 is±1 since (−1)x·y = 1. So, there is 100 % probability
of measuring |y| = |0〉. On the other hand, when f (x) is balanced, the probability of detecting
|y| = |0〉 is | 1

2n ∑x∈{0,1}n(−1) f (x)|2 = 0. Therefore, a single measurement can detect if the function
is constant (and thus |y| = |0〉), or not.

16 Simon’s Algorithm

The goal of this section is to explain Simon’s algorithm, one of the earliest quantum algorithms
that was able to demonstrate exponential speedup relative to classical computing.

Simon’s algorithm solves the following problem. We are given a function f that transforms n
bits into n bits (e.g., a black box executable program), such that f (x) = f (x ⊕ s), with s a secret
string. So, the resulting n string is the same for x and x⊕ s. The problem is to discover the bits of
|s〉 by making the fewest possible calls to f .

Solving the problem by classical computing requires multiple calls to f (x), at least until finding
two strings for which the output is the same. So, considering that there are 2n equally probable
strings, one can show that classical computing requires of the order of

√
2n evaluations – i.e., an

exponential number of evaluations of the function, analogously to the ’birthday problem’.6 Remark-
ably, solving the problem by quantum computing with Simon’s algorithm requires only a polynomial
in n number of evaluations for f (x), rather than an exponential number.

Simon’s algorithm requires preparation of the particular superposition 1√
2
|r〉+ 1√

2
|r⊕ s〉 where

|r〉 is a random n-bit string. That particular superposition state can be generated by initializing
2n qubits as |0〉, applying a Hadamard transform H⊗n to the first n qubits to generate a uniform
superposition of all possible 2n random strings, as shown in Eq. (137), and then transforming the
second set of n qubits initialized as |0〉 into | f (r)〉. Upon measuring the second set of n qubits (as
shown in Fig. 42), we collapse the first set of n qubits into the desired superposition since a given
value of f (r) is fulfilled by both r and s⊕ r.

Finally, we apply a Hadamard transform to the first set of n qubits (already prepared in the
particular superposition 1√

2
|r〉+ 1√

2
|r ⊕ s〉, as described above) and we measure. It is important

to note that the strings y sampled by measuring the first n qubits, after the Hadamard transform,
satisfy the condition that y · s = 0 (i.e., y ∈ s⊥) since (as shown below) all other strings have

6Birthday Problem: We want to find out the probability that out of 30 people two of them have the same birthday. Person 1,
Person 2: prob=364/365 of no overlap with the first; Person 3: prob=363/365 of no overlap with 1 and 2; Person 4: prob=362/365
of no overlap with 1, 2 and 3; ... Person 30: prob=336/365 of no overlap with any person above; The probability of having no
shared birthdays is then (364/365)× (363/365)× (362/365) · · · (336/365) = 0.293684. So the probability of having at least
one pair of people having the same birthday is 71%. Analogously, we find a probability > 96% when the group has more than 48
people (2.5

√
365). Let us find this probability with the Monte Carlo Approach: 1) Pick 30 random numbers in the range [1,365].

2) Check to see if any of the thirty are equal. 3) Go back to step 1 and repeat 10000 times. 4) Report the fraction of trial that have
matching birthdays and use it to compare with the result above.
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|0〉

H⊗n

U f

H⊗n

= y1
 |y〉|0〉 = y2

· · · · ·· · · · ·· · · · ·
|0〉 = yn

|0〉
}
| f (x)〉· · · ·· · · ·· · · ·

|0〉
|0〉 |0〉
|0〉 |0〉

Figure 42: Quantum circuit for Simon’s algorithm based on Fourier sampling (ı,e., application of a
Hadamard transform and measurement) of the superposition state 1√

2
|r〉+ 1√

2
|r ⊕ s〉 prepared upon mea-

surement of the ancilla qubits in the f (x) state when the first n working qubits are in a uniform superposition
state x.

coefficients equal to zero. This can be shown, as follows:

H⊗n 1√
2
|r〉+ H⊗n 1√

2
|r⊕ s〉 = ∑

y∈{0,1}n

(
(−1)r·y

2(n+1)/2
+

(−1)(r⊕s)·y

2(n+1)/2

)
|y〉,

= ∑
y∈{0,1}n

(−1)r·y

2(n+1)/2
(1 + (−1)s·y) |y〉,

= ∑
y∈s⊥

(−1)r·y

2(n−1)/2
|y〉,

(154)

where y ∈ s⊥ fulfill the condition s · y = 0. We note that the probability of each sampled string is
given by the square of the expansion coefficient | 1

2(n−1)/2 |2 = 1
2n/2 . So, the number of strings that

are orthogonal to s (y ∈ s⊥) is equal to 2n/2 = 2n−1 (i.e., half the total number of n-bit strings !).
Therefore, by repeating the preparation and measurement (n− 1) times, we get a set of (n− 1)

equations of the form:

y(1)1 s1 + y(1)2 s2 + · · ·+ y(1)n sn = 0

y(1)1 s1 + y(1)2 s2 + · · ·+ y(1)n sn = 0
· · ·

y(n−1)
1 s1 + y(n−1)

2 s2 + · · ·+ y(n−1)
n sn = 0

(155)

that can be solved for s1, s2, · · · sn to get two possible solutions, including the trivial solution with all
sj = 0 and the non-trivial solution of interest.

The algorithm works only when the (n− 1) equations are linearly independent, which can be
shown to happen at least with 25% probability (and exact probability of success close to 29%), as
follows.

The ≥ 25% probability of success is obtained by considering that there are 2n−1 equally prob-
able strings y that are sampled. Sampling a linearly dependent string in the (n − 1) step, after
having sampled (n − 2) linearly independent strings in the previous steps would lead to failure.
The probability of that event is equal to the probability of a string 1/2n−1 times the number of
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strings that are linearly dependent on of the previously sampled strings. Writing a linear com-
bination of all (n − 2) previously selected strings, with expansion coefficients equal to 1 or 0 for
each string, shows that there are 2n−2 possible strings that would be linearly dependent on the
previously sampled strings. So, the probability of failure in that last step is 2n−2 ∗ 1/2n−1 = 1/2.
Analogously, we find that failing in the previous step would have probability 1/4, in the previous
one 1/8, until the very first step for which the probability of failing is 1/2n−1 because only the string
with all zeros would lead to failure.

Summing the probabilities of failing at the first (n− 2) steps (instead of multiplying them) gives
us an upper bound to the probability that the algorithm fails in the first (n− 2) steps. Therefore,
multiplying that probability by the probability of independently failing in the last step gives an up-
per bound to the total probability of failing, as follows. Considering that the geometric series is
∑n−1

j=0 xj = (1− xn)/(1− x), we obtain:

1/4 + 1/8 + · · ·+ 1/2n−1 =
n−1

∑
j=1

0.5j − 1/2

=
n−1

∑
j=0

0.5j − 1− 1/2

=
(1− 0.5n)

(1− 0.5)
− 1− 1/2

=
(0.5− 0.5n)

0.5
− 1/2 = 1/2− 1

2n−1 ≤ 1/2.

(156)

Therefore, the probability of success in the first (n− 2) steps is at least 1/2 and since the proba-
bility of success in the last step is 1/2, the probability of success is at least 1/4.

Exercise: Let x, y ∈ {0, 1}n and let s = x⊕ y. Show that

H⊗n 1√
2
|x〉+ H⊗n 1√

2
|y〉 = ∑

z∈{s}⊥

(−1)x·z

2(n−1)/2
|z〉. (157)

Solution:

H⊗n 1√
2
|x〉+ H⊗n 1√

2
|y〉 = 1

2(n+1)/2 ∑
z∈{0,1}n

((−1)x·z + (−1)y·z) |z〉,

=
1

2(n+1)/2 ∑
z∈{0,1}n

(−1)x·z
(

1 + (−1)(y−x)·z
)
|z〉,

=
1

2(n+1)/2 ∑
z∈{0,1}n

(−1)x·z
(

1 + (−1)(s−2x)·z
)
|z〉,

=
1

2(n+1)/2 ∑
z∈{0,1}n

(−1)x·z (1 + (−1)s·z) |z〉,

=
1

2(n+1)/2 ∑
z∈{s}⊥

(−1)x·z2|z〉,

=
1

2(n−1)/2 ∑
z∈{s}⊥

(−1)x·z|z〉,

(158)
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Exercise:
We have defined s⊥, but more generally we can let S be a vector subspace of Zn

2 , and define
S⊥ = {t ∈ Zn

2 |t · s = 0 for all s ∈ S }. So our previously defined s⊥ corresponds to S⊥ where
S = {0, s} is the 2-dimensional vector space spanned by s.

• (a) Define |S〉 = ∑s∈S
1√
2m |s〉. Prove that H⊗n|S〉 = ∑w∈S⊥

1
s(n−m)/2 |w〉.

• (b) For any y ∈ {0, 1}n define |y + S〉 = ∑s∈S
1√
2m |y + s〉. What is H⊗n|y + S〉?

Solution:
(a)

H⊗n|S〉 = 1
2(n+m)/2 ∑

s∈S
∑

w∈{0,1}n

(−1)s·w|w〉,

=
1

2(n+m)/2 ∑
s∈S

∑
w∈S⊥

(−1)s·w|w〉+ 1
2(n+m)/2 ∑

s∈S
∑

w 6∈S⊥
(−1)s·w|w〉,

=
1

2(n+m)/2 ∑
s∈S

∑
w∈S⊥

|w〉+ 1
2(n+m)/2 ∑

s∈S
∑

w 6∈S⊥
(−1)s·w|w〉,

=
2m

2(n+m)/2 ∑
w∈S⊥

|w〉+ 1
2(n+m)/2 ∑

w 6∈S⊥
∑
s∈S

(−1)s·w|w〉,

=
1

2(n−m)/2 ∑
w∈S⊥

|w〉,

(159)

since ∑s∈S(−1)s·w = 0.

(b)

H⊗n|y + S〉 = ∑
s∈S

1√
2(m+n) ∑

w∈{0,1}n

(−1)(y+s)·w|w〉,

=
1√

2(m+n) ∑
w∈{0,1}n

(−1)y·w ∑
s∈S

(−1)s·w|w〉,

=
1√

2(m+n) ∑
w∈S⊥

(−1)y·w ∑
s∈S

(−1)s·w|w〉+ 1√
2(m+n) ∑

w 6∈S⊥
(−1)y·w ∑

s∈S
(−1)s·w|w〉,

=
1√

2(m+n) ∑
w∈S⊥

(−1)y·w2m|w〉,

=
1√

2(n−m)
∑

w∈S⊥
(−1)y·w|w〉,

(160)
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17 Quantum Fourier Transform

The goal of this section is to introduce the quantum Fourier transform, the quantum circuit of the
classical discrete Fourier transform, and its comparison to the Hadamard transform.

As we discussed earlier, the Hadamard gate H⊗n = H ⊗ H ⊗ · · · ⊗ H, with

H =
1√
2

[
1 1
1 −1

]
, (161)

transforms the N-bit string |s〉 = |s1s2 · · · sN〉, with N = 2n, as follows:

H⊗n|s〉 = ∑
x∈{0,1}N

(−1)s·x

N1/2 |x〉, (162)

with matrix elements 〈j|H⊗n|k〉 = N−1/2(−1)jk. Analogously, the quantum Fourier transform of
the N-bit string |s〉 = |s1s2 · · · sN〉 is defined, as follows:

QFTN |s〉 = ∑
x∈{0,1}N

ws·x

N1/2 |x〉, (163)

where w = ei2π/N is the N-th root of unity since wN = 1. Therefore, the matrix elements of the
N-dimensional quantum Fourier transform are 〈j|QFTN |k〉 = N−1/2wjk, defining the QFT in matrix
form, as follows:

QFTN =
1

N1/2


w0 w0 · · · w0

w0 w1 · · · wN−1

w0 w2 · · · w2(N−1)

· · · · · · · · · · · ·
w0 wN−1 · · · w(N−1)2

 . (164)

We note that the Fourier transform of a single qubit coincides with the Hadamard transform,
shown in Eq. (161), since w = −1 when N = 2. Also, QFTN |0 · · · 0〉 = H⊗n|0 · · · 0〉, since
(−1)0·x = (w)0·x = 1 in both Eq. (162) and Eq. (163). We also note that each of the matrix
elements wjk = ei 2π

N jk are simple phase shifters.
Inverse Fourier transform: The inverse Fourier transform is defined, as follows:

QFT−1
N |x〉 = ∑

r∈{0,1}N

w−r·x

N1/2 |r〉. (165)

Therefore, the matrix elements of the N-dimensional inverse Fourier transform are 〈j|QFTN |k〉 =
N−1/2w−jk

Note that according to Eqs. (163) and (165), QFT−1
N QFTN |s〉 = |s〉:

QFT−1
N QFTN |s〉 = ∑

x∈{0,1}N

ws·x

N1/2 ∑
r∈{0,1}N

w−r·x

N1/2 |r〉,

= ∑
r∈{0,1}N

∑
x∈{0,1}N

w(s−r)·x

N
|r〉,

= |s〉+ 1
N ∑

r 6=s

(
N−1

∑
x=0

w(s−r)·x
)
|r〉,

(166)

with ∑N−1
x=0 w(s−r)·x = 0 when s− r 6= 0.
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17.1 Properties of the Fourier transform

Property 1: Shift Invariant. Fourier sampling is unaffected by a constant shift since

QFTn|s + ∆〉 = ∑
x∈{0,1}n

wx·(s+∆)

n1/2 |x〉,

= ∑
x∈{0,1}n

wx∆ ws·x

n1/2 |x〉,
(167)

with
∣∣∣wx∆ ws·x

n1/2

∣∣∣2 =
∣∣∣ ws·x

n1/2

∣∣∣2, since w = ei2π/n and thus
∣∣wx∆

∣∣2 = 1. Therefore, the probability of
sampling string |x〉 is the same before and after the shift.

Property 2: Sum of roots. The sum of the n-th roots of unity is equal to zero, which can be shown
by using the geometric series ∑n−1

j=0 xj = (1− xn)/(1− x), as follows:

n−1

∑
j=0

wj =
(1− wn)

(1− w)
= 0, (168)

since wn = 1. Note that the same result is obtained by replacing w by any power of w.

Property 3: Orthogonality. The columns of the Fourier transform are orthonormal vectors that
define a coordinate transformation (i.e., a rotation in Hilbert space). Computing the scalar product
of columns l and k (with w̄ = e−i2π/n the conjugate of w = ei2π/n), we obtain:

〈l|k〉 = 1
n

n−1

∑
j=0

w̄l jwjk,

=
1
n

n−1

∑
j=0

w(k−l)j,

=
1
n

δlk

n−1

∑
j=0

1 +
1
n
(1− δlk)

n−1

∑
j=0

w(k−l)j,

= δlk +
1
n
(1− δlk)

(1− wn(k−l))

(1− w(k−l))
,

= δlk.

(169)

where the fourth line was obtained by using Property 2, according to the geometric series ∑n−1
j=0 xj =

(1− xn)/(1− x), while the fifth line by using that w is the n-th root of unity since wn = 1.

Property 4: Efficient Quantum Circuit. The discrete Fourier transform (FTN) is defined according
to Eq. (164) but without the normalization factor and can be efficiently computed by rearranging
the columns of the matrix to have the even numbered columns as the first N/2 columns followed
by the N/2 odd numbered columns (labeled with index k = 0− (N/2)), and rows labeled with
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index j = 0− (N/2), as follows:

FT(N) =


wj2k wj(2k+1)

w(j+N/2)2k w(j+N/2)(2k+1)

 . (170)

We note that wN = 1, and wN/2 = −1, so w(j+N/2)(2k) = w(2kj+Nk) = w2kj and w(j+N/2)(2k+1) =
w(2kj+j+Nk+N/2) = −w(2k+1)j, giving

FTN =


wj2k wjwj2k

wj2k −wjwj2k

 . (171)

Therefore, the FTN can be applied to an N-bit string XN by applying the FTN/2 to N/2-bit strings,
as follows:

FTNXN =



FTN/2 wjFTN/2

FTN/2 −wjFTN/2





x0
x2
· · ·
xN−2
x1
x3
· · ·
xN−1


, (172)

where FTN/2 is applied to the top N/2 even-numbered bits, and wjFTN/2 is applied to the bottom
N/2 odd-numbered bits. The top N/2 bits are updated by summing the two contributions while
the bottom N/2 bits are updated by subtracting the two contributions, according to the following
’butterfly’ circuit:

Figure 43: Classical ’butterfly’ circuit for implementation of the FFT algorithm.

Therefore, the computational cost C(N) of FTN is C(N) = 2C(N/2) +O(N). If we recurse
log(N) times, we obtain: C(N/2) = 2C(N/4) +O(N/2), · · · , C(4) = 2C(2) +O(4), and, C(2) =
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2C(1) +O(2). So, the total cost of the discrete Fourier transform FTN implemented recursively
is O(NlogN), and is therefore called Fast Fourier Transform (FFT) algorithm [Cooley and Tukey
Math. Comp. 19 (1965), 297-301]. By making the Fourier transform O(NlogN) (i.e., much faster
that the naive implementation with cost O(N2)), the FFT algorithm has enabled a wide range of
revolutionary technologies.

Here, we show that the quantum Fourier transform algorithm implements the FT in O(log2N)
elementary operations (i.e., in fewer steps that the number of operations it would take to input the
initial N-bit state to be transformed (!)). For example, the QFTN of an input with N = 21000 would
take only 106 operations. While this might sound impossible, it is in fact achievable because the
N-bit input can be encoded in a superposition of states of n = logN qubits (i.e., n = 1000).

Using n = log2(N/2) + 1 qubits, the quantum circuit that performs the QFTN looks, as follows:

 QFTN/2

w2n−2 · · ·
· ·· ·(n− 1) · ·

· · · w21

· · · w20

• · · · • • H

Figure 44: Quantum circuit for implementation of the QFTN , with w = ei2π/N

Note that the quantum circuit, introduced by Fig. 44, has only one QFTN/2 unit, in stark
contrast with the classical circuit (Fig. 43), since the odd and even numbered bits can be encoded
as superposition states of the same set of n − 1 qubits, using the n-th qubit in state |0〉, or |1〉,
for encoding even or odd numbered bits, respectively. Therefore, the outcome of the QFTN/2
resulting from the odd numbered bits (i.e., Sj+N/2, with j = 0− (N/2− 1)), is also encoded as
a superposition state of the first n− 1 qubits when the n-th qubit is in state |1〉. To multiply each
state Sj+N/2 of the superposition by wj, we encode j in binary, in terms of (n− 1) bits that can be
either one or zero (j0, · · · , jn−2), corresponding to the n− 1 qubits, as follows: j = ∑n−2

k=0 jk2k, so
wj = ∏n−2

k=0 wjk2k
and can be applied by applying a phase shift defined by w2k

to the outcome of the
k-th wire when that k-th bit is |1〉 (i.e., when jk = 1) and the n-th qubit is also |1〉.

Remarkably, the butterfly sums and differences of Sj and Sj+N/2, described in Fig. 43, can be
efficiently performed by applying a Hadamard gate to the n-th qubit. To understand that ’magic’
step, consider the effect of the Hadamard gate on the last qubit when the outcome of the QFTN/2
is written as a superposition of all possible n− 1 strings |x〉, as follows:

|ψ〉 = ∑
y∈{0,1}

∑
x∈{0,1}n−1

cy,x|y, x〉,

= |0〉 ∑
x∈{0,1}n−1

c0,x|x〉+ |1〉 ∑
x∈{0,1}n−1

c1,x|x〉.
(173)

where the coefficients c0,x correspond to the superposition of outcomes Sj from even numbered
bits, and c1,x correspond to the superposition of wjSj+N/2 resulting from odd numbered bits. Ap-
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plying the Hadamard gate to the ancilla n-th qubit, we obtain:

H|ψ〉 = ∑
x∈{0,1}n−1

(c0,x|+〉+ c1,x|−〉)|x〉,

=
1√
2

∑
x∈{0,1}n−1

(c0,x + c1,x)|0〉+ (c0,x − c1,x)|1〉|x〉.
(174)

Therefore, the sum and differences correspond to the superposition of the first n− 1 qubits when
the n-th qubit is |0〉 and |1〉, respectively, as provided by the Hadamard transformation with the
correct normalization factor.

Note that the computational cost of the QFT is S(n) = S(n− 1) +O(n). So, the total compu-
tational cost over n recursion layers is n + (n − 1) + · · · + 1 = n(n + 1)/2, or S(n) = O(n2) =
O(log 2N) for an input of size N = 2n. The enhanced version of QFT improves it to O(n log n) [L.
Hales and S. Hallgren, An improved quantum Fourier transform algorithm and applications. Pro-
ceedings of the 41st Annual Symposium on Foundations of Computer Science, pp. 515 (2000)].
So, the QFT is exponentially faster than the classical FFT algorithm. However, there is a caveat!
While performing the QFT would be exponentially fast, reading the outcome for a very large N
would still be challenging.

The simplest QFT circuit (beyond the circuit with N = 2 (i.e., n = 1 for which the QFT is
the Hadamard gate) is the Fourier transform of a state with N = 4 (i.e., with n = 2), which is
implemented as follows:

|j1〉 H R2
1

2n/2 (|0〉+ ei2π(j1/2+j2/4)|1〉)
|j2〉 • H 1

2n/2 (|0〉+ ei2π j2/2|1〉)

Figure 45: Quantum circuit for QFTN , with N = 4, where Rk = ei2π/2k
.

Analogously, the circuit for N = 8 (i.e., with n = 3), is implemented as follows:

|j1〉 H R2 R3
1

2n/2 (|0〉+ ei2π(j1/2+j2/4+j3/8)|1〉)
|j2〉 • H R2

1
2n/2 (|0〉+ ei2π(j1/2+j2/4)|1〉)

|j3〉 • • H 1
2n/2 (|0〉+ ei2π j2/2|1〉)

Figure 46: Quantum circuit for QFTN , with N = 8, where Rk = ei2π/2k
.

To obtain the implementation, shown in Fig. 46, we consider QFTN |j〉 = 2−n/2 ∑k wjk|k〉.
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Writing k in binary, k = ∑n
l=1 2n−lkl, we obtain:

QFTN |j〉 = 2−n/2 ∑
k

wjk|k〉,

= 2−n/2 ∑
k

ei2π jk/2n |k〉,

= 2−n/2
1

∑
k1=0
· · ·

1

∑
kn=0

ei2π j ∑n
l=1 2−lkl |k1〉 · · · |kn〉,

= 2−n/2
n⊗

l=1

1

∑
kl=0

ei2π j2−lkl |kl〉,

= 2−n/2
n⊗

l=1

(
|0〉+ ei2π j2−l |1〉

)
,

= 2−n/2
n⊗

l=1

(
|0〉+ ei2π ∑n

m=n−l+1 jm2n−m−l |1〉
)

,

= 2−n/2
(
|0〉+ ei2π0.jn |1〉

)
⊗
(
|0〉+ ei2π0.jn−1 jn |1〉

)
· · · ⊗

(
|0〉+ ei2π0.j1 j2···jn |1〉

)
,

(175)

where the line before the last one is obtained by writing j in binary, j = ∑n
m=1 jm2n−m, so 2−l j =

∑n−l
m=1 jm2n−l−m + ∑n

m=n−l+1 jm2n−m−l, and for all m of the first sum (n − l − m) is an integer, so

ei2π j2−l
=
(

∏n
m=n−l+1 ei2π jm2n−m−l

)
ei2π ∑n

m=n−l+1 jm2n−m−l
, with ∏n

m=n−l+1 ei2π jm2n−m−l
= 1. The last line

is obtained by introducing the popular notation 0.jl jl+1 · · · jn = jl2−1 + jl+12−2 + · · ·+ jn2−(1+n−l).
When n = 3, we obtain as shown in Fig. 46,

QFT8|j〉 = 2−n/2
(
|0〉+ ei2π j2−1 |1〉

)
⊗
(
|0〉+ ei2π j2−2 |1〉

)
⊗
(
|0〉+ ei2π j2−3 |1〉

)
.

= 2−3/2
(
|0〉+ ei2π j32−1 |1〉

)
⊗
(
|0〉+ ei2π(j22−1+j32−2)|1〉

)
⊗
(
|0〉+ ei2π(j12−1+j22−2+j32−3)|1〉

)
,

= 2−3/2
(
|0〉+ ei2π0.j3 |1〉

)
⊗
(
|0〉+ ei2π0.j2 j3 |1〉

)
⊗
(
|0〉+ ei2π0.j1 j2 j3 |1〉

)
.

(176)
.

17.2 Quantum Phase Estimation

Fourier sampling can be used for phase estimation. A simple example is given by the unitary that
performs the following transformation U|ψj〉 = ei2πθ |ψj〉 where θ = j/2n, with j an integer between
0 and (2n− 1) (later we will discuss what happens when j is not an integer but rather a non-integer
real number between 0 and (2n − 1)). When U is applied conditionally, it operates on |ψj〉, as
follows: c-U|k〉|ψj〉 = |k〉eik2πθ |ψj〉, where |k〉 is an n-bit string that defines the k number of times
that the unitary U is applied on |ψj〉 (with k = 0, · · · , (2n − 1)).

In the rest of this subsection we show that the phase θ can be estimated by first applying c-U
to a uniform superposition of states |k〉 (prepared, as follows: H⊗n|0〉⊗n = QFTn|0〉⊗n). Then, we
exploit the phase kickback algorithm, we compute the inverse Fourier transform, and we measure,
according to the following circuit:

|0〉⊗n H⊗n • QFT−1
n →|j〉

|ψj〉 U |ψj〉

(177)

80



We note that the state after the Hadamard gate, right before the conditional unitary, is the uniform
superposition 1

2n/2 ∑2n−1
k=0 |k〉|ψj〉. Therefore, the state after the unitary is 1

2n/2 ∑2n−1
k=0 |k〉(Uk|ψj〉) =

1
2n/2 ∑2n−1

k=0 |k〉eik2πθ |ψj〉. Introducing the substitutions θ = j/2n and w = ei2π/2n
, and invoking the

phase kickback trick, the resulting state is(
1

2n/2

2n−1

∑
k=0
|k〉wjk

)
|ψj〉, (178)

which, according to Eq. (163) is equal to the (QFT2n |j〉)|ψj〉. Therefore, we can obtain |j〉 by
computing the inverse Fourier transform over the first n qubits and measuring. Also, note that |ψj〉
is left unchanged so the process can be repeated multiple times using only one copy of |ψj〉.

The rest of this section shows how to apply the c-U gate in the computational basis to transform
the state |k〉|ψj〉 into the state |k〉eik2πθ |ψj〉, as shown in the circuit of Eq. (177). First, we write k in
binary (k = ∑n

l=1 2n−lkl). So, we obtain:

1
2n/2

2n

∑
k=1
|k〉ei2πkθ |ψj〉 =

1
2n/2

1

∑
k1=0
· · ·

1

∑
kn=0
|k1 · · · kn〉ei2π ∑n

l=1 kl2n−lθ |ψj〉,

=
1

2n/2

n⊗
l=1

1

∑
kl=0

ei2π jkl2−l |kl〉|ψj〉,

=
1

2n/2

n⊗
l=1

(|0〉|ψj〉+ |1〉ei2π j2−l |ψj〉),

=
1

2n/2 (|0〉|ψj〉+ |1〉ei2π j2−1 |ψj〉)⊗ · · · ⊗ (|0〉|ψj〉+ |1〉ei2π j2−n |ψj〉),

=
1

2n/2 (|0〉|ψj〉+ |1〉ei2πθ2n−1 |ψj〉)⊗ · · · ⊗ (|0〉|ψj〉+ |1〉ei2πθ20 |ψj〉).

(179)

According to Eq. (179), the circuit to implement the c-U gate in the computational basis is, as
follows:

|0〉

H⊗n

• · · ·

QFT−1
|0〉 · · · •

· ·· ·· ·
|0〉 · · · •
|ψj〉 U2n−1 · · · U21

U20

Figure 47: Circuit for quantum phase estimation.

Now, substituting j = ∑n
m=1 jm2n−m, we obtain:

1
2n/2

2n

∑
k=1
|k〉ei2πkθ |ψj〉 =

1
2n/2 ⊗

n
l=1 ei2πkl ∑n

m=1 jm2(n−l−m) |kl〉|ψj〉. (180)

Therefore,

1
2n/2

2n

∑
k=1
|k〉ei2πkθ |ψj〉 =

1
2n/2 ⊗

n
l=1

(
|0〉+ |1〉ei2π ∑n

m=n−l+1 jm2(n−l−m)
)
|ψj〉,

= QFT2n |j〉|ψj〉,
(181)
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where the second line of Eq. (181) is obtained by comparing the first line to Eq. (175).

Probability of Success in Phase Estimation

For an arbitrary value of θ –i.e., regardless of whether θ is a multiple of 1/2n) or not, we obtain
that the state after the unitary is 1

2n/2 ∑2n−1
k=0 |k〉(Uk|ψj〉) = 1

2n/2 ∑2n−1
k=0 |k〉ei2πkθ |ψj〉, and the inverse

Fourier transform applied to the first n-qubts gives the output state,

1
2n

2n−1

∑
k=0

2n−1

∑
l=0
|l〉ei2πk(θ−l/2n)|ψj〉. (182)

Therefore, the probability of measuring the first n-qubits in state |l〉 = |j〉 is

Pj =

∣∣∣∣∣ 1
2n

2n−1

∑
k=0

ei2πk(θ−j/2n)

∣∣∣∣∣
2

. (183)

Clearly, when θ = j′/2n, Pj = δjj′ . More generally (i.e., when θ is not a multiple of 1/2n), using the
geometric series ∑2n−1

k=0 xk = (x2n − 1)/(x− 1), we obtain:

Pj =

∣∣∣∣∣ 1
2n

(ei2π2n(θ−j/2n) − 1)
(ei2π(θ−j/2n) − 1)

∣∣∣∣∣
2

,

=
1

22n

∣∣∣∣∣ (ei2π(2nθ−j) − 1)
(ei2π(θ−j/2n) − 1)

∣∣∣∣∣
2

,

=
1

22n
a2

b2 ,

(184)

where θ = j/2n + ε, so a = ei2π2nε − 1, and b = ei2πε − 1. Here, ε is the difference between the
phase θ and the best possible n-bit approximation j/2n, so 0 < ε < 1/2n.

Representing ei2π2nε and ei2πε in the complex plane, as shown in Fig. 48, we find that 2π|ε|2n/a ≤
π/2 since that ratio is maximum for 2π|ε|2n = π, for which a = 2 (Fig. 48, left). In addition, we
find that 2π|ε| ≥ b (Fig. 48, right). Substituting these inequalities into Eq. (184), we obtain:

Figure 48: Left: The ratio of the arc length 2π|ε|2n (in blue) to the chord length a (in red) is maximum and
equal to π/2 for 2π|ε|2n = π, for which the chord a = 2. Right: The ratio of the arc length 2π|ε| to the
chord length b is always larger than 1.
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Pj =
1

22n
a2

b2 ,

≥ 1
22n

(4|ε|2n)2

(2π|ε|)2 =
4

π2 > 0.4.
(185)

Therefore, the probability of measuring all n bits of j correctly (such that |j/2n − θ| ≤ 2−n) is
higher the 40%. In addition, since both the first and second closest multiple of 2−n are within 2−n

of the actual value to be determined, the phase is estimated within an error of 1/2n with probability
8

π2 > 0.8.
Next, we address the probability pr(|m − j| > k) of measuring a value m beyond the k2−n

accuracy, as defined by set of 2k multiples of 2−n closer to j, shown in Fig. 49:

pr(|m− j| > k) =
−k

∑
l=−2n−1+1

Pj+l +
2n−1

∑
l=k+1

Pj+l , (186)

with Pl+j defined according to Eq. (184), with θ = j/2n + ε:

Pl+j =
1

22n

∣∣∣∣∣ (ei2π(2nε−l) − 1)
(ei2π(ε−l/2n) − 1)

∣∣∣∣∣
2

. (187)

Figure 49: j
2n is the multiple of 1

2n nearest to θ, surrounded by the nearer 2k values m
2n such that |m− j| ≤ k.

Bounds: An expression for pr based on Eq. (186) has been reported [J. M. Chappell et al.]. Here,
we use an upper bound of Eq. (187), according to the standard approach (Nielsen and Chuang,
p. 224), by considering that the numerator |ei2π(2nε−l) − 1| ≤ 2, while for the denominator we note
that |eiφ − 1| = |eiφ/2 − e−iφ/2| = 2|sin(φ/2)| ≥ 2|φ|/π, when 0 < φ < π (since

∣∣∣sin
(

φ
2

)∣∣∣ ≥∣∣∣ φ
2

∣∣∣ 2
π ). In particular, when φ = 2π(ε − l/2n), we find |eiφ − 1| ≥ 4|(ε − l/2n)|. We note that

−π ≥ φ = 2π(ε− l/2n) ≥ π since −2n−1 + 1 ≤ l ≤ 2n−1. So, substituting l by its upper bound
2n−1 we find 2π(ε− 2−1) ≤ 2π(ε− l/2n) –i.e., −π ≤ 2π(ε− l/2n). Analogously, substituting l
by its lower bound −2n−1 + 1 we find 2π(ε− l/2n) ≤ 2π(ε + 2−1 − 1/2n), and since ε < 2−n, we
obtain 2π(ε− l/2n) ≤ π.

Substituting |ei2π(2nε−l) − 1| ≤ 2 and |ei2π(ε−l/2n) − 1| > 4(ε− l/2n) into Eq. (188), we obtain:

Pl+j <
1

22n

∣∣∣∣ 1
2(ε− l/2n)

∣∣∣∣2 . (188)
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Substituting Eq. (188) into Eq. (186), we obtain:

pr(|m− j| > k) ≤ 1
4

(
−k

∑
l=−2n−1+1

1
(2nε− l)2 +

2n−1

∑
l=k+1

1
(2nε− l)2

)
,

<
1
4

(
−k

∑
l=−2n−1+1

1
l2 +

2n−1

∑
l=k+1

1
(l − 1)2

)
,

<
1
4

(
k

∑
l̃=2n−1−1

1
l̃2

+
2n−1−1

∑̃
l=k

1
l̃2

)
,

(189)

where the second line is obtained by using 2nε < 1. In the third line, we introduced the variable
transformation l̃ = −l for the first sum, and l̃ = (l − 1) for the second sum. Therefore,

pr(|m− j| > k) <
1
2

2n−1−1

∑
l=k

1
l2 ,

<
1
2

∫ 2n−1−1

k−1
dl

1
l2 <

1
2

∫ ∞

k−1
dl

1
l2 ,

<
1

2(k− 1)
.

(190)

According to Eq. (190), it is clear that the phase is estimated within an error of k/2n with probability
at least as high as pr(|m− j| < k) = 1− 1

2(k−1) .
Therefore, to estimate θ up to the first r bits (with r < n) –i.e., with an accuracy of 2−r, we

choose k ≤ 2n−r − 1. Using n = r + p qubits in the first register, the probability of estimating θ
within the desired error margin is at least 1− 1

2(k−1) = 1− 1
2(2p−2) = 1− pr. Solving for p in terms

of pr, we obtain: p = log2(2 +
1

2pr ). Therefore, the number of qubits necessary to estimate θ with
accuracy of 2−r and probability of success higher than 1− pr is n = r + log2(2 +

1
2pr ).

Probabilistic Algorithm: As shown above, the probability of measuring all n bits of j correctly
(such that |j/2n − θ| ≤ 2−n) is higher the 40%. Here, we show that a probabilistic algorithm can
increase that probability by running the calculations with more bits, taking the most commonly oc-
curring outcome and round it to n bits of precision. In fact, the probability of getting the correct n
bits with that algorithm approaches 100 % exponentially fast with the number of times the proce-
dure is repeated. The tools necessary to show the capabilities of probabilistic algorithms are the
following bounds, or inequalities, of the tails of probability distributions.

Markov’s inequality: The Markov’s inequality is based on the first moment E(x) of a distribution of
a random variable x, as follows:

P(x ≥ ε) ≤ E(x)
ε

, (191)

indicating that the probability P(x ≥ ε) of sampling x ≥ ε in the upper tail of the distribution is
always less or equal than the average value E(x) divided by ε. To prove Eq. (191), we consider
that E(x) = P(x ≥ ε)E(x ≥ ε) + P(x ≤ ε)E(x ≤ ε), with E(x ≤ ε) ≥ 0 and E(x ≥ ε) ≥ ε.
Therefore, E(x) ≥ P(x ≥ ε)ε, as shown in Eq. (191).

Substituting ε = αE(x), into Eq. (191), we obtain another equivalent form of Markov’s inequal-
ity:

P(x ≥ αE(x)) ≤ 1
α

. (192)
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Chebyshev inequality: Introducing into Eq. (191) the substitution x = (y − E(y))2 with E(x) =
E((y− E(y))2) = σ2(y), and ε = α2, we obtain:

P((y− E(y))2 ≥ α2) ≤ σ2(y)
α2 , (193)

or

P(|y− E(y)| ≥ α) ≤ σ2(y)
α2 , (194)

so
P (|y− E(y)| ≥ ασ(y)) ≤ 1

α2 , (195)

which is known as the Chebyshev inequality based on the second moment σ(y) of the distribution
of the random variable y.

Chernoff Bounds: Here, we obtain sharper bounds (specifically, exponential bounds rather than
polynomial bounds as those based on the first and second moments of the distribution) by ad-
dressing the particular case of a random variable x defined as the sum of independent random
bits xj = {0, 1} with equal probabilities pj = p that xj = 1. A simple example is a sequence
of measurements j = 1, · · · n, with probability pj that the j-th measurement provides the correct
output (e.g., the result within a given range). So, x = ∑j xj and E(x) = ∑j pj = np.

According to Eq. (191), P(y ≥ ε) ≤ E(y)
ε , so introducing the variable transformation y = etx

with t > 0 and ε = eta, we obtain:

P(etx ≥ eta) ≤ E(etx)

eta ,

P(x ≥ a) ≤ e−ta ∏
j

E(etxj),
(196)

giving a bound for the upper tail of the probability distribution.
When all independent measurements j have the same probability of success (i.e., xj = 1), the

variables are called Bernoulli random variables x1, · · · , xn with pj = p ≥ 0, and we obtain:

E[etxj ] = pet + (1− p),

= 1 + p(et − 1),

≤ ep(et−1) = 1 + p(et − 1) + · · · ,

(197)

with et > 1.
For any δ > 0, defining t = ln(1 + δ) > 0, we obtain:

E[etxj ] < epδ, (198)

and
e−ta =

1
(1 + δ)a . (199)

Substituting Eqs. (198) and (199) into Eq. (196), with a = (1 + δ)np, where n is an arbitrary
integer, we obtain:

P(x ≥ (1 + δ)np) <
enpδ

(1 + δ)(1+δ)np
=

[
eδ

(1 + δ)(1+δ)

]np

. (200)
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Considering that for this case E(x) = np, we obtain the upper tail Chernoff bound (Theorem A.1.4
in Kaye-Laflamme-Mosca Introduction to Quantum Computing):

P(x ≥ (1 + δ)E(x)) <
[

eδ

(1 + δ)(1+δ)

]E(x)

. (201)

Another form of the upper tail Chernoff bound can be found by taking the logarithm of the r.h.s. of
Eq. (201) and using the inequality log(1 + δ) ≥ δ/(1 + δ/2), we obtain:

E(x)(δ− (1 + δ)log(1 + δ)) ≤ − E(x)δ2

(2 + δ)
, (202)

which allows us to obtain a more convenient (although looser bound) than Eq. (201) by exponen-
tiating, as follows:

P(x ≥ (1 + δ)E(x)) < e−
E(x)δ2

(2+δ) . (203)

Analogously, we can obtain a Chernoff bound for the lower tail of the probability distribution by
introducing the random variable y = e−tx with t > 0 and substituting into the Markov’s inequality
P(y ≥ ε) ≤ E(y)

ε given by Eq. (196), with ε = e−ta:

P(e−tx ≥ e−ta) = P(x ≤ a) ≤ E(e−tx)

e−ta ,

≤ eta ∏
j

E(e−txj),
(204)

Defining t = −ln(1− δ) > 0, we obtain:

e−ta = (1− δ)a. (205)

and

E[e−txj ] = pe−t + (1− p),

= 1 + p(e−t − 1),

≤ ep(e−t−1).

(206)

Substituting Eqs. (205) and (206) into Eq. (204), with a = (1− δ)np, we obtain:

P(x ≤ (1− δ)np) ≤ E(e−tx)

e−ta ,

≤ enp(e−t−1)

(1− δ)(1−δ)np
,

≤
[

e(1−δ)−1

(1− δ)(1−δ)

]np

,

≤
[

e−δ

(1− δ)(1−δ)

]np

.

(207)

Another form of the Chernoff bound for the lower tail can be obtained by taking the log of the r.h.s.
of Eq. (207) and using the inequality ln(1− δ) ≥ δ(δ/2− 1)/(1− δ), when 0 ≤ δ ≤ 1, we obtain:

np(−δ− (1− δ)ln(1− δ)) ≤ np(−δ− δ(1− δ)(δ/2− 1)/(1− δ)),

≤ −npδ2/2.
(208)
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Exponentiating both sides of Eq. (208), we obtain:[
e−δ

(1− δ)(1−δ)

]np

≤
[

e−
δ2
2

]np

, (209)

and substituting into Eq. (207), we obtain (Theorem A.1.3 in Kaye-Laflamme-Mosca Introduction
to Quantum Computing):

P(x ≤ (1− δ)np) ≤
[

e−
δ2
2

]np
(210)

Practical Application: The Chernoff bound, introduced by Eq. (210), can be used to show that the
probability of failure (i.e., the probability that the algorithm gives an answer outside the desired
error range from the expected value) is reduced exponentially (i.e., as γn with 0 < γ < 1, and n
the number of times the algorithm is repeated with the same input). Therefore, we can amplify the
success probability of a bounded-error algorithm simply by repeating the algorithm.

Considering that the probability of success of a single trial is p = 1/2 + β/2, with 0 < β < 1,
the number of times the algorithm is expected to provide the correct answer in n trials is E(x) =
np = n

2 (1 + β). Defining δ = β/(1 + β) and substituting into Eq. (210), we obtain:

P(x ≤ n
2
) ≤ e−

β2n
4(1+β) = γn, (211)

with γ = e−
β2

4(1+β) . Eq. (211) gives the probability that the correct answer is obtained in fewer than
50 % of the times after n trials. Therefore, obtaining the correct answer more that 50 % of the
times with probability higher than 1− ε requires n to be sufficiently large so that γn < ε, as follows:

e−
nβ2

4(1+β) < ε,

n >
4(1 + β)

β2 ln
(

1
ε

)
.

(212)

Coin bias estimation: The Chernoff bounds are useful for all kinds of probabilistic calculations, be-
yond the problem of phase estimation. Perhaps the simplest example is the problem of estimating
the bias of a coin, as determined by a slight curvature (Fig. 50), so it lands with heads facing up
more often than 50 % of the times (i.e., with probability p = 1/2 + β/2, with 0 < β < 1). So the
problem is: how many times n do we need to toss the coin to determine the bias within δ with
probability higher than 1− ε?

Figure 50 shows that, after tossing the coin n times, j is the integer nearest to the expectation
value n̄h = n(1 + β)/2. Therefore, j gives the best possible estimator of the bias β, as follows:
E(β) = (2j− n)/n, with probability that j of the n times shows heads facing up:

P(n)
j =

(
n
j

)
pj(1− p)n−j. (213)

According to Eq. (212), when n > 4(1+β)
β2 ln

( 1
ε

)
, we will obtain heads up for more than half of

the times (i.e., j > n/2), with probability at least 1− ε.
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Figure 50: Top: Bent penny with probability of landing with heads up > 50%. Bottom: Possible number of
heads up nh = 0− n, upon tossing the penny n times, with n̄h the expectation value of nh, determined by
the bias β, and j the integer nearest to n̄h.

17.3 Period Finding

The Fourier transform of a periodic superposition state | f 〉 = ∑n−1
j=0 αj|j〉, with period r, is a periodic

superposition | f̃ 〉 = ∑n−1
j=0 β j|j〉 with period n/r. A particular example is the function with only one

non-zero coefficient per period (i.e., a total of n/r non-zero coefficients), αj =
√ r

n , for j = k jr, with
k j = 0, 1, 2, · · · , n/r− 1, so that | f 〉 =

√ r
n ∑n/r−1

k j=0 |k jr〉. The discrete Fourier transform of | f 〉 is

QFT(n)
n
r−1

∑
k=0

√
r
n
|kr〉 =

n
r−1

∑
k=0

√
r
n

1√
n

n−1

∑
l=0

wlkr|l〉,

=

n
r−1

∑
k=0

√
r
n

1√
n

r−1

∑
j=0

wnjk|j n
r
〉+

n
r−1

∑
k=0

√
r
n

1√
n ∑

l′
wl′kr|l′〉,

(214)

where j = lr/n while l′ is not a multiple of n/r. Therefore, the second term is zero since

∑
n
r−1
k=0 wl′rk = 0. Considering that wn = 1, we obtain:

QFT(n)
n
r−1

∑
k=0

√
r
n
|kr〉 =

√
1
r

r−1

∑
l=0
|l n

r
〉. (215)

Therefore, measurements of the resulting superposition state after applying the Fourier transform
provide equally probable indices ln/r with l = 0, 1, 2, · · · , r − 1. The minimum common factor
divisor of all outcomes is n/r which provides the period r since n is known.

We note that the particular state discussed in this subsection (i.e., a superposition state with
only one non-zero coefficient per period) could be prepared by measuring the ancilla bits prepared
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in state | f (x)〉 when the state of the circuit is in the superposition state |ψ〉 = 2−n/2 ∑x∈{0,1}n |x〉| f (x)〉,
as right after applying the unitary of the function in the following circuit:

|0〉

QFT

U f

QFT

= y1
 |y〉|0〉 = y2

· · · · ·· · · · ·· · · · ·
|0〉 = yn

|0〉
}
| f (x)〉· · · ·· · · ·· · · ·

|0〉
|0〉 |0〉
|0〉 |0〉

Figure 51: Quantum circuit for determining the period of f (x) by first preparing a superposition state with
only one non-zero coefficient per period in the first n qubits, by measuring the n ancilla bits prepared in
state f (x), when the first n working bits are in a uniform superposition. The subsequent QFT then generates
a state with non-zero coefficients for those strings with indices that are n/r periodic.

We note that a measurement reporting a value of the function f (xj) would leave the state in
the superposition,

|ψ〉 =
√

r
n

n
r−1

∑
k=0
|xj + kr〉| f (xj)〉, (216)

for which the Fourier transform of the first n-bits is shift-invariant (Property 1). Therefore,

QFT(n)
√

r
n

n
r−1

∑
k=0
|xj + kr〉| f (xj)〉 = QFT(n)

√
r
n

n
r−1

∑
k=0
|kr〉| f (xj)〉,

=

√
1
r

r−1

∑
l=0
|l n

r
〉| f (xj)〉.

(217)

At this point we must mention that, according to the so-called principle of deferred measurement,
it is not even necessary to measure f (x) since measuring commutes with conditioning (i.e., a
measurement can be replaced by a CNOT with with an acilla that is measured at the end).

17.4 Shor’s Algorithm

The goal of this section is to explain Shor’s algorithm for finding the prime factors of an integer N,
as applied to finding the prime factors 7 and 3 of N = 21.

Shor’s algorithm is essentially the period finding algorithm, discussed in the previous section,
applied for the specific case of the function f (x) = mx(mod N), where m is a random integer
m < N. As an example, we choose m = 2 and we evaluate f (x) for x = 1, 2, 3, · · · , as shown in
the table below, by considering that f (x) is the remainder of mx

N , or mx = Nq + f (x), where q is an
integer.
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x 2x f (x)
0 1 1
1 2 2
2 4 4
3 8 8
4 16 16
5 32 11
6 64 1
7 128 2
8 256 4
9 512 8
10 1024 16
11 2048 11
12 4096 1

· · ·

We note that f (x) is a single-valued periodic function, with period r = 6 that could be efficiently
resolved by the period finding algorithm described in the previous section (Fig. 51). Having found
the period r, we know that 1 = 2r(mod 21), or 1 = y2(mod 21) with y = 2r/2 = 23 = 8. Therefore,
1 = 82(mod 21), or 82 = 1(mod 21). So, by period finding we found that y = 8 is a non-trivial
root of unity (mod N), since 82 = 1(mod 21) and (8 + 1) · (8− 1) = 0(mod 21). So, we find that
21 divides (8 + 1) · (8− 1), although it is not divided either (8 + 1) or (8− 1). How could this be
possible? Well, by writing 21 in terms of its prime factors, we find that 21 = 3 · 7, so 3 divides (8+ 1)
and 7 divides (8− 1) (i.e., the prime factors of N are the greatest common divisors gcd(N, y + 1)
and gcd(N, y− 1) which can be found very efficiently by Euclid’s algorithm. The algorithm has a
success rate of at least 50% since r is even number half of the times and occasionally, we find that
gcd(N, m) > 1 (i.e., we find a prime factor for free through the Euclid’s algorithm). If r is odd, we
fail, since we cannot find y, so we need to pick another random number m and try again.
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18 State Initialization

18.1 Quantum Multiplexors

In this section we consider the task of generating a quantum circuit with n = 3 qubits to transform
the vacuum state |000〉 into an arbitrary state |ψ〉 defined by the array of 8 expansion coefficients
cjkl, by using quantum multiplexors using 2× 4n − (2n + 3)× 2n + 2n CNOT gates:

|ψ〉 = ∑
l,j,k∈{0,1}

cl jk|l jk〉, (218)

where ∑l,j,k c∗l jkcl jk = 1. We first note that |ψ〉 can be rewritten, as follows:

|ψ〉 = |0〉 ∑
j,k∈{0,1}

c0jk|jk〉+ |1〉 ∑
j,k∈{0,1}

c1jk|jk〉, (219)

with |0〉 =
[

1
0

]
, and |1〉 =

[
0
1

]
. Analogously, we obtain:

|ψ〉 =
[

∑j,k∈{0,1} c0jk|jk〉
∑j,k∈{0,1} c1jk|jk〉

]
,

=


|ρ00〉
|ρ01〉
|ρ10〉
|ρ11〉

 =


∑k∈{0,1} c00k|k〉
∑k∈{0,1} c01k|k〉
∑k∈{0,1} c10k|k〉
∑k∈{0,1} c11k|k〉

 ,

=



c000
c001
c010
c011
c100
c101
c110
c111


,

(220)

where |ρjk〉 = cjk0|0〉+ cjk1|1〉 are one-qubit states. Next, we apply the diagonal matrix R defined
by the rotations Rjk = Ry(−θjk)Rz(−ϕjk), so that Rjk

∣∣ρjk
〉
= rjkeitjk |0〉 = c̃jk |0〉 to obtain

R00 0 0 0
0 R01 0 0
0 0 R10 0
0 0 0 R11

 |ψ〉 =


r00eit00 |0〉
r01eit01 |0〉
r10eit10 |0〉
r11eit11 |0〉

 . (221)

Therefore,

R|ψ〉 =


c̃00
c̃01
c̃10
c̃11

⊗ |0〉. (222)
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Note that by factorization of the vacuum state corresponding to the least significant digit, we have
effectively transformed the array of 8 expansion coefficients cjkl into an array of 4 expansion co-
efficients c̃jk. These define the one qubit states |ρ̃j〉 = c̃j0|0〉 + c̃j1|1〉, which can be rotated, as
follows: R̃j

∣∣ρ̃j
〉
= r̃jeit̃j |0〉 = ˜̃cj |0〉. Therefore,

(R̃⊗ I)U|ψ〉 =
[ ˜̃c0

˜̃c1

]
⊗ |00〉. (223)

Figure 52: Top: Circuit for state initialization. Mid-
dle: Demultiplexing multiplexed rotation R = R†

y,
R†

z . Bottom: Decomposition of two-qubit multi-
plexor.

The array of 2 expansion coefficients ˜̃cj de-
fine the one-qubit state | ˜̃ρ〉 = ˜̃c0|0〉 + ˜̃c1|1〉
which can be rotated, as follows: ˜̃R | ˜̃ρ〉 =
˜̃rei ˜̃t |0〉 = ˜̃̃c |0〉, so ( ˜̃R ⊗ I ⊗ I)(R̃ ⊗ I)R|ψ〉 =
˜̃̃c|000〉. Having obtained the matrices that
transform |ψ〉 into |000〉, we can now build the
circuit to obtain the target state |ψ〉 = ˜̃̃cR†(R̃†⊗
I)( ˜̃R† ⊗ I ⊗ I)|000〉, as shown in Fig. 52.

The bottom panel of Figure 52 shows the
two-qubit circuit of the multiplexor R̃−1

M =

R̃−1
1 ⊕ R̃−1

0 that applies the matrix R̃−1
0 to the

least significant qubit when the more signifi-
cant qubit is |0〉 and R̃−1

1 when the more signif-
icant is |1〉. Considering that the more signifi-
cant qubit is initially in state |φ〉 = c0|0〉+ c1|1〉,
and the least significant qubit in state |ψ〉, the
multiplexor is applied as follows: R̃−1

M (c0|0〉 +
c1|1〉)|ψ〉 = c0|0〉R̃−1

0 |ψ〉+ c1|1〉R̃−1
1 R̃0R̃−1

0 |ψ〉).
Therefore,

R̃−1
M |φ〉|ψ〉 = c0|0〉R̃−1

0 |ψ〉+ c1|1〉R̃−1
1 |ψ〉.

(224)
Note that the decomposition of the gate

A = R̃−1
1 R̃0 = eitRz(α)Ry(β)Rz(γ), and its cor-

responding controlled gate circuit in terms of
Ry and Rz rotations, are universal for any sin-
gle qubit gate A. For our particular applica-
tion, R̃0 = {Ry(θ0), Rz(ϕ0)} and R̃1 = {Ry(θ1), Rz(ϕ1)}. For example, when R̃0 = Ry(−θ0) and
R̃1 = Ry(−θ1), with α = 0, γ = 0, t = 0, with β = θ1 − θ0, we obtain: R̃−1

0 Rz(γ)Ry(β/2) =

Ry((θ0 + θ1)/2), Ry(−β/2)Rz(−(α + γ)/2) = Ry((θ0 − θ1)/2), eit/2 = I, Rz(t) = I and
Rz((α− γ)/2) = I.

Figure 53: Circuits for demultiplexing R†
y, and R†

z
multiplexors.

Analogously, when R̃0 = Rz(−ϕ0) and
R̃1 = Rz(−ϕ1), with α = γ = (ϕ1 − ϕ0)/2
with β = 0, we obtain: R̃−1

0 Rz(γ)Ry(β/2) =
Rz((ϕ0 + ϕ1)/2), Ry(−β/2)Rz(−(α+γ)/2) =
Rz((ϕ0 − ϕ1)/2), eit/2 = I, Rz(t) = I and
Rz((α− γ)/2) = I.
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18.2 Uniformly Controlled Rotations

In this section we consider the task of using uniformly controlled rotations to generate a quantum
circuit with 3 qubits (n = 3) that transforms the vacuum state |000〉 into the arbitrary state |ψ〉
introduced by Eq. (219) using of 2n+2 − 4n − 4 CNOT gates and 2n+2 − 5 one-qubit elementary
rotations.

Figure 54: Top: Uniformly controlled rotation
Fk

m(a, α) where M = 2k. Bottom: Efficient im-
plementation of the uniformly controlled rotation
F3

4 (a, α) with 2k = 8 CNOT gates, as a sequence
of controlled rotations Ra(αj), defined by Eq. (225),
with distinct angles αj for each of the 2k = 8 possible
control bit sequences, specified by bm and gm defining
the binary code and binary reflected Gray code repre-
sentations of the integer m, respectively.

A uniformly controlled rotation Fk
m(a, α) is

defined by k controlled qubits, the target qubit
m, the rotation axis a, and the angles α. It is
implemented as a sequence of controlled rota-
tions Ra(αj), with a specific angle αj for each of
the 2k possible control bit sequences, as shown
in Fig. 54, where

Ra(αj) = eia·σαj/2

= I2×2cos(αj/2) + i(a · σ)sin(αj/2),
(225)

with a · σ = axσx + ayσy + azσz.
For state initialization, we transform |ψ〉 =

(|c1|eiω1 , |c2|eiω2 , . . . , |c8|eiω8)T into the state
|0〉 = (1, 0, · · · , 0)T, as follows. First, we apply
a sequence of uniformly controlled z-rotations,

Ξz =
n

∏
j=1

Fj−1
j (z, αz

n−j+1)⊗ I2n−j , (226)

with n = 3 to equalize the phases ωj
and obtain a state vector of real valued
amplitudes up to a global phase Ξz|ψ〉 =
eiΩ(|c1|, |c2|, . . . , |cN |)T, with N = 2n. Here, the
rotation angles are found to be

αz
j,k = 2−(k−1)

2k−1

∑
l=1

(ω(2j−1)2k−1+l −ω(2j−2)2k−1+l),

(227)
where j = 1, 2, . . . , 2n−k and k = 1, 2, . . . n.

Next, we apply a sequence of uniformly controlled y-rotations,

Ξy =
n

∏
j=1

Fj−1
j (y, α

y
n−j+1)⊗ I2n−j , (228)

with {αy
j } = {2 asin(|a2j|/

√
|a2j−1|2 + |a2j|2)}. Applying Fn−1

n , we obtain ΞyeiΩ(|c1|, |c2|, . . . , |c8|)T =

eiΩ(
√
|c1|2 + |c2|2, 0,

√
|c3|2 + |c4|2, 0, . . . ,

√
|cN−1|2 + |cN |2, 0)T. Therefore, ΞyeiΩ(|c1|, |c2|, . . . , |c8|)T =

eiΩ(
√
|c1|2 + |c2|2,

√
|c3|2 + |c4|2, . . . ,

√
|cN−1|2 + |cN |2)T ⊗ (1, 0)T. Applying the whole sequence

of uniformly controlled y-rotations, we obtain: ΞyΞz|ψ〉 = ei ∑N
j=1 ωj/N |1, 0, . . . , 0〉.
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19 Appendix I: Golden Rule

The goal of this section is to introduce the so-called Fermi Golden Rule expression,

Γ =
2π

h̄

∫ ∞

−∞
dE f ρ(E f )|〈 f |Â|i〉|2δ(E f − (Ei + h̄w)), (229)

giving the rate of decay of a system initially prepared in state |i〉 due to coupling with states | f 〉,
with density of states ρ(E f ), as described by first-order time dependent perturbation theory.

We consider a system initially prepared in state |i〉. At time t = 0, we turn on the perturbation
W(t) and we analyze the decay to the final state | f 〉, as described by first order time-dependent
perturbation theory:

c f (t) = −
i
h̄

∫ t

0
dt′〈 f |Ŵ(t′)|i〉e i

h̄ (E f−Ei)t′ , (230)

Therefore, the probability of observing the system in the final state is

Pf i(t) =
1
h̄2

∫ t

0
dt′′

∫ t

0
dt′〈i|Ŵ∗(t′′)| f 〉〈 f |Ŵ(t′)|i〉e i

h̄ (E f−Ei)(t′−t′′), (231)

19.1 Monochromatic Plane Wave

Assuming that the perturbation involves a single frequency component, Ŵ(t′) = Âe−iwt′ , we ob-
tain:

c f (t) = 〈 f |Â|i〉
[1− ei(w f i−w)t]

h̄(w f i −ω)
,

= − i
h̄

t〈 f |Â|i〉ei(w f i−w)t/2 sin[(w f i − w)t/2]
(w f i −ω)t/2

.

(232)

Therefore, the probability of observing the system in the final state is

Pf i(t) =
t2

h̄2 |〈 f |Â|i〉|
2 sin2[(w f i − w)t/2]

[(w f i −ω)t/2]2
. (233)

To compute the survival probability that the system remains in the initial state, we must add up the
probability over all possible final states,

P(t) = 1− t2

h̄2 ∑
f
|〈 f |Â|i〉|2

sin2[(w f i − w)t/2]
[(w f i −ω)t/2]2

= 1− t2

h̄2

∫ ∞

−∞
dE f ρ(E f )|〈 f |Â|i〉|2

sin2[(w f i − w)t/2]
[(w f i −ω)t/2]2

(234)

If the very short time limit, P(t) = exp(−αt2) ≈ 1− αt2 + · · · , where

α = lim
t→0

1
h̄2

∫ ∞

−∞
dE f |〈 f |Â|i〉|2ρ(E f )

sin2[(E f − Ei − h̄w)t/(2h̄)]
[(E f − Ei − h̄w)t/(2h̄)]2

,

=
1
h̄2

∫ ∞

−∞
dE f |〈 f |Â|i〉|2ρ(E f ),

(235)
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In the longer time limit, the kernel of Eq. (234) is approximated as the delta function to obtain:

P(t) = 1− t
h̄2

∫ ∞

−∞
d(tE f )ρ(E f )|〈 f |Â|i〉|2πδ((E f t− (Ei + h̄w)t)/(2h̄))

= 1− t
2π

h̄

∫ ∞

−∞
dξρ(ξ2h̄/t)|〈 f |Â|i〉|2δ(ξ − (Ei + h̄w)t/(2h̄))

= 1− t
2π

h̄
ρ(Ei + h̄w)|〈Ei + h̄w|Â|i〉|2

(236)

so P(t) = exp(−Γt) ≈ 1− Γt + · · · , where

Γ =
2π

h̄
ρ(Ei + h̄w)|〈Ei + h̄w|Â|i〉|2,

=
2π

h̄

∫ ∞

−∞
dE f ρ(E f )|〈 f |Â|i〉|2δ(E f − (Ei + h̄w)),

(237)

or as a discrete sum over states,

Γ =
2π

h̄ ∑
f
|〈 f |Â|i〉|2δ(E f − Ei − h̄w), (238)

which is known as Fermi’s Golden rule.
Without introducing the approximation of the kernel of Eq. (234), we obtain:

P(t) = 1− t2

h̄2

∫ ∞

−∞
dE f ρ(E f )|〈 f |Â|i〉|2

sin2[(w f i − w)t/2]
[(w f i −ω)t/2]2

= 1− t
2
h̄

∫ ∞

−∞
dE f ρ(E f )

t
2h̄
|〈 f |Â|i〉|2

sin2((E f − Ei − h̄w)t/(2h̄))
((E f − Ei − h̄ω)t/(2h̄))2

= 1− t
2
h̄

∫ ∞

−∞
dξρ(ξ2h̄/t)|〈 f |Â|i〉|2 sin2(ξ − (Ei + h̄w)t/(2h̄))

(ξ − (Ei + h̄ω)t/(2h̄))2

= 1− t
2
h̄

∫ ∞

−∞
dξρ(ξ2h̄/t)|〈 f |Â|i〉|2 sin2(ξ)

ξ2

(239)

which gives, in the time-range when the decay is exponential (i.e., P(t) = exp(−Γt) ≈ 1− Γt),

Γ =
2
h̄

∫ ∞

−∞
dξρ(ξ2h̄/t)|〈 f |Â|i〉|2 sin2(ξ)

ξ2 ,

=
2
h̄

∫ ∞

−∞
dE f ρ(E f )|〈 f |Â|i〉|2

sin2((E f − Ei − h̄w)t/(2h̄))
(E f − Ei − h̄ω)2t/(2h̄)

.
(240)

Substituting the delta function in Eq. (238) by its integral form, we obtain:

Γ f i =
1
h̄2

∫ ∞

−∞
dt〈 f |Â|i〉〈i|Â| f 〉e i

h̄ (E f−Ei−h̄w)t,

=
1
h̄2

∫ ∞

−∞
dt〈 f |e i

h̄ Ĥt Âe−
i
h̄ Ĥt|i〉〈i|Â| f 〉e−iwt,

=
1
h̄2

∫ ∞

−∞
dte−iwt A f i(t)Ai f (0),

=
1
h̄2

∫ ∞

−∞
dte−iwt A f i(t)Ai f (0).

(241)
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The equilibrium ensemble average is

〈Γ f i〉 =
1
h̄2

∫ ∞

−∞
dte−iwt ∑

α

pα〈α|A f i(t)Ai f (0)|α〉,

=
1
h̄2

∫ ∞

−∞
dte−iwt〈A f i(t)Ai f (0)〉,

=
[1 + e−βh̄ω]−1

h̄2

∫ ∞

−∞
dte−iwt〈[A f i(t)Ai f (0) + A f i(0), Ai f (t)]〉,

(242)

where pα = Z−1e−βEα with Z = ∑α e−βEα .
The rest of this subsection shows that, according to Eq. (242), 〈Γ f i〉 can be written as follows:

〈Γ f i〉 =
[1 + e−βh̄ω]−1

h̄2

∫ ∞

−∞
dte−iwt〈[A f i(t)Ai f (0) + A f i(0), Ai f (t)]〉, (243)

where the symmetrized correlation function C(t) = A f i(t)Ai f (0) + A f i(0), Ai f (t) is real, and is
an even function of time just like its classical analogue correlation function. Therefore, Eq. (243)
has often been used for estimations of 〈Γ f i〉 based on classical simulations. However, it has been
pointed out by Berne and co-workers that the classical version of C(t) underestimates 〈Γ f i〉 by a
factor of (βh̄ω/2)coth(βh̄ω/2) [J. Chem. Phys. (1994) 100: 8359-8366].

The derivation of the last line of Eq. (243) is as follows:

〈Γ f i〉 =
1
h̄2

∫ ∞

−∞
dte−iwt ∑

α,γ
pα〈α|A f i(t)|γ〉〈γ|Ai f (0)|α〉,

=
1
h̄2

∫ ∞

−∞
dte−iwt [1 + e−βh̄ω]

[1 + e−βh̄ω]
∑
α,γ

pα〈α|A f i(t)|γ〉〈γ|Ai f (0)|α〉,

=
2π

h̄
1

[1 + e−βh̄ω]
∑
α,γ

pα〈α|A f i(0)|γ〉〈γ|Ai f (0)|α〉δ(Eγ − Eα − h̄ω)[1 + e−βh̄ω],

=
2π

h̄
1

[1 + e−βh̄ω]
∑
α,γ

pα〈α|A f i(0)|γ〉〈γ|Ai f (0)|α〉δ(Eγ − Eα − h̄ω)[1 + e−β(Eγ−Eα)],

=
[1 + e−βh̄ω]−1

h̄2

∫ ∞

−∞
dte−iwt ∑

α,γ
pα〈α|A f i(t)|γ〉〈γ|Ai f (0)|α〉[1 + e−β(Eγ−Eα)],

=
[1 + e−βh̄ω]−1

h̄2

∫ ∞

−∞
dte−iwt

[
∑
α,γ

pα〈α|A f i(t)|γ〉〈γ|Ai f (0)|α〉

+∑
α,γ

pα〈α|A f i(t)|γ〉〈γ|Ai f (0)|α〉e−β(Eγ−Eα)

]
,

=
[1 + e−βh̄ω]−1

h̄2

∫ ∞

−∞
dte−iwt

[
∑
α,γ

pα〈α|A f i(t)|γ〉〈γ|Ai f (0)|α〉

+∑
α,γ

pγ
pα

pγ
〈γ|Ai f (0)|α〉〈α|A f i(t)|γ〉e−β(Eγ−Eα)

]
,

(244)
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〈Γ f i〉 =
[1 + e−βh̄ω]−1

h̄2

∫ ∞

−∞
dte−iwt

[
∑
α,γ

pα〈α|A f i(t)|γ〉〈γ|Ai f (0)|α〉+ ∑
α,γ

pγ〈γ|Ai f (0)|α〉〈α|A f i(t)|γ〉
]

,

=
[1 + e−βh̄ω]−1

h̄2

∫ ∞

−∞
dte−iwt ∑

α,γ
pα

[
〈α|A f i(t)|γ〉〈γ|Ai f (0)|α〉+ 〈α|Ai f (0)|γ〉〈γ|A f i(t)|α〉

]
,

=
[1 + e−βh̄ω]−1

h̄2

∫ ∞

−∞
dte−iwt ∑

α

pα

[
〈α|A f i(t)Ai f (0) + Ai f (0)A f i(t)|α〉

]
,

=
[1 + e−βh̄ω]−1

h̄2

∫ ∞

−∞
dte−iwt〈[A f i(t)Ai f (0) + Ai f (0)A f i(t)]〉,

=
[1 + e−βh̄ω f i ]−1

h̄2

∫ ∞

−∞
dte−iwt〈[A f i(t)Ai f (0) + Ai f (0)A f i(t)]〉,

(245)
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20 Appendix II: Coherent States

The goal of this section is to introduce coherent states |α〉, as discussed in the quantum optics
community for descriptions of states of coherent light as eigenstates of the anihilation operator:

â|α〉 = α|α〉, (246)

where α is a complex number. A coherent state simply has a precise phase, defined by the
complex amplitude α, although an indefinite number of photons as in a laser beam. In contrast, a
state with a fixed number of photons usually has completely arbitrary (random) phase.

The rest of this section shows that we can create coherent states, as follows:

D̂(α)|0〉 = |α〉, (247)

where |0〉 is the vacuum state defined as the ground state of the harmonic oscillator, and D̂ is the
displacement operator, defined as follows:

D̂(α) = eαâ†−α∗ â,

= eαâ†
e−α∗ âe−

1
2 |α|2 ,

(248)

The second row is obtained from the first one, making use of the Hausdorff formula eA+B =

eAeBe−
1
2 [A,B], with A = αâ† and B = −α∗ â, which is valid if [A, [A, B]] = [B, [A, B]] = 0 as in this

case. Note that [A, B] = −|α|2[â†, â] = |α|2 since [â†, â] = −1.
We also note that the inverse must be

D̂(α)−1 = e
1
2 |α|2 eα∗ âe−αâ†

,

= e−
1
2 |α|2 e−αâ†

eα∗ â = D̂(−α),
(249)

since D̂(α)−1D̂(α) = 1. The second row of Eq. (249) is obtained from the first one since

eα∗ âe−αâ†
= e−αâ†

eα∗ âe−|α|
2
. (250)

Note that multiplying both sides of Eq. (250) by eαâ†
e−α∗ â = D̂(α)e

1
2 |α|2 , we obtain:

1 = D̂(α)e
1
2 |α|2 D̂(−α)e

1
2 |α|2 e−|α|

2
.

1 = 1.
(251)

Therefore, according to Eq. (249),

D̂(α)−1 = D̂(−α) = D̂(α)†. (252)

The Backer Campbell Hausdorff relation,

eABe−A = B + [A, B] +
1
2
[A, [A, B]] + · · · , (253)

can be used with A = −αâ† + α∗ â, and B = â to show that

D̂(α)† âD̂(α) = â + α, (254)
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since [A, B] = [−αâ† + α∗ â, â] = α, and therefore [A, [A, B]] = 0. Applying Eq. (254) to the vacuum
state |0〉, we obtain:

D̂(α)† âD̂(α)|0〉 = α|0〉, (255)

since â|0〉 = 0, or
âD̂(α)|0〉 = αD̂(α)|0〉, (256)

since D̂(α)† = D̂(α)−1. Therefore, according to Eq. (246),

D̂(α)|0〉 = |α〉, (257)

which is Eq. (247).
Substituting Eq. (248) into Eq. (257), we obtain:

|α〉 = e−
1
2 |α|2 eαâ†

e−α∗ â|0〉, (258)

and expanding the exponentials in Taylor series (i.e., eA = ∑∞
n=0

1
n ! An, with â|0〉 = 0), we obtain:

|α〉 = e−
1
2 |α|2

∞

∑
n=0

αn

n!
(â†)n|0〉,

= e−
1
2 |α|2

∞

∑
n=0

αn
√

n!
|n〉,

(259)

where in the second row, we used â|n〉 =
√

n + 1|n + 1〉.

20.1 Overlap

Here, we show that coherent states are not orthogonal since according to Eq. (259), we obtain:

〈β|α〉 = e−
1
2 |α|2 e−

1
2 |β|2

∞

∑
n=0

∞

∑
m=0

(β∗)mαn
√

m!n!
〈m|n〉,

= e−
1
2 |α|2 e−

1
2 |β|2

∞

∑
n=0

(β∗)nαn

n!

= e−
1
2 |α|2 e−

1
2 |β|2 eβ∗α,

= e−
1
2 |β−α|2 e

1
2 (β∗α−βα∗)

(260)

20.2 Closure

Here, we show that

1
π

∫
|α〉〈α| d2α = 1 (261)

by substituting |α〉 according to Eq. (259), as follows:∫
|α〉〈α| d2α =

∫
e−|α|

2
∞

∑
m=0

∞

∑
n=0

αn
√

n!
|n〉 (α

∗)m
√

m!
〈m| d2α,

=
∞

∑
m=0

∞

∑
n=0
|n〉〈m|

∫
e−|α|

2 αn
√

n!
(α∗)m
√

m!
d2α

(262)
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Now, we transform to polar coordinates: α = reiθ, with d2α = rdrdθ:∫
|α〉〈α| d2α =

1√
m!n!

∞

∑
m=0

∞

∑
n=0
|n〉〈m|

∫ ∞

0
dr e−r2

rm+n+1
∫ 2π

0
dθei(n−m)θ

=
∞

∑
n=0

1
n!
|n〉〈n| 2π

∫ ∞

0
dr e−r2

r2n+1
(263)

where the second row is obtained considering that∫ 2π

0
dθei(n−m)θ = 2πδnm (264)

Introducing the variable substitution y = r2 in Eq. (263), with dy = 2rdr, we obtain:∫
|α〉〈α| d2α =

∞

∑
n=0

1
n!
|n〉〈n| π

∫ ∞

0
dy e−y yn (265)

and considering that ∫ ∞

0
dy e−y yn = n! (266)

we obtain ∫
|α〉〈α| d2α =

∞

∑
n=0
|n〉〈n| π

= π.
(267)

20.3 Wavefunctions

The wavefunctions can be obtain by substituting into Eq. (259) the eigenfunctions of the Harmonic
oscillator,

〈x|n〉 = (2nn!)−1/2
( ω

πh̄

)1/4
exp(−ξ2/2)Hn(ξ), (268)

where ξ = x
√

ω/h̄, with Hn the n-Hermite polynomial, giving

〈x|α〉 =
( ω

πh̄

)1/4
e−

1
2 |α|2

∞

∑
n=0

(α/
√

2)n

n!
Hn(ξ),

=
( ω

πh̄

)1/4
e−

1
2 |α|2 e

1
2 ξ2

e−(ξ−α/
√

2)2
.

(269)

Clearly, Eq. (269) shows that the vacuum state, corresponding to n = 0 photons has a wavefunc-
tion 〈x|0〉 that is a coherent state with α = 0 (i.e., the ground state of a harmonic oscillator with
mass m = 1 and frequency ω).

20.4 Expectation Values

We note that the average number of photons in a coherent state |α〉 is given by the square of the
complex amplitude |α|2 (the intensity of the wave) since

〈N〉 = 〈α|â† â|α〉,
= 〈α|α∗α|α〉,
= α∗α.

(270)
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The probability P(n) of finding n photons is

P(n) = |〈n|α〉|2,

= e−|α|
2 |αn|2

n!
,

(271)

defined by the Poisson distribution,

P(n) =
λne−λ

n!
, (272)

with λ = |α|2.

20.4.1 Optical Equivalence Theorem

Another way of computing expectation values isby using the so-called optical equivalence theorem,
as follows:

〈Ô〉 = Tr[Ôρ̂]

=
∫

P(α) O(α∗, α) d2α,
(273)

where O(α∗, α) = 〈α|Ô|α〉 = ∑n ∑m Cnm(â†)n âm is the so-called Q-representation of the normally
ordered operator Ô = ∑n ∑m Cnm(â†)n âm (i.e., where the annihilation operators stand to the right
of the creation operators) where we replaced â and â† by a and a∗, respectively. P(α), is the
Glauber-Sudarshan P-function, defined as follows:

ρ̂ ≡
∫

P(α)|α〉〈α| d2α. (274)

The derivation of the second line of Eq. (273) is, as follows:

〈Ô〉 = Tr
[∫

P(α) Ô |α〉〈α| d2α

]
,

= ∑
n
〈n|

∫
P(α)|Ô|α〉〈α|n〉 d2α,

=
∫

P(α)〈α|Ô|α〉 d2α,

= ∑
n

∑
m

Cnm

∫
P(α)〈α|(â†)n âm|α〉 d2α,

=
∫

P(α)∑
n

∑
m

Cnm(α
∗)nαm〈α|α〉 d2α,

=
∫

P(α) O(α∗, α) d2α.

(275)

20.4.2 P-representation of the density operator

The P-representation of the density operator ρ̂ can be obtained (as shown by Mehta) by computing
〈−u|ρ̂|u〉 according to Eq. (274), as follows:

〈−u|ρ̂|u〉 =
∫

P(α)〈−u|α〉〈α|u〉d2α, (276)
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and substituting 〈α|u〉 according to Eq. (260), we obtain:

〈−u|ρ̂|u〉 =
∫

P(α)e−
1
2 |u|2−

1
2 |α|2−u∗αe−

1
2 |u|2−

1
2 |α|2+α∗ud2α,

= e−|u|
2
∫

P(α)e−|α|
2
eα∗u−u∗αd2α.

(277)

Introducing the variable substitution α = x + iy and u = x′ + iy′, we obtain

〈−u(x′, y′)|ρ̂|u(x′, y′)〉e|u(x′,y′)|2 =
∫

P(α(x, y))e−x2−y2
e(x−iy)(x′+iy′)−(x′−iy′)(x+iy)dxdy

=
∫

P(α(x, y))e−x2−y2
e−i2yx′+i2y′xdxdy

(278)

Therefore,

I(x̃, ỹ) =
1

π2

∫
dx′dy′ei2x′ ỹ−i2y′ x̃〈−u(x′, y′)|ρ̂|u(x′, y′)〉e|u(x′,y′)|2 ,

=
1

π2

∫
P(α(x, y))e−x2−y2

∫
dx′dy′e−i2(y−ỹ)x′+iy′2(x−x̃)dxdy

=
1

(2π)2

∫
P(α(x, y))e−x2−y2

∫
dx′′dy′′e−i(y−ỹ)x′′+iy′′(x−x̃)dxdy

=
∫

P(α(x, y))e−x2−y2
δ(y− ỹ)δ(x− x̃)dxdy

= P(α(x̃, ỹ))e−x̃2−ỹ2

(279)

giving

P(α(x, y)) =
ex2+y2

π2

∫
dx′dy′eix′y−iy′x〈−u(x′, y′)|ρ̂|u(x′, y′)〉e|u(x′,y′)|2 ,

P(α) =
e|α|

2

π2

∫
e−α∗u+u∗α〈−u|ρ̂|u〉e|u|2 d2u.

(280)

20.4.2.1 Pure coherent state For the pure coherent state ρ̂ = |β〉〈β|, we have that according to
Eq. (260):

〈−u|ρ̂|u〉 = e−
1
2 |−u−β|2 e

1
2 (−u∗β+uβ∗)e−

1
2 |β−u|2 e

1
2 (β∗u−βu∗)

= e−|u|
2
e−|β|

2
euβ∗−u∗β

(281)

Therefore, substituting Eq. (281) into Eq. (280), we obtain:

P(α) =
e|α|

2

π2

∫
e−α∗u+u∗αe−|u|

2
e−|β|

2
euβ∗−u∗βe|u|

2
d2u,

=
e|α|

2
e−|β|

2

π2

∫
e−α∗u+u∗αeuβ∗−u∗β d2u,

=
e|α|

2
e−|β|

2

π2

∫
e−u(α−β)∗+u∗(α−β) d2u,

(282)
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and considering that u = x′ + iy′, we obtain:

P(α) =
e|α|

2
e−|β|

2

π2

∫
ei 2x′ I(α−β)−i 2y′ R(α−β) dx′ dy′,

=
e|α|

2
e−|β|

2

(2π)2

∫
ei x′′ I(α−β)−i y′′ R(α−β) dx′′ dy′′,

= e|α|
2
e−|β|

2
δ(I(α− β)) δ(R(α− β)),

= δ(I(α− β)) δ(R(α− β)) = δ2(α− β),

(283)

Note that P(α) of a pure coherent state coincides with the classical density of a pure state. There-
fore, coherent states are classical-like quantum states.

20.4.2.2 Pure number state The P-representation of a pure number state, ρ̂ = |n〉〈n|, is obtained
as follows:

〈−u|ρ̂|u〉 = 〈−u|n〉〈n|u〉,

= e−|u|
2 un

n!
(−u∗)n,

(284)

where in the second row we substituted 〈n|u〉 according to Eq. (259), as follows:

〈n|u〉 = e−
1
2 |u|2 un
√

n!
, (285)

Therefore, substituting Eq. (284) into Eq. (280), we obtain:

P(α) =
e|α|

2

π2

∫
e−α∗u+u∗α〈−u|ρ̂|u〉e|u|2 d2u,

=
e|α|

2

π2

∫
e−α∗u+u∗αe−|u|

2 (−uu∗)n

n!
e|u|

2
d2u,

=
e|α|

2

n! π2

∫
e−α∗u+u∗α(−uu∗)n d2u,

=
e|α|

2

n! π2
∂2n

∂nα∂nα∗

∫
e−α∗u+u∗α d2u,

(286)

which according to Eq. (283) gives

P(α) =
e|α|

2

n!
∂2n

∂nα∂nα∗
δ2α, (287)

that is the so-called tempered distribution function which operates only as the argument of an
integral, as follows: ∫

d2α F(α∗, α)
∂2n

∂nα∂nα∗
δ2α =

∂2nF(α∗, α)

∂αn∂nα∗

∣∣∣∣
α=0,α∗=0

(288)

103



20.4.3 P-representation of operators

The P-representation of an operator Ô(â†, â), analogous to the diagonal coherent-state represen-
tation of the density operator introduced by Eq. (274), involves the P-function PO(α

∗, α) which is
defined, as follows:

Ô ≡
∫

PÔ(α
∗, α) |α〉〈α| d2α (289)

The expectation value 〈Ô〉 can then be calculated, as follows:

〈Ô〉 = Tr[Ôρ̂],

= ∑
n

∫
PÔ(α

∗, α) 〈n|α〉〈α|ρ̂|n〉 d2α,

=
∫

PÔ(α
∗, α) ∑

n
〈α|ρ̂|n〉〈n|α〉 d2α,

=
∫

PÔ(α
∗, α) 〈α|ρ̂|α〉 d2α,

=
∫

Qρ̂(α) PÔ(α
∗, α) d2α,

(290)

where Qρ̂(α) = 〈α|ρ̂|α〉 is the Q-representation of ρ̂, which can be defined in terms of the Husimi
function Q(α) = π−1〈α|ρ̂|α〉, which is Q(α) = π−1|〈ψ|α〉|2 for a pure state ρ̂ = |ψ〉〈ψ|.

In particular, when Ô = |n〉〈n|, we obtain:

Tr[ρ̂ |n〉〈n|] =
∫

Qρ̂(α) P|n〉〈n|(α
∗, α) d2α, (291)

where P|n〉〈n|(α∗, α) is defined according to the tempered function introduced by Eq. (287),

P|n〉〈n|(α
∗, α) =

e|α|
2

n!
∂2n

∂nα∂nα∗
δ2α (292)

giving

Tr[|n〉〈n|ρ̂] =
∫

Qρ̂(α)
e|α|

2

n!
∂2n

∂nα∂nα∗
δ2α d2α,

=
∂2nF(α∗, α)

∂αn∂nα∗

∣∣∣∣
α=0,α∗=0

(293)

with F(α∗, α) defined according to Eqs. (288) and (293), as follows:

F(α∗, α) = Qρ̂(α)
e|α|

2

n!
(294)

.

20.5 Dynamics

The dynamical properties of a coherent-state in a harmonic well of frequency ω can be described
by the time-dependent correlation function,

〈α|â(t)† â|α〉 = |α|2eiωt, (295)
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where â(t) = e
i
h̄ Ĥt âe−

i
h̄ Ĥt, and |α〉 = ∑∞

n=0 e−
|α|2

2 αn
√

n!
|n〉.

To confirm Eq. (295), we note that Ĥ|n〉 = En|n〉, with En = h̄ω(n + 1/2), so e−
i
h̄ Ĥt|α〉 =

∑∞
n=0 e−

|α|2
2 αn
√

n!
e−

i
h̄ Ent|n〉. Further, â|n〉 =

√
n|n− 1〉, so we obtain

â(t)|α〉 = e
i
h̄ Ĥt âe−

i
h̄ Ĥt|α〉 =

∞

∑
n=0

e−
|α|2

2
αn
√

n!
e−

i
h̄ (En−En−1)t

√
n|n− 1〉,

= α
∞

∑
n=0

e−
|α|2

2
αn
√

n!
e−iωt|n〉,

= αe−iωt|α〉.

(296)

Therefore, â|α〉 = α|α〉, and computing the adjoint we obtain 〈α|â(t)† = α∗〈α|eiωt, giving 〈α|â(t)† â|α〉 =
|α|2eiωt, which is Eq. (295).

Numerical Simulation: The dynamics of a harmonic oscillator and its absorption spectrum can be
simulated by the following python script. Analogously, the simulation of a 2-dimensional harmonic
oscillator in a 2-level system can be simulated with qutip with the following or python script or
notebook python script.

Note: Install QuTiP by following the installation instructions:

conda create -n qutip-env python=3
conda install numpy scipy cython matplotlib pytest pytest-cov jupyter notebook spyder
conda config --append channels conda-forge
conda install qutip

Remember to work with QuTiP in that environment by running

conda activate qutip-env

20.6 Parity Operator

We define the parity operator, as follows:

Π̂ =
∞

∑
j=0
|2j〉〈2j| −

∞

∑
j=0
|2j + 1〉〈2j + 1|,

= eiπâ† â,

(297)

where states |2j〉 and |2j + 1〉 in the first row of Eq. (297) are eigenstates of the number operator
N̂ = â† â with eigenvalues 2j and 2j + 1, respectively. Note that both expressions of Π̂, introduced
by Eq. (297), change the sign of an eigenstate of the number operator when the occupation
number is odd, and leave the eigenstate unchanged if the occupation is even. Consequently,
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when applied to a coherent-states,

Π̂|α〉 = e−
|α|2

2

∞

∑
n=0

αn
√

n!
Π̂|n〉

= e−
|α|2

2

∞

∑
n=0

αn
√

n!
(−1)n|n〉

= e−
|α|2

2

∞

∑
n=0

(−α)n
√

n!
|n〉

= | − α〉.

(298)
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21 Appendix III: Second Quantization Mapping

The goal of this section is to introduce the single-particle basis {ψν1(r), ψν2(r), ψν3(r), · · · } for
representation of the N-particle state Ψ(r1, r2, · · · , rN) in terms of symmetrized product states
Ŝ±∏N

j=1 ψνj(rj), and its correspondence to the occupation number representation |nν1 , nν2 , nν3 , · · · 〉,
where nνj is the number of particles in state ψνj(r) in the product state representation. Further-
more, we introduce the creation â†

j and anihilation âj operators (i.e., operators that raise or lower
the occupation numbers nνj by one unit) and we show that any single particle operator Â can be
expressed in terms of â†

j and âj, as follows: Â = ∑νj,νk
Aνj,νk â†

j âk, with Aνj,νk = 〈νj|Â|νk〉.

21.1 Single-Particle Basis

The state of the N-particle system Ψ(r1, r2, · · · , rN) can be represented in a complete orthonormal
basis composed of single-particle states {ψνj(r)}, satisfying that

∑
νj

ψνj(r
′)∗ψνj(r) = δ(r′ − r), (299)

and ∫
dr ψνj(r)

∗ψνk(r) = δνjνk . (300)

To represent Ψ(r1, r2, · · · , rN), we first project the state along the basis set of r1, as follows:

Ψ(r1, r′2, · · · , r′N) = ∑
ν1

ψν1(r1)
∫

dr′1ψν1(r
′
1)
∗Ψ(r′1, r′2, · · · , r′N), (301)

and then we proceed analogously with the other coordinates, so we obtain:

Ψ(r1, r2, · · · , rN) = ∑
ν1,··· ,νN

cν1,··· ,νN

N

∏
j=1

ψνj(rj), (302)

with

cν1,··· ,νN =
∫

dr′1ψν1(r
′
1)
∗ · · ·

∫
dr′NψνN (r

′
N)
∗Ψ(r′1, r′2, · · · , r′N). (303)

While the product states ∏N
j=1 ψνj(rj) form a complete basis for the N-particle Hilbert space, they

do not necessarily fulfill the indistinguishability requirement of bosons (or fermions) so they need to
be symmetrized (or anti-symmetrized). Applying the bosonic symmetrization Ŝ+ (or the fermionic
anti-symmetrization Ŝ−) operator, we obtain linear combinations of product states with the proper
symmetry to describe systems of N-bosons (or fermions), according to the following normalized
permanents (or Slater determinants):

Ŝ±
N

∏
j=1

ψνj(rj) =
1

∏ν

√
nν!

1√
N!

∣∣∣∣∣∣∣∣
ψν1(r1) ψν1(r2) · · · ψν1(rN)
ψν2(r1) ψν2(r2) · · · ψν2(rN)
· · · · · · · · · · · ·

ψνN (r1) ψνN (r2) · · · ψνN (rN)

∣∣∣∣∣∣∣∣
±

,

= 〈r|ψν1 ψν2 · · ·ψνN 〉,

(304)

which are linear combinations of product states corresponding to all possible permutation on the
set of N coordinates. Each term of the Slater determinant has a sign (−1)p, corresponding to the
number of permutations p, while the bosonic permanent terms are all sign-less.
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21.2 Occupation Number Basis

The product states, introduced by Eq. (304), are linear combinations of occupied single-particle
states. The occupation number representation |nν1 , nν2 , nν3 , · · · 〉, simply lists the number of par-
ticles nνj in each occupied state νj, with ∑j nνj = N. Such states are eigenstates of the number
operators,

n̂νk |nν1 , nν2 , nν3 , · · · 〉 = nνk |nν1 , nν2 , nν3 , · · · 〉. (305)

For fermions, nνk = 0, 1 while for bosons nνk = 0, 1, 2, · · · is a positive integer.

21.3 Creation and Anihilation Operators

Bosons: The creation and anihilation operators of bosons, b̂†
j and b̂j, are defined to ensure that the

number operator n̂νj = b̂†
j b̂j gives the number of bosons in state νj as follows:

n̂νj |nν1 , nν2 , · · · nνj , · · · 〉 = nνj |nν1 , nν2 , · · · nνj , · · · 〉, (306)

and raise or lower the occupation of that state, as follows:

b̂†
j |nν1 , nν2 , · · · nνj , · · · 〉 = B+(nνj)|nν1 , nν2 , · · · (nνj + 1), · · · 〉,

b̂j|nν1 , nν2 , · · · nνj , · · · 〉 = B−(nνj)|nν1 , nν2 , · · · (nνj − 1), · · · 〉,
(307)

where B+(nνj) and B−(nνj) are normalization constants. We further demand that the occupation
number of an unoccupied state (e.g., nνj = 0) cannot be further reduced, which is equivalent
to demand that b̂j|nν1 , nν2 , · · · 0, · · · 〉 = 0. Furthermore, we define the normalization constants
B+(0) = 1 and B−(1) = 1 so that

b̂†
j |nν1 , nν2 , · · · 0, · · · 〉 = |nν1 , nν2 , · · · 1, · · · 〉,

b̂j|nν1 , nν2 , · · · 1, · · · 〉 = |nν1 , nν2 , · · · 0, · · · 〉.
(308)

Therefore,

b̂jb̂†
j |nν1 , nν2 , · · · 0, · · · 〉 = |nν1 , nν2 , · · · 0, · · · 〉,

b̂†
j b̂j|nν1 , nν2 , · · · 0, · · · 〉 = 0,

(309)

which can be summarized as b̂jb̂†
j = n̂νj + 1 and [b̂j, b̂†

j ] = 1. When j 6= k, however, [b̂j, b̂†
k ] = 0,

or generally [b̂j, b̂†
k ] = δjk. Also, [b̂j, b̂k] = [b̂†

j , b̂†
k ] = 0. The normalization constants for other states

are found from Eq. (306), as follows:

〈nν1 , nν2 , · · · nνj , · · · |b̂†
j b̂j|nν1 , nν2 , · · · nνj , · · · 〉 = nνj ,

〈nν1 , nν2 , · · · nνj , · · · |b̂†
j b̂j|nν1 , nν2 , · · · nνj , · · · 〉 = B−(nνj)

2,
(310)

so B−(nνj) =
√nνj . Analogously, we obtain

〈nν1 , nν2 , · · · nνj , · · · |b̂jb̂†
j |nν1 , nν2 , · · · nνj , · · · 〉 = B+(nνj)

2,

(nνj + 1) = B+(nνj)
2,

(311)
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B+(nνj) =
√

nνj + 1. Therefore,

(b̂†
j )

nν |nν1 , nν2 , · · · 0, · · · 〉 =
√

nν!|nν1 , nν2 , · · · nν, · · · 〉. (312)

or

|nν1 , nν2 , nν3 , · · · 〉 = ∏
j

(b̂†
j )

nνj

√
nν!
|0, 0, 0, · · · 〉. (313)

Fermions: The creation and anihilation operators of fermions, ĉ†
j and ĉj, are defined to ensure that

ĉk|0〉 = 0,

ĉ†
k |0〉 = |k〉,

ĉ†
k ĉk|k1 . . . kN〉 = N|k1 . . . kN〉,
ĉ†

k |k1 . . . kN〉 =
√

N + 1|kk1 . . . kN〉,

ĉj|k1 . . . kN〉 =
1√
N

N

∑
n=1

δjn(−1)n−1|k1 . . . kn−1kn+1 . . . kN〉,

(314)

where the factor (−1)n−1 results from the n− 1 permutations that are necessary to bring kn to the
front so the operator δjn ĉj can destroy it. Note that the only possible eigenvalues of the number
operator are nj = {0, 1} since

N̂j|k1 . . . kN〉 = ĉ†
j ĉj|k1 . . . kN〉,

= ĉ†
j

1√
N

N

∑
n=1

δjn(−1)n−1|k1 . . . kn−1kn+1 . . . kN〉,

=
N

∑
n=1

δjn(−1)n−1|k jk1 . . . kn−1kn+1 . . . kN〉,

=
N

∑
n=1

δjn|k1 . . . kN〉,

(315)

when j ∈ {1, N}. Otherwise, ĉ†
j ĉj|k1 . . . kN〉 = ĉ†

j 0 = 0.
Furthermore, the fermionic states must be antisymmetric (i.e., Slater determinants) since they

change sign upon permutation of two fermions, as follows: |klk j〉 = −|k jkl〉. Therefore, the creation
operators of fermions anticommute,

[ĉj, ĉl ]+ = 0, for j 6= l.

[ĉ†
j , ĉ†

l ]+ = 0, for j 6= l,
(316)

where [Â, B̂]+ = ÂB̂ + B̂Â, since |k jkl〉 = ĉ†
j ĉ†

l |0〉 = −ĉ†
l ĉ†

j |0〉 = −|klk j〉.
In addition, we show that [ĉj, ĉ†

l ]+ = δjl, as follows:

ĉj ĉ†
l |k1 . . . kN〉 = ĉj

√
N + 1|lk1 . . . kN〉,

=
1√

N + 1

[
√

N + 1δjl |k1 . . . kN〉+
√

N + 1
N

∑
n=1

δjn(−1)n|lk1 . . . kn−1kn+1kN〉
]

,

(317)

109



Now, we change the order of the creation and annihilation operators, as follows:

ĉ†
l ĉj|k1 . . . kN〉 = ĉ†

l
1√
N

N

∑
n=1

(−1)n−1δjn|k1 . . . kn−1kn+1 . . . kN〉,

= −
N

∑
n=1

(−1)nδjn|lk1 . . . kn−1kn+1 . . . kN〉,
(318)

so adding Eqs. (317) and (318), we obtain:

(ĉ†
l ĉk + ĉk ĉ†

l )|k1 . . . kN〉 = δkl |k1 . . . kN〉. (319)

Therefore,

[ĉ†
l , ĉk]+ = δjk. (320)

21.3.0.1 Comparison to spin-1/2 ladder operators: The spin-1/2 operators acting on a site j of a
1-dimensional spin chain are defined, as follows:

σ+
j = σx

j + iσy
j ,

σ−j = σx
j − iσy

j ,
(321)

where

σx
j =

[
0 1
1 0

]
, σ

y
j =

[
0 −i
i 0

]
, (322)

so

σ+
j =

[
0 2
0 0

]
, σ−j =

[
0 0
2 0

]
, (323)

and, therefore, S±j = 1
2 σ±j transform the spinors α and β, as follows:

S+
j α =

[
0 1
0 0

] [
0
1

]
=

[
1
0

]
= β, S+

j β =

[
0 1
0 0

] [
1
0

]
=

[
0
0

]
= 0, (324)

and

S−j α =

[
0 0
1 0

] [
0
1

]
=

[
0
0

]
= 0, S−j β =

[
0 0
1 0

] [
1
0

]
=

[
0
1

]
= α, (325)

So, the commutation relations of the operators S+
j and S−j of spin j in the 1-dimensional lattice

resemble those of fermions ĉ†
j and ĉj since

[S−j , S+
j ]+ = I,

[S±j , S±j ]+ = 0,
(326)

just like [ĉj, ĉ†
j ]+ = I, [ĉj, ĉj]+ = 0, and [ĉ†

j , ĉ†
j ]+ = 0. However, in contrast to fermions, spins at

different sites of the 1-dimensional lattice are independent of each other, so they commute with
each other [S−j , S+

k ] = 0, when j 6= k, while fermions anti-commute: [ĉj, ĉ†
k ]+ = 0.
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21.3.0.2 Jordan-Wigner fermionization: The Jordan-Wigner transformation is essentially a trans-
formation of the operators of 1/2-spins (qubits) in a 1-dimensional lattice into operators that fulfill
the commutation relations of fermions by multiplication of the spin-1/2 operators by the so-called
string operator, e±iφ̂j , with φ̂j = π ∑

j−1
k=1 S+

k S−k , as follows:

S̃†
j = eiφ̂j S+

j ,

S̃j = e−iφ̂j S−j ,

S̃z
j = S+

j S−j −
1
2

.

(327)

Note that
e±iφ̂j = Πj−1

k=1e±iπS+
k S−k = Πj−1

k=1(1− 2S+
k S−k ) = Πj−1

k=1(−σz
k ), (328)

since, according to Eq. (323), Sz
j = σz

j /2 = S+
j S−j − 1/2. We can also invert Eq. (327) to write the

spin operators in terms of fermionic operators (considering that S̃†
j S̃j = S+

j S−j ), as follows:

S+
j = S̃†

j e−iπ ∑
j−1
k=1 S̃†

k S̃k ,

S−j = S̃jeiπ ∑
j−1
k=1 S̃†

k S̃k ,

Sz
j = S̃†

j S̃j −
1
2

.

(329)

Next, we show that the fermionized spin-1/2 operators S̃†
j and S̃j fulfill the anti-commutation

relations of fermions:

[S̃†
j , S̃†

l ]+ = 0,

[S̃j, S̃l ]+ = 0,

[S̃†
j , S̃l ]+ = δjl .

(330)

First, we analyze the commutation properties of the string operator.
Note that eiπS+

j S−j = 1− 2S+
j S−j commutes with any eiπS+

k S−k = 1− 2S+
k S−k . Therefore,

[eiφ̂j , eiφ̂k ] = 0, for all k, j. (331)

Furthermore, eiπS+
j S−j anti-commutes with S−j and S+

j ,

[eiπS+
j S−j , S−j ]+ = 0,

[eiπS+
j S−j , S+

j ]+ = 0,
(332)

since [S+
j , S−j ]+ = 1, so S+

j (1− 2S+
j S−j ) + (1− 2S+

j S−j )S
+
j = S+

j ((1− 2S+
j S−j )− (1− 2S+

j S−j )) =
0, and S−j (1 − 2S+

j S−j ) + (1 − 2S+
j S−j )S

−
j = (1 − 2(1 − S+

j S−j ))S
−
j + (1 − 2S+

j S−j )S
−
j = −(1 −

2S+
j S−j )S

−
j + (1− 2S+

j S−j )S
−
j = 0.

In addition, the phase factor eiπS+
j S−j = 1− 2S+

j S−j commutes with S+
k and S−k for k 6= j,

[eiπS+
j S−j , S±k ] = 0, for k 6= j. (333)

111

https://en.wikipedia.org/wiki/Jordan\begingroup \let \relax \relax \endgroup [Pleaseinsert\PrerenderUnicode{–}intopreamble]Wigner_transformation


since [S±j , S±k ] = 0 when k 6= j.
Therefore, combining the commutation relations of Eqs. (332) and (333), we show below that

the string operator eiφ̂j = ∏
j−1
l=1(1− 2S+

l S−l ) anti-commutes with any S+
k and S−k with k < j:

[eiφ̂j , S±k ]+ = 0, for k < j. (334)

For S+
k , consider that eiφ̂j = ÂB̂, with Â = ∏

j−1
l 6=k(1− 2S+

l S−l ) and B̂ = (1− 2S+
k S−k ), with [Â, S±k ] = 0

and [B̂, S±k ]+ = 0. Therefore, [ÂB̂, S+
k ]+ = ÂB̂S+

k + S+
k ÂB̂ = ÂB̂S+

k + ÂS+
k B̂ = Â[B̂, S+

k ]+ = 0.
Analogously, considering that [Â, S−k ] = 0 and [B̂, S−k ]+ = 0, we obtain [ÂB̂, S−k ]+ = ÂB̂Sk +

S−k ÂB̂ = ÂB̂S−k + ÂS−k B̂ = Â[B̂, S−k ]+ = 0.
Also, according to Eq. (333), it is clear that the string operator eiφ̂j = ∏

j−1
l=1(1− 2S+

l S−l ) com-
mutes with any S+

k and S−k with k ≥ j, since l 6= k for all l = (1, j− 1):

[eiφ̂j , S±k ] = 0, for k ≥ j. (335)

Now, we can show that [S̃†
j , S̃†

k ]+ = 0, when j 6= k. First, we consider the case k > j ([eiφ̂j , S±k ] =

0, and [eiφ̂k , S±j ]+ = 0),

[S̃†
j , S̃†

k ]+ = eiφ̂j S+
j eiφ̂k S+

k + eiφ̂k S+
k eiφ̂j S+

j ,

= eiφ̂j eiφ̂k(−S+
j S+

k + S+
k S+

j ) = 0,
(336)

since [S+
k , S+

j ] = 0. Next, for k < j ([eiφ̂j , S±k ]+ = 0, and [eiφ̂k , S±j ] = 0),

[S̃†
j , S̃†

k ]+ = eiφ̂j S+
j eiφ̂k S+

k + eiφ̂k S+
k eiφ̂j S+

j ,

= eiφ̂j eiφ̂k(S+
j S+

k − S+
k S+

j ) = 0.
(337)

Finally, we show that [S̃j, S̃†
k ]+ = δjk, as follows. First, when j = k, the phase factors cancel, so

[S̃j, S̃†
j ]+ = [S−j , S+

j ]+ = I. Furthermore, for k < j ([e−iφ̂j , S±k ]+ = 0, and [eiφ̂k , S±j ] = 0),

[S̃j, S̃†
k ]+ = e−iφ̂j S−j eiφ̂k S+

k + eiφ̂k S+
k e−iφ̂j S−j ,

= e−iφ̂j eiφ̂k(S+
j S+

k − S+
k S+

j ) = 0.
(338)

Analogously, for k > j ([e−iφ̂j , S±k ] = 0, and [eiφ̂k , S±j ]+ = 0),

[S̃j, S̃†
k ]+ = e−iφ̂j S−j eiφ̂k S+

k + eiφ̂k S+
k e−iφ̂j S−j ,

= e−iφ̂j eiφ̂k(−S+
j S+

k + S+
k S+

j ) = 0.
(339)

21.4 Operators in Second Quantization

In this subsection we show that any single particle operator Â can be expressed in terms of b̂†
j

and b̂j, as follows: Â = ∑νj,νk
Aνj,νk b̂†

j b̂k, with Aνj,νk = 〈νj|Â|νk〉. As an example of a single particle

112



operator, we consider the kinetic energy T̂ = ∑N
k=1 T̂k, with T̂k =

p̂2
k

2mk
:

〈r|T̂|ψν1 ψν2 · · ·ψνN 〉 = ∑
νj

〈r|ψνj〉〈ψνj |T̂|ψν1 ψν2 · · ·ψνN 〉

= ∑
νj

〈r|ψνj〉
N

∑
k=1
〈ψνj |T̂k|ψν1 ψν2 · · ·ψνN 〉

= ∑
νj

〈r|ψνj〉
N

∑
k=1
〈ψνj |T̂k|ψνk〉〈r|b̂νk |ψν1 ψν2 · · ·ψνN 〉

=
N

∑
k=1

∑
νj,νl

〈r|ψνj〉δνl ,νk Tνj,νl 〈r|b̂νk |ψν1 ψν2 · · ·ψνN 〉

=
N

∑
k=1

∑
νj,νl

δνl ,νk Tνj,νl 〈r|b̂†
νj

b̂νk |ψν1 ψν2 · · ·ψνN 〉

(340)

Therefore,

T̂
[
b̂†

ν1
· · · b̂†

νN
|0〉
]
=

N

∑
k=1

∑
νj,νl

δνl ,νk Tνj,νl b̂
†
νj

b̂νk b̂†
ν1
· · · b̂†

νN
|0〉

=
N

∑
k=1

∑
νj,νl

δνl ,νk Tνj,νl b̂
†
νj

n̂νk

nνk

b̂νk b̂†
ν1
· · · b̂†

νN
|0〉

=
N

∑
k=1

∑
νj,νl

δνl ,νk Tνj,νl

b̂†
νj

b̂νk

nνk

[
b̂†

νk
b̂νk b̂†

ν1
· · · b̂†

νN
|0〉
]

= ∑
νj,νl

Tνj,νl

N

∑
k=1

δνl ,νk

b̂†
νj

b̂νk

nνk

[
b̂†

ν1
· · · b̂†

νN
|0〉
]

= ∑
νj,νl

Tνj,νl b̂
†
νj

b̂νl

N

∑
k=1

δνl ,νk

nνk

[
b̂†

ν1
· · · b̂†

νN
|0〉
]

= ∑
νj,νl

Tνj,νl b̂
†
νj

b̂νl

1
nνl

N

∑
k=1

δνl ,νk

[
b̂†

ν1
· · · b̂†

νN
|0〉
]

= ∑
νj,νl

Tνj,νl b̂
†
νj

b̂νl

[
b̂†

ν1
· · · b̂†

νN
|0〉
]

(341)

Therefore,

T̂ = ∑
νj,νl

Tνj,νl b̂
†
νj

b̂νl . (342)

Analogously, any 2-particle operator V̂ such as the pair-wise additive potential,

V̂ =
1
2

N

∑
j=1

∑
k 6=j

V(xj, xk), (343)

can be written in second quantization, as follows:

V̂ = ∑
νj,νi ,νl ,νk

Vνj,νi ,νl ,νk b̂†
νj

b̂†
νi

b̂νl b̂νk (344)

where Vνj,νi ,νl ,νk = 〈ψνj ψνi |V(x1, x2)|ψνl ψνk〉.
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21.5 Change of basis in Second Quantization

We consider two different complete and ordered single-particle basis sets {|ψνj〉} and {|ψµj〉} with
j = 1–N. Using the completeness relationship we can write any element of one basis set as a
linear combination of elements of the other basis set, as follows:

|ψµj〉 = ∑
k
|ψνk〉〈ψνk |ψµj〉, (345)

where |ψνk〉 = â†
νk
|0〉 and |ψµj〉 = â†

µj
|0〉. Therefore,

âµj |0〉 = ∑
k
〈ψνk |ψµj〉âνk |0〉, (346)

or
âµj = ∑

k
〈ψνk |ψµj〉âνk , (347)

and
â†

µj
= ∑

k
〈ψνk |ψµj〉∗ â†

νk
, (348)

21.6 Mapping into Cartesian Coordinates

Introducing the Cartesian operators x̃νj =
1√
2
[b̂†

νj
+ b̂νj ] and p̃νj =

i√
2
[b̂†

νj
− b̂νj ], with [x̃νj , p̃νj ] = i,

since x̃νj = x̂
√mω

h̄ , p̃νj = p̂/
√

mωh̄ and [x̂νj , p̂νj ] = ih̄, for the harmonic oscillator Hamiltonian

H =
p̂νj

2

2m
+

1
2

mω2 x̂2,

=
p̃νj

2

2m
mωh̄ +

1
2

mω2 h̄
mω

x̃νj
2,

=
h̄ω

2

[
p̃2

νj
+ x̃2

νj

]
.

(349)

Considering that

n̂νj = b̂†
νj

b̂νj ,

b̂†
νj
=

1√
2

[
x̃νj − i p̃νj

]
,

b̂νj =
1√
2

[
x̃νj + i p̃νj

]
.

(350)

we obtain,

n̂νj =
1
2
(x̃νj − i p̃νj)(x̃νj + i p̃νj)

=
1
2
(x̃2

νj
+ i[x̃νj , p̃νj ] + p̃2

νj
)

=
1
2
(x̃2

νj
+ p̃2

νj
− 1)

(351)
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and

H = h̄ω

(
n̂νj +

1
2

)
. (352)

Substituting the Cartesian expressions of bνj and b†
νj

into Eq. (342), we obtain:

T̂ =
1
2 ∑

νj,νl

Tνj,νl

[
x̃νj − i p̃νj

]
[x̃νl + i p̃νl ] ,

=
1
2 ∑

νj

Tνj,νj(x̃2
νj
+ p̃2

νj
− 1) +

1
2 ∑

νj

∑
νl 6=νj

Tνj,νl

[
x̃νj − i p̃νj

]
[x̃νl + i p̃νl ]

=
1
2 ∑

νj

Tνj,νj(x̃2
νj
+ p̃2

νj
− 1) +

1
2 ∑

νj

∑
νl 6=νj

Tνj,νl

[
x̃νj x̃νl + p̃νj p̃νl

] (353)

since [x̃νj , p̃νl ] = iδνl ,νj while [x̃νj , x̃νl ] = 0 and [ p̃νj , p̃νl ] = 0.
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22 Appendix IV: Superconducting Circuits: IBM Quantum Computer

Figure 55: Top: Schematic diagram of an LC-circuit. Bot-
tom: Simplest LC-circuit.

The LC-circuit (or resonant circuit), shown
in Fig. 55, is an electrical circuit that con-
sists of an inductor, L, connected in se-
ries with a capacitor, C (i.e., and ideal-
ized model of the RLC- circuit where the
resistance is assumed to be zero, thus
no energy dissipation). As the capacitor
starts discharging, a current is generated
and as it passes through the inductor it
generates a magnetic flux, described by
the Biot-Savart law. As the current in-
creases, the magnetic flux increases, and
that change in the magnetic flux induces a
voltage across the inductor, as described
by Faraday’s law: Vind = −dΦ/dt, that
reverts the current and recharges the ca-
pacitor. So, the charge sloshes back and
forth like a harmonic oscillator with all of
the electrons behaving as a single coordi-
nate charge carrier.

Starting with the open circuit, the ca-
pacitor can be charged with an applied
voltage V. The initial charge of the ca-
pacitor is Q = CV, where C = εa/d is
its capacitance defined by the dielectric
constant ε of the material in between the
plates, the area of the plates a and the dis-
tance d between the plates.

Upon closing the circuit, the voltage of
the capacitor V = Q/C equals the voltage across the inductor determined by Vind = −dΦ/dt,
where the time-dependent flux

Φ(t) =
∫ t

−∞
dt′V(t′)

= L i(t)
(354)

is defined by the time-dependent current i(t), and the inductance L = µ N2 A /l of the solenoid
with core magnetic permeability µ, length l, number of turns N, and area A.

We obtain the equation of motion of the time-dependent charge Q(t) =
∫ t
−∞ dt′i(t′) by using

Kirchhoff’s law of voltages (i.e., the sum of voltages around a closed loop is zero, ∑i Vi = 0):

V = Vind

Q
C

+ L
d
dt

i(t) = 0

Q
C

+ L
d2

dt2 Q(t) = 0

(355)
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and solving for Q(t), we obtain:
Q(t) = A eiω t + B e−iω t. (356)

where Q(0) = A + B and Q̇(0) = L−1Φ̇(0) = 0 = iω(A − B). So, A = B = Q(0)/2 and
Q(t) = Q(0) cos(ω t).

Equation (356) shows that the Q(t) behaves like a harmonic oscillator with resonant frequency
ω = 1/

√
L C. Equation (355) is essentially Newton’s second law: F = m a, with F = −Q/C,

m = L and a = Q̈. Therefore, the effective momentum is p = m v = L Q̇. So, the kinetic energy
is T = p2

2 m = L
2 Q̇2 and since F = −dU/dQ, the potential energy is U = Q2/(2 C), giving the

Hamiltonian,

H = T + V =
L
2

Q̇2 +
Q2

2 C
, (357)

which is essentially the Hamiltonian of a harmonic oscillator with coordinate Q and mass C. There-
fore, the energy levels of the circuit are quantized (Fig. 56, top panel), just like the energy levels of
a harmonic oscillator (or energy levels of an atom, or molecule), so these superconducting circuits
are often called artificial atoms. The resonance frequency ω0 = 1/

√
L C defines the energy level

spacing ∆E = h̄ω and can be engineered during fabrication of the device by the macroscopic di-
mension of the device since, as mentioned above, L = µ N2 A /l and C = εa/d. Note that at low
temperatures (10-15 mK), achievable with a dilution refrigerator, the population of the first excited
state is negligible. For example, when ω = 2GHz, the Boltzmann population of the first excited
state at 10 mK is e−h̄ω/(kBT) = e−10. Furthermore, the quantum state of the circuit can undergo
transitions upon interaction with an external field (usually in the microwave frequency range).

Figure 56: Schematic energy diagram of the harmonic
LC-circuit (top), compared to the anharmonic version
where the solenoid is replaced by a Josephson junc-
tion (bottom).

Another representation of the circuit Hamil-
tonian is in terms of the flux Φ(t) = L i(t),
obtained by taking the time derivative of both
sides of Eq. (355), as follows:

Q̇
C

+ L
d2

dt2 i(t) = 0,

Q̇ + C
d2

dt2 Φ(t) = 0,

Φ
L
+ C

d2

dt2 Φ(t) = 0,

(358)

which is essentially Kirchhoff’s law of currents
(i.e., the sum of input and output currents at
any node of the circuit is zero, ∑k ik = 0), with
the first term giving the current from the induc-
tor iL = Φ/L and the second term the current
to the capacitor iC = Q̇ = CV̇ = CV̈. So,
Φ(t) = sin(ω t) and i(t) = L−1 sin(ω t).

Therefore, the Hamiltonian H = T + U can
be written in terms of the flux with kinetic en-
ergy T = C

2 Φ̇2 and potential energy U = Φ2

2L , as follows: H = C
2 Φ̇2 + Φ2

2L , or H = Q2

2C + Φ2

2L , since
Eq. (358) is essentially F = m a = ṗ, with m = C, a = d2

dt2 Φ(t), F = −dU/dΦ = −Φ/L, and
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momentum p = m v = C Φ̇ = C V = Q:

H =
1

2C
(CΦ̇)2 +

1
2L

Φ2,

=
1

2C
Q2 +

1
2L

Φ2.
(359)

Therefore, the coordinate Φ and the momentum Q are conjugate variables with the usual commu-
tator of coordinates and momenta ([φ̂, Q̂] = ih̄).

Figure 57: Top: IBM 7-transmon processor.
Middle: pulsing system. Bottom: Refrigerator.

The Hamiltonian introduced by Eq. (359) can
also be written, as follows:

H = 4Ecn̂2 +
1
2

ELφ̂2, (360)

where we have introduced the reduced charge n̂ =
Q/(2e), and the phase φ̂ = 2πΦ/Φ0, with Φ0 =
h/(2e) the flux quanta, corresponding to the oper-
ators for the Josephson junction introduced below,
including the number of Cooper pairs and phase
across, as well as the charging energy Ec =

e2

2C and

the inductive energy EL =
Φ2

0
4π2L . In fact, replacing

the solenoid by a Josephson junction (a sandwich
of superconducting layers with an insulating layer in
between, such as two pieces of aluminum with a thin
layer of aluminum oxide in between) makes the so-
called transmon (i.e., a single Josephson junction
shunted by a large capacitance) which as we show
below is essentially an anharmonic version of the
LC-circuit (Figure 56, lower panel). An advantage
of the anharmonic circuit is that it allows for selec-
tive transitions between energy levels (e.g., transi-
tion between the ground state and the first excited
state) by interaction with an external field with the
characteristic frequency of the ground to the first
excited state transition, while the harmonic-LC cir-
cuit is less controllable since the same frequency
induces ∆ν = ±1 transitions for all energy levels.

22.1 Transmon: Capacitively Shunted Junction

The transmon qubit introduced by Schoelkopf,
Girvin and Devoret has been adopted by companies
such as IBM (Fig. 57), Google and Rigetti as the
so-called circuit quantum electrodynamics (cQED)
technology by analogy to the QED experiments that
manipulate transitions in real atoms by interaction
with photons in optical cavities. In fact, the trans-
mon is a modified version of the conceptually sim-
pler Cooper pair box circuit, introduced by Devoret
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(i.e., a superconducting box (’island’) connected to a superconductor reservoir by Josephson junc-
tions) as discussed in Sec. 22.4, where the Cooper pair charge states in the box are analogous to
the states of photons in an optical cavity of QED experiments. The phase conjugate to the number
of electrons is analogous to the phase of the field in the cavity.

Some advantages of cQED when compared to QED are:

1. the parameters of the artificial atoms can be engineered with great flexibility

2. many qubits can be placed in a transmission line resonator to make them all interact with
each other (Fig. 57, top panel)

3. qubits and coupling parameters are highly tunable and allow for strong coupling

We note that although the Josephson junction is made up of millions of atoms and electrons,
the electrons condense into a single collective ground state by forming Cooper pairs below the
critical temperature of the superconductor. The Cooper pairs can coherently tunnel through the
thin insulating barrier, leading to a phase difference, φ, between the macroscopic superconducting
condensate wavefunctions on each side of the barrier (i.e., the Josephson phase).

The tunneling current yields a new current-flux relationship, described by the Josephson rela-
tion,

i(t) = I0 sin φ(t), (361)

where φ(t) = 2πΦ(t)/Φ0, with Φ0 = h/2e the flux quanta and I0 the critical current of the super-
conductor set by the fabrication parameters of the junction. Note that the relationship between i(t)
and φ is non-linear, so the transmon is simply a non-linear inductor. That non-linearity leads to a
Hamiltonian for the transmon that is the Hamiltonian of an anharmonic oscillator (i.e., a Harmonic
oscillator with an additional Kerr-type nonlinear term introduced by Eq. (364)). So, the transmon
is essentially a Kerr Non-linear Resonator (KNR), as discussed in Sec. 22.2.

Transmon Hamiltonian: The equation of motion F = m a for the transmon flux, analogous to
Eq. (358), can be obtained by using Kirchhoff’s law of currents (i.e., the sum of input and output
currents at any node of a circuit is zero, ∑k ik = 0):

I0 sin(2π Φ/Φ0) + C Φ̈ = 0, (362)

where the first term is the current from the transmon and the second term is the current to the
capacitor. Therefore, the potential energy U = −I0Φ0cos(2π Φ/Φ0) is anharmonic (Fig. 56,
lower panel), and the kinetic energy is T = CΦ̇2/2 = Q2/(2C), giving the transmon Hamiltonian:

H =
Q2

2C
− I0Φ0 cos(2π Φ/Φ0),

= 4 Ec n̂2 − EJ cos φ̂,
(363)

with Ec = e2/(2C), n̂ = Q/(2e), and EJ = I0Φ0 the Josephson energy replacing the inductive
energy of the LC-circuit. Equation 363 shows that a small ratio EJ/Ec provides high anharmonicity,
while increasing EJ/Ec makes the cos φ̂ term dominate.

The comparison of eigenstates of the transmon to those of the LC circuit is provided in the
notebook vic_transmon.ipynb and vic_transmon.pdf, where the Hamiltonian is written in terms of
the annihilation operator ĉ. To obtain the expression of the Hamiltonian, we note that according
to Eq. (363), which is analogous to Eq. 359, the coordinate and momentum of the transmon
correspond to the phase φ̂ and reduced charge n̂ operators, respectively. So, we can rewrite
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them in terms of the annihilation ĉ = ∑j
√

j + 1|j〉〈j + 1| and creation ĉ† operators, as follows:

φ̂ = φzp f (ĉ + ĉ†) and n̂ = i nzp f (ĉ† − ĉ) where φzp f =
(

2Ec
EJ

)1/4
and nzp f =

(
EJ

32Ec

)1/4
.

Considering that EJ/Ec � 1, we have φ � 1, so we can expand the potential energy in Taylor
series, as follows: cosφ̂ = 1− 1

2 φ̂2 + 1
4φ̂4 + · · · to obtain:

H = −4 Ec n2
zp f (ĉ

† − ĉ)2 − EJ

(
1− 1

2 !
φ2

zp f (ĉ + ĉ†)2 +
1
4 !

φ4
zp f (ĉ + ĉ†)4 + · · ·

)
,

≈
√

8EcEJ

(
ĉ† ĉ +

1
2

)
− EJ −

Ec

12
(ĉ† − ĉ)4.

(364)

The Hamiltonian, introduced by Eq. (364) can be further simplified, as follows: (ĉ† − ĉ)2 = (ĉ†)2 +
ĉ2 − ĉ† ĉ− ĉĉ†, with [ĉ, c†] = 1. Therefore, in normal order, (ĉ† − ĉ)2 = (ĉ†)2 + ĉ2 − 2ĉ† ĉ− 1 and
(ĉ† + ĉ)4 = ((ĉ†)2 + ĉ2 − 2ĉ† ĉ − 1)((ĉ†)2 + ĉ2 − 2ĉ† ĉ − 1). Keeping terms with the same power
of ĉ and ĉ† (i.e., rotating wave approximation (RWA)), we obtain (ĉ† − ĉ)4 ≈ (ĉ†)2ĉ2 + ĉ2(ĉ†)2 +
4ĉ† ĉĉ† ĉ + 4ĉ† ĉ + 1 = (ĉ†)2ĉ2 + (1 + ĉ† ĉ)(1 + (1 + ĉ† ĉ)) + 4ĉ†(1 + ĉ† ĉ)ĉ + 4ĉ† ĉ + 1 = (ĉ†)2ĉ2 + 2 +
ĉ† ĉ + ĉ† ĉ(2+ ĉ† ĉ) + 4ĉ† ĉ + 4(ĉ†)2(ĉ)2 + 4ĉ† ĉ + 1 = (ĉ†)2ĉ2 + 2+ ĉ† ĉ + 2ĉ† ĉ + ĉ† ĉ + (ĉ†)2ĉ2 + 4ĉ† ĉ +
4(ĉ†)2(ĉ)2 + 4ĉ† ĉ + 1 = 6(ĉ†)2ĉ2 + 12ĉ† ĉ + 3:

H ≈
√

8EcEJ

(
ĉ† ĉ +

1
2

)
− EJ −

Ec

2
(ĉ†)2ĉ2 − Ec ĉ† ĉ− Ec

4
. (365)

Defining ω0 =
√

8EcEJ, δ = −Ec and neglecting the constants that have no influence on the
transmon dynamics, we obtain:

H ≈ (ω0 + δ)ĉ† ĉ +
δ

2
(ĉ†)2ĉ2,

≈ (ω0 + δ)ĉ† ĉ +
δ

2
ĉ†(−1 + ĉĉ†)ĉ

= (ω0 +
δ

2
)ĉ† ĉ +

δ

2
(ĉ† ĉ)2

(366)

which is the Hamiltonian of a Duffing oscillator (Korsch, chapter 8).
Considering that the number operator is

N̂ = ĉ† ĉ =
∞

∑
n=0

n|n〉〈n|, (367)

we obtain

H = (ω− δ

2
)

∞

∑
n=0

n|n〉〈n|+ δ

2

∞

∑
n=0

n2|n〉〈n|,

=
∞

∑
n=0

((ω− δ

2
)n +

δ

2
n2)|n〉〈n|,

(368)

where ω = ω0 + δ. So, the eigenvalues of the transmon are spaced, as follows:

En = (ω− δ

2
)n +

δ

2
n2. (369)
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22.2 Kerr Hamiltonian

The goal of this section is to show that the transmon Hamiltonian, introduced by Eq. (366) under
the RWA, is essentially the Hamiltonian of the anharmonic oscillator,

Ĥs = h̄ω

(
N̂ +

1
2

)
+ KN̂2, (370)

with the number operator N̂ = ĉ† ĉ. Here, we show it can be written simply as the Kerr Hamiltonian,

ĤR = K(ĉ†)2ĉ2, (371)

with K = δ/2 –i.e. when represented in the reference frame rotating with frequency ω.
The second term in Eq. (370) introduces the anharmonicity, while the first term corresponds to

the Hamiltonian of the harmonic oscillator,

Ĥh = h̄ω

(
N̂ +

1
2

)
,

=
p̂2

2m
+

1
2

mω2 x̂2,

(372)

where the annihilation ĉ = 1√
2
(x̃ + i p̃) and creation ĉ† = 1√

2
(x̃− i p̃) operators are defined in terms

of the reduced coordinate and momentum operators, x̃ = x̂
√mω

h̄ , and p̃ = p̂
√

1
mh̄ω , of a Harmonic

oscillator of mass m and frequency ω.
We rewrite Ĥs with the so-called normal order of creation and annihilation operators (i.e., where

each term has powers of ĉ† followed by powers of ĉ) by using the commutator [ĉ, ĉ†] = 1, as follows:

Ĥs = h̄ω

(
ĉ† ĉ +

1
2

)
+ Kĉ† ĉĉ† ĉ,

= h̄ω

(
ĉ† ĉ +

1
2

)
+ Kĉ†(1 + ĉ† ĉ)ĉ,

= h̄ω

(
ĉ† ĉ +

1
2

)
+ K(ĉ† ĉ + ĉ† ĉ† ĉĉ),

= (h̄ω + K)ĉ† ĉ +
h̄ω

2
+ K(ĉ†)2ĉ2,

= Ĥv + K(ĉ†)2ĉ2,

= Ĥv + K(N̂2 − N̂).

(373)

To obtain the anharmonic Hamiltonian ĤR in the rotating frame, we consider an initial state
|Ψ(0)〉 evolving according to the time-evolution operator ÛR = e−

i
h̄ ĤRt, as follows: |ΨR(t)〉 =

ÛR|Ψ(0)〉. The resulting state |ΨR(t)〉 can also be generated by first propagating the system in
the static frame |Ψs(t)〉 = Ûs|Ψ(0)〉 using the time-evolution operator Ûs = e−

i
h̄ Ĥst defined by the

Hamiltonian in the static frame Ĥs, and then transform the propagated state to the rotated frame
by applying the transformation Û = e

i
h̄ Ĥvt, where Ĥv = (h̄ω + K)N̂ + h̄ω

2 is the Hamiltonian that
defines the unitary ’rotation’ Û with frequency ω, from the static to the rotated frame. Therefore,

|ΨR(t)〉 = ÛR|Ψ(0)〉,
= ÛÛs|Ψ(0)〉.

(374)
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The Hamiltonian ĤR can now be obtained by computing the time-derivative of ∂ÛR
∂t = − i

h̄ ĤRÛR,
and solving for ĤR, as follows:

ĤR = ih̄
∂ÛR

∂t
Û†

R,

= ih̄
∂ÛÛs

∂t
Û†

s Û†,

= ih̄
∂Û
∂t

ÛsÛ†
s Û† + ih̄Û

∂Ûs

∂t
Û†

s Û†,

= ih̄
∂Û
∂t

Û† + ih̄Û
∂Ûs

∂t
Û†

s Û†,

= ih̄
∂Û
∂t

Û† + ÛĤsÛ†,

= −Ĥv + ÛĤsÛ†.

(375)

Therefore, we obtain:

ĤR = −Ĥv + e
i
h̄ Ĥvt (Ĥv + K(N̂2 − N̂)

)
e−

i
h̄ Ĥvt,

= K(N̂2 − N̂),

= K(ĉ†)2ĉ2,

(376)

where the second line was obtained considering that e
i
h̄ Ĥvt commutes with both Ĥv = 1

2 h̄ω +(h̄ω +

K)N̂, and K(N̂2 − N̂), and the third line considering that (ĉ†)2ĉ2 = (N̂2 − N̂).
The evolution of a coherent state, according to the Kerr Hamiltonian ĤR can be analytically

computed, as follows:

e−
i
h̄ ĤRt|α〉 =

∞

∑
n=0

e−
|α|2

2
αn
√

n!
e−

i
h̄ K(N̂2−N̂)t|n〉,

=
∞

∑
n=0

e−
|α|2

2
αn
√

n!
e−

i
h̄ K(n2−n)t|n〉,

(377)

so both the number of photons and the Poisson probability distribution of photons on Fock states
|n〉 remain unchanged.
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22.3 SQUID: Tunable Junction

Figure 58: Top: Effective function whose
Josephson energy EJ′′ can be tuned by applica-
tion of an external magnetic flux Φ.

The transmon single Josephson junction is often
replaced by a Superconducting QUantum interfer-
ence Device (SQUID) with two Josephson junctions
in a superconducting loop, as shown in Fig. 58,
with an externally applied magnetic flux Φext pass-
ing through the loop. As shown below, the Hamilto-
nian of the SQUID is equivalent to the Hamiltonian
of a Josephson junction with CJ′ = 2 CJ and energy
E′J(Φext) = 2 EJ cos(Φext/2), tunable in situ by sim-
ply changing the applied Φext.

SQUID Hamiltonian: In this subsection we show
that the Hamiltonian of the SQUID is the same as
the Hamiltonian of a Josephson junction with energy
EJ(Φ) dependent on the externally applied mag-
netic flux Φ.

The Lagrangian of the SQUID is given by the dif-
ference of kinetic and potential energies, as follows:

L =
1
2

CJ
(
Φ̇2

1 + Φ̇2
2
)
+ EJ

(
cos 2π

Φ1

Φ0
+ cos 2π

Φ2

Φ0

)
, (378)

where the magnetic flux quantum Φ0 = h/2e (for convenience, we choose units so that Φ0 = 2π).
The flux quantization requires that Φ2 − Φ1 = Φext. Therefore, defining φ = (Φ1 + Φ2)/2, we
obtain Φ2 = φ + Φext/2 and Φ1 = φ−Φext/2. Therefore,

L = 2CJ φ̇
2 + EJ (cos Φ1 + cos Φ2) ,

= 2CJ φ̇
2 + EJ (cos(φ−Φext/2) + cos(φ + Φext/2)) ,

= CJ′ φ̇
2 + EJ2 cos(φ) cos(Φext/2),

(379)

with CJ′ = 2CJ. The Hamiltonian is obtained as usual,

H = Qφ̇−L, (380)

with momentum Q = ∂L
∂φ̇

= CJ′ φ̇, giving

H =
Q2

2CJ′
− EJ′(Φext) cos(φ),

= 4 Ecn̂2 − EJ′(Φext) cos(φ̂),
(381)

where Ec = e2/2CJ′ , n̂ = Q/2e2, and EJ′(Φext) = 2EJcos Φext
2 .
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22.4 Cooper Pair Box: Charge Qubit

Figure 59: Top panel: Circuit of a Cooper pair
box with a superconducting ‘island’ into which
Cooper pairs may tunnel from a superconduc-
tor reservoir via a Josephson junction. Middle
panel: Josephson junction capacitively coupled
to a current source. Bottom panel: Energy lev-
els and expectation value of the number of ex-
cess Cooper pairs in the grounds state of the is-
land 〈N̂〉 versus the effective offset charge Ng
defined by the applied voltage Vg.

In this subsection we introduce the Hamiltonian of
the so-called charge qubit circuit, introduced by
Devoret and co-workers (Fig. 59, top panel), also
called Cooper pair box, which is a simplified version
of the circuit of a junction capacitively coupled to a
current source (Fig. 59, middle panel), introduced
earlier by M. Buttiker to demonstrate it is possible to
externally control the charge on the junction.

The Cooper pair box (CPB) consists of a super-
conducting ’island’ box into which Cooper pairs may
tunnel via a Josephson junction from a capacitively
coupled biased reservoir. The Cooper pairs in the
box are analogous to the states of photons in an
optical cavity of QED experiments, where the phase
conjugate to the number of electrons is analogous
to the phase of the field in the cavity. The resulting
circuit exhibits coherent quantum oscillations that
can be used as a prototypical charge qubit where
the charge degree of freedom is used for coupling
and interaction.

Both circuits are described by the Hamiltonian:

Ĥ = 4EC(N̂ − Ng)
2 − EJ cos(φ̂)

= 4EC(N̂ − Ng)
2 − 1

2
EJ(eiφ̂ + e−iφ̂)

(382)

where Ng = CgVg/(2e) is the effective offset charge
due to the applied voltage Vg. As already introduced
in Sec. 22, EJ = I0Φ0 is the Josephson inductive en-
ergy of the tunneling junction, where Φ0 = h/(2e)
is the flux quanta, and I0 the critical current of the
superconductor set by the fabrication parameters of
the junction. These parameters define the nonlin-
ear inductance relationship between current and in-
duced flux Φ(t), as follows: i(t) = I0 sin φ(t), with
φ(t) = 2π Φ(t)/Φ0. Furthermore, EC = e2/(2C) is
the capacitor charging energy, with C = CJ +Cg and
φ̂ is the phase difference between the macroscopic
wavefunctions of Copper pairs on each side of the
barrier. N̂ = Q̂

2e describes the number of Cooper
pairs. Here, φ̂ and N̂ are the generalized coordi-
nates and momenta, so that [φ̂, N̂] = ih̄.

22.4.1 CPB Eigenstates

We obtain the eigenstates of the CPB as a function
of the applied voltage Vg by diagonalization (Fig. 59,
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bottom) of the Hamiltonian, introduced by Eq. (382), in the basis of eigenstates of N̂ corresponding
to the number of excess Cooper pairs in the island, which is the natural choice of basis when
EC � EJ. We expand the eigenstates of φ̂ in the basis of N̂, as follows: |φ〉 = ∑N |N〉〈N|φ〉 with
〈N|φ〉 = 1√

2πh̄
e

i
h̄ Nφ giving 〈φ′|φ〉 = ∑N〈φ′|N〉〈N|φ〉 = 1

2πh̄ ∑N e
i
h̄ N(φ−φ′).

Furthermore, considering that N̂ is the generalized momentum, the displacement operator
gives

e
i
h̄ αN̂ |φ〉 = |φ + α〉

consistent with e
i
h̄ αN′〈N′|φ〉 = 〈N′|φ+ α〉. Analogously, e−

i
h̄ αφ̂|N〉 = |N + α〉, giving e−

i
h̄ αφ′〈φ′|N〉 =

〈φ′|N + α〉.
Therefore, we can write the Hamiltonian introduced by Eq. (382) in the basis of |N〉 by inserting

closure, 1 = ∑N |N〉〈N|, as follows:

Ĥ = 4EC ∑
N
(N − Ng)

2|N〉〈N| − EJ

2 ∑
N
(eiφ̂ + e−iφ̂)|N〉〈N|

= 4EC ∑
N
(N − Ng)

2|N〉〈N| − EJ

2 ∑
N
(eiφ̂|N〉〈N|+ e−iφ̂|N〉〈N|)

= 4EC ∑
N
(N − Ng)

2|N〉〈N| − EJ

2 ∑
N
(|N − 1〉〈N|+ |N + 1〉〈N|)

(383)

Numerical Diagonalization: A turn-key tutorial on how to diagonalize the Hamiltonian introduced
by Eq. (383) to obtained the eigenstates shown in Fig. (59, lower panel) on Colab or the IBM
Quantum can be downloaded as a notebook:vic_cp.ipynb, and vic_cp.pdf.

22.4.2 NMR Hamiltonian

We can map the CPB to the NMR Hamiltonian of a sping-1/2 by truncating the basis to include
only the states |0〉 and |1〉, with 0 ≤ Ng ≤ 1, a valid approximation when EC � EJ and EC � kBT,
since the other energy levels are far away (EC away). The resulting Hamiltonian is

H =

[
4EC N2

g −EJ/2

− EJ/2 4EC(1− Ng)
2

]
, (384)

Factorizing half of the trace E0 = 4EC(N2
g + (1− Ng)2)/2 = 4EC(N2

g + 1/2− Ng) = 4EC(1/2−
Ng)2 + EC, we obtain:

H = E0 +
1
2

[
− 4E −EJ

− EJ 4E

]
, (385)

with E = EC(1− 2Ng). The 2× 2 Hamiltonian introduced by Eq. (385) can be written in terms of
the Pauli matrices σ = (σx, σy, σz), as follows:

H = E0 −
1
2
(4Eσz + EJσx)

= E0 − s · B
(386)

wheres = σ/2, and B = (Bx, By, Bz), with Bx = EJ, By = 0 and Bz = 4E.
The NMR mapping Hamiltonian, introduced by Eq. (386), allows us to think about the parame-

ters of the CPB circuit in terms of the parameters of an NMR experiment. For example, the number
of Cooper pairs in the island can be obtained from 〈sz〉, as follows: 〈N〉 = 1/2 + 〈sz〉.
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22.4.3 State Preparation and Control

Just like in an NMR experiment, full control of the quantum dynamics of the ’spin’ is possible if
the parameters that defined the ‘magnetic field’ B(t) can be switched arbitrarily. Clearly, Bz =
4EC(1− 2CgVg/(2e)) can be switched by changing the applied voltage Vg. Furthermore, Bx = EJ
can be externally switched by replacing the junction by a squid and applying an external magnetic
field, as described in Sec. 22.5.

For example, the initial state can be prepared in the state |0〉 by turning on a large value of
Bz(t) � kBT with Ng = 1 and By(t) = Bx(t) = 0 while keeping the system at low temperature so
it relaxes to the ground state. Switching Bz(t) back to zero, with Ng = 1/2, leaves the system in
the ground state with H = 0, so there is no evolution.

A spin-flip (NOT gate) can be applied by switching-on Bx for some time τ, letting the spin evolve
according to the time-evolution operator

e−
i
h̄ Hτ = e

i
h̄ sx Bxτ, (387)

with sx = 1
2 σx, where

σx =

(
0 1
1 0

)
(388)

to induce a rotation about the x axis, as discussed in Sec. 8.2. Note that

σx = Γ

(
1 0
0 −1

)
Γ† = ΓσzΓ† (389)

with ΓΓ† = I and

Γ =
1√
2

(
1 −1
1 1

)
, (390)

so
e

i
h̄ sx Bxτ = e

i
h̄ ΓszΓ†Bxτ = Γe

i
h̄ szBxτΓ†, (391)

or

e
i
h̄ sx Bxτ = Γ†

(
e

i
2h̄ Bxτ 0

0 e−
i

2h̄ Bxτ

)
Γ =

(
cos(φ/2) i sin(φ/2)
i sin(φ/2) cos(φ/2)

)
= RX(φ), (392)

with φ = Bx τ/h̄.
Starting with the initial state |0〉, the unitary transformation introduced by Eq. (392) with Bxτ/h̄ =

π produces a π rotation (a spin flip, NOT gate), |0〉 → i|1〉. Furthermore, when Bxτ/h̄ = π/2, the
evolution produces an equal-weight superposition: |0〉 → 1√

2
(|0〉+ i|1〉).

Analogously, the evolution generated by switching-on the field Bz for some time τ produces a
phase-shift between the components |0〉 and |1〉 in any superposition state |ψ〉 = c0|0〉 + c1|1〉,
generating the state |ψ̃〉 = c0eiφ/2|0〉+ c1e−iφ/2|1〉 according to the rotation around the z axis:

e
i
h̄ Bzszτ = eiφσz/2 =

(
eiφ/2 0

0 e−iφ/2

)
= RZ(φ), (393)

where, φ = Bzτ/h̄.
Importantly, any unitary transformation of a single qubit state (i.e., any single-qubit operation)

can be performed with a sequence of these rotations around the x and z axes.
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22.5 Split Cooper Pair Box

Figure 60: Top panel: Circuit of a split Cooper
pair box with a superconducting ‘island’ into
which Cooper pairs may tunnel from a super-
conductor reservoir via two identical Josephson
junctions. Bottom panel: Energy levels versus
Ng as defined by the applied voltage Vg.

In this subsection we introduce the so-called split
Cooper pair box circuit (Fig. (60)), where Cooper
pairs tunnel into the island through a junction that
is split into two identical junctions with energy EJ/2,
forming a squid superconducting loop, as intro-
duced in Sec. 22.3. The resulting circuit forms a
flux qubit (also known as persistent current qubits).

The Hamiltonian of the split Cooper pair box is

Ĥ = 4EC(N̂ − Ng)
2 − EJ′(Φext) cos(φ̂)

= 4EC(N̂ − Ng)
2 − 1

2
EJ′(Φext)(eiφ̂ + e−iφ̂)

(394)

where φ̂ and N̂ = Q̂/(2e) are the generalized coor-
dinates and momenta, so that [φ̂, N̂] = ih̄. Here,
φ̂ = (Φ̂1 + Φ̂2)/2, with Φ̂1 and Φ̂2 the phase
differences of the two junctions, and EJ′(Φext) =

2EJcos Φext
2 . Therefore, we can write the Hamiltonian

in the basis of |N〉, as follows:

Ĥ = 4EC ∑
N
(N − Ng)

2|N〉〈N|

− EJcos
Φext

2 ∑
N
(|N − 1〉〈N|+ |N + 1〉〈N|)

(395)

The phase difference across the series combi-
nation of the two junctions is proportional to the
flux through the loop. The persistent loop currents
i0 = 2e

h̄
∂E0

∂Φext
and i1 = 2e

h̄
∂E1

∂Φext
in states |0〉 and |1〉,

respectively, provide a readout for state discrimina-
tion, instead of measuring the charge. Protection
from charge and phase noise during state manipu-
lation is achieved by biasing the circuit with Ng = 1

2
and Φext = 0, where the transition frequency ν01 is
stationary with respect to both parameters.

Numerical Diagonalization: A turn-key tutorial on
how to diagonalize the Hamiltonian introduced by
Eq. (395) to obtained the eigenstates shown in
Fig. (60), (lower panel) on Colab or the IBM
Quantum can be downloaded as a notebook:
vic_scp.ipynb, and vic_scp.pdf.
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22.6 Transmon Coupled to a Resonator

Figure 61: Top panel: Circuit of a transmon
(capacitively shunted split Cooper pair box) ca-
pacitively coupled to an LC resonator from a
waveguide and a current source. Middle panel:
Out of scale diagram of the transmon -i.e., a
split Cooper pair box shunted by a short section
of a twin-lead transmission line, formed by ex-
tending the superconducting islands of the qubit,
leading to the increase in the capacitances Cg1,
Cg2, and CB, and hence in the effective capaci-
tances CB and Cg in the circuit. Bottom panel:
Dimensions of the resonator formed by the ca-
pacitive gaps in the center trace of the transmis-
sion line. The outer two traces are ground. The
qubit is placed at the middle of the resonator to
couple to the strong electric fields at the antinode
of the second mode.

In this subsection we introduce the Hamiltonian
of the transmon coupled to a harmonic resonator
(Fig. 61), as introduced by Schoelkopf, Girvin and
Devoret [PRA2004), PRA2007]. The kinetic energy
T for charging the capacitors is

T =
Cin

2
φ̇2

r +
Cr

2
φ̇2

r +
Cg

2
(φ̇J − φ̇r)

2 +
CB + CJ

2
φ̇2

J .
(396)

The potential energy V includes the resonator
inductance, the Josephson term introduced in
Sec. 22.5, and the potential energy from the exter-
nal current source, as follows:

V =
1

2Lr
φ2

r − EJcos
(

2π
φJ

Φ0

)
−VgCinφ̇r. (397)

The Lagrangian L = T −V defines the momenta:

Qr =
∂L
∂φ̇r

= (Cin + Cr + Cg)φ̇r − Cgφ̇J + VgCin,

QJ =
∂L
∂φ̇J

= (Cg + CB + CJ)φ̇J − Cgφ̇r,

(398)

The Hamiltonian, H = Qrφ̇r + QJ φ̇J −L, is:

H =
φ2

r
2Lr

+
(CB + CJ + Cg)Q2

r

2C2

+
(Cg + Cin + Cr)Q2

J

2C2 − EJcos
(

2π

h̄
φJ

)
+

CgQrQJ

C2 +
(CB + CJ + Cg)CinQrVg + CgCinQJVg

C2

(399)

with C2 = (CB + CJ)(Cg + Cin) + Cg(Cin + Cr) +
(CB + CJ)Cr. The first line of Eq. (399) is the res-
onator term, the second line is the transmon, and
the third line are the couplings. When Cr is much
greater than the other capacitances, the Hamilto-
nian becomes

H =
φ2

r
2Lr

+
Q2

r
2Cr

+
(QJ − CgVg)2

2Cs
− EJcos

(
2π

h̄
φJ

)
+

Cg

CsCr
QrQJ +

CinQrVg

Cr

(400)

with Cs = Cg + CB + CJ, where Cg/Cs is the
impedance divider ratio determining how much of the applied voltage is seen by the qubit.
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22.6.1 Quantization

The first line of the Hamiltonian, introduced by Eq. (400), corresponds to the harmonic LC-resonator
which can be quantized, as follows:

φ̂2
r

2Lr
+

Q̂2
r

2Cr
= h̄ωr

1
2
(Q̃2

r + φ̃2
r ) = h̄ωr(ĉ† ĉ +

1
2
), (401)

with ωr = 1√
Cr Lr

, ĉ† = 1√
2
(Q̃r − iφ̃r) and ĉ = 1√

2
(Q̃r + iφ̃r), where Q̃r = Q̂r

(
Lr

h̄2Cr

)1/4
and

φ̃r = φ̂r/(h̄2Lr/Cr)1/4. Therefore, Q̂r =
(

h̄2Cr
4Lr

)1/4
(ĉ + ĉ†). The second line of the Hamiltonian,

introduced by Eq. (400), is quantized according to Sec. 22.4.2,

(Q̂J − CgVg)2

2Cs
− EJcos

(
2π

Φ0
φ̂J

)
= E0 −

1
2
(4Eσz + EJσx), (402)

with N̂ = Q̂J/(2e), E = e2

2Cs
(1− CgVg/e) and E0 = 2CsE2/e2 + e2/(2Cs). In particular, when the

voltage is adjusted to make Ng = CgVg/(2e) = 1/2, then E = 0 and E0 = e2/(2Cs), so

(Q̂J − CgVg)2

2Cs
− EJcos

(
2π

Φ0
φ̂J

)
=

e2

2Cs
− EJ

2
σx, (403)

which can be rewritten in the reverted basis of eigenstates of σx (i.e., | ↑〉 = 1√
2
(|0〉 − |1〉) and

| ↓〉 = 1√
2
(|0〉+ |1〉)), as follows:

(Q̂J − CgVg)2

2Cs
− EJcos

(
2π

Φ0
φ̂J

)
→ e2

2Cs
− EJ

4

(
1 −1
1 1

)
σx

(
1 1
−1 1

)
= ECs +

EJ

2
σz, (404)

where ECs =
e2

2Cs
. The third line of the Hamiltonian, introduced by Eq. (400), is quantized using that

N̂ = Q̂J/(2e) and Q̂r =
(

h̄2Cr
4Lr

)1/4
(ĉ + ĉ†). So, disregarding the coupling between the resonator

and the source of current, we obtain:

Cg

CsCr
QrQJ =

Cg

CsCr
2eN̂

(
h̄2Cr

4Lr

)1/4

(ĉ + ĉ†) = 2eβN̂V0
rms(ĉ + ĉ†) (405)

where β =
Cg
Cs

and V0
rms =

√
h̄ωr
2Cr

. Writing N̂ in the reverted basis of eigenstates of σx, as follows:

N̂ → 1
2

(
1 −1
1 1

)(
0 0
0 1

)(
1 1
−1 1

)
= I − (σ+ + σ−), (406)

and applying the RWA (i.e., dropping terms with unequal powers of raising and lowering operators),
we obtain the coupling between the qubit and the resonator, as follows: Cg

CsCr
QrQJ = −h̄g(σ̂+ ĉ +

σ̂− ĉ†), where g = βe
h̄ 2V0

rms,7 giving the transmon-resonator Jaynes-Cummings Hamiltonian,

Ĥ = h̄ωr(ĉ† ĉ +
1
2
) +

h̄ωq

2
σz − h̄g(σ̂+ ĉ + σ̂− ĉ†), (407)

with ωq = h̄−1EJ, where we have dropped constant terms that do not affect the dynamics of the
transmon.

7This constant is different in Ref. [PRA2004]
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22.6.2 Resonant and Dispersive Limits

Figure 62: Top: Coplanar superconducting
readout resonator on a sapphire substrate ca-
pacitively coupled to a transmon. Middle:
Transmon in a 3D cavity resonator. Bottom:
Two-level atom interacting with the electro-
magnetic field in a cavity, defined by two mir-
rors that confine a single mode of an oscilla-
tory electromagnetic field with frequency ωc.
Parameter diagram for the Jaynes-Cummings
model defined by the atom-photon coupling
strength, g, and the detuning frequency ∆ =
ωq − ωc, normalized to the decay rates Γ =
max[γ, κ, 1/T].

In this subsection we discuss the resonant and dis-
persive limits of a two-level system coupled to a res-
onator, such as the transmon capacitively coupled to
a coplanar resonator on a sapphire substrate (Fig. 62,
top), a transmon in a 3D cavity resonator (Fig. 62,
middle), and an atom passing through a cavity defined
by two mirrors that confine a single mode of an elec-
tromagnetic field with frequency ωc. As discussed in
Sec. 23, all of these qubits coupled to an electromag-
netic mode in the cavity resonator can be described
by the same Jaynes-Cummings model Hamiltonian,
introduced by Eq. (407).

We analyze the dynamics of the qubit when its fre-
quency is resonant with the cavity (i.e., ωq = ωc), and
in the dispersive limit (i.e., when the two frequencies
are very different, for example, ωq � ωc).

22.6.2.1 Resonant Limit: When the frequency of
the photon in the cavity matches the frequency of
the qubit, the system exhibits Rabi oscillations due to
coherent absorption of a single photon, followed by
emission, reabsorption and emission mutliple times .

Simulation: A turn-key tutorial on how to simulate the
dynamics of a qubit in resonance with a mode in the
cavity on Colab or the IBM Quantum can be down-
loaded as a notebook:VacuumRabiOscillations.ipynb,
and VacuumRabiOscillations.pdf.

22.6.2.2 Dispersive Limit: In the dispersive (off-
resonance) limit, the resonator and the qubit are far
off-resonance, ∆ � g, where ∆ = |ωr − ωq| is the
detuning between the resonator and the qubit (for ex-
ample ωr � ωq), so only virtual photon exchange is
allowed. Nevertheless, even a single off-resonance
photon in the cavity produces a large effect on the ef-
fective frequency of the qubit (without ever being ab-
sorbed).

Here, we show how a photon affects the frequency
of qubit. We transform the Janes-Cummings Hamilto-
nian, introduced by Eq. (407), H = H0 +V, with H0 =
ωra†a + 1

2 ωqσz and V = −h̄g(a† + a)σx, according to
the similarity transformation H̃ = eξ He−ξ , with ξ =
g(aσ+− a†σ−). Using the Backer Campbell Hausdorff
relation, eABe−A = B + [A, B] + 1

2 [A, [A, B]] + · · · ,
we obtain the perturbative expansion H̃ = H0 + V +
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[ξ, H0] + [ξ, V] + 1
2! [ξ, [ξ, H0]] + · · · , we find that [ξ, H0] = −V, and keeping terms up to second or-

der in g (i.e., solving to second order after a dispersive approximation), we obtain that the effective
Hamiltonian in the dispersive limit is approximately,

H̃ = ωr(a†a + 1/2) +
1
2

ωqσz + χ(a†a + 1/2)σz

= (ωr + χσz)(a†a + 1/2) +
1
2

ωqσz

= ωr(a†a + 1/2) +
1
2
(ωq + χ(2a†a + 1))σz

(408)

where χ = g2/∆. We can view the last term of the first line of Eq. (408) as a correction of the
resonator frequency that depends on the qubit state (i.e., second line of Eq. (408)), or a correction
to the qubit frequency that depends on the number of photons in the cavity (i.e., third line of
Eq. (408)). So, the dispersive limit allows us to resolve the number of photons in the cavity by
monitoring the frequency spectrum of the qubit, as reported by D. I. Schuster et al. Resolving
photon number states in a superconducting circuit Nature 445, 515 (2007).

Figure 63: Results of a quantum dynamics
simulation of a qubit-resonator system cou-
pled in the dispersive limit. Top: Excita-
tion numbers remain constant for the qubit
and the cavity. Middle: Spectrum of the res-
onator with frequency ωr, coupled to the qubit
in a superposition state, thus exhibiting peaks
splitted by χ〈σz〉 when the qubit is in state |0〉
and |1〉, respectively. Bottom: Spectrum of
the qubit with frequency ωq = 3.0, exhibit-
ing peaks shifted by χ〈(2a†a+ 1)〉 for the res-
onator in a coherent state -i.e., with a Poisson
distribution in Fock space.

Simulation: A turn-key tutorial on how to simu-
late the dynamics of a qubit coupled to a resonator
in the dispersive limit by using qutip on Colab or
the IBM Quantum can be downloaded as a note-
book:lecture10.ipynb, and lecture10.pdf. The simu-
lation shows that the qubit and the resonator do not
exchange energy and therefore keep the expecta-
tion value of their own occupation number constant
throughout the dynamics. However, when prepar-
ing the initial state of the qubit in the superposition
|ψ0〉 = 1√

2
(|0〉 + |1〉), the spectrum of the resonator

exhibits a splitting of its resonance frequency (analo-
gously to a Fermi resonance), showing that the qubit
state can be determined by probing the resonator.
Analogously, we can determine the state of the res-
onator by measuring the qubit since the frequency of
the qubit is shifted by a different amount for each Fock
state of the resonator, according to χ〈(2a†a + 1)〉. For
example, when the resonator is prepared in a coher-
ent state, it has a Poisson probability distribution in
Fock space (as shown in Sec. 20). Therefore, the
qubit exhibits a spectrum with a Poisson distribution
of intensities for the peaks corresponding to the vari-
ous Fock states of the resonator.
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23 Dicke Model and Jaynes-Cummings Hamiltonian

The Jaynes Cummings model Hamiltonian, derived in Sec. 22.6.1 for the description of the
transmon-resonator circuit, was originally applied by the quantum optics community for the de-
scription of real atoms (qubits) in optical cavities. A typical experiment in cavity quantum elec-
trodynamics (or cavity QED) involves a real atom in a cavity interacting with an electromagentic
mode confined by two highly reflecting mirrors, as shown in Fig. 62 (bottom panel).

Without invoking the RWA, the qubit-resonator model system is described by the Dicke Hamil-
tonian (with h̄ = 1),

H = ωc(a†a) +
1
2

ωqσz + g(a† + a)σx, (409)

where ωc and ωq are the bare frequencies of the resonator and qubit, respectively, and g is the
strength of the dipole interaction coupling the atom and field, which is inversely proportional to
the volume of the cavity. Neglecting the high frequency terms according to the rotating wave
approximation (RWA), we obtain the Jaynes-Cummings model Hamiltonian,

H ≈ ωc(a†a) +
1
2

ωqσz +
g
2
(a†σ− + aσ+), (410)

In the weak-coupling limit, the rate of spontaneous emission due to coupling with modes in the
cavity and surrounding environment can be described by the Golden Rule, discussed in Sec. 19.
In resonance, the rate is enhanced when the cavity enhances the local density of states at the
resonant frequency (Purcell effect). Furthermore, confinement can suppress spontaneous decay
when the size of the cavity d < λ/2, with λ the wavelength of the atom electronic transition.
Therefore, coupling of a qubit to a cavity resonator can stabilize the qubit prepared in the excited
state by suppressing spontaneous decay.

The coupling g can be made much stronger than the coupling to all the other modes of the
electromagnetic field in the surrounding environment simply by making a very small cavity (e.g.,
with the mirrors very close to each other) so that the volume V of the cavity is small and thus the
density of states in the cavity is much larger than the density of states in the environment (so the
Purcell factor Fp = 3

4π2

(
λ
n

)3 Q
V is large). Here, Q is the quality factor, n is the refractive index of the

medium and λ is the frequency of the free photon. So, the ’transverse’ decay rate γ of the atom
due to coupling with the surrounding field can be made very small, so the cavity effectively protects
the atom from coupling to the surrounding environment. In addition, the photon decay described
by the cavity decay κ can be made very small by making highly reflecting super-polished mirrors.

In the dispersive limit, the interaction of the atom with the resonator mode changes the atom
level spacing proportionally to the number of photons in the cavity, as discussed in Sec. 22.6.1,
a phenomenon initially shown by Cohen-Tannoudji, 1961. Therefore, the frequency of the atom
electronic transition can be probed to determine the number of photons in the cavity (even when
the photons are never absorbed or emitted by the atom).
Early Experiments: Experiments at Yale by Serge Haroche demonstrated for the first time sup-
pression of spontaneous emission in the near infrared by preparing cesium atoms in the low-lying
5d level, passing them through a cavity that inhibited the 5d → 6p at wavelength of 3.5 microns
and propagated through the cavity for about 12 natural lifetimes without appreciable decay.

132

https://en.wikipedia.org/wiki/Dicke_model
https://en.wikipedia.org/wiki/Dicke_model
https://en.wikipedia.org/wiki/Jaynes%E2%80%93Cummings_model
https://batistalab.com/classes/CHEM584/CTR.pdf
https://batistalab.com/classes/CHEM584/Physics_Today-042-1989-January-044-Haroche.pdf
https://en.wikipedia.org/wiki/Serge_Haroche


24 Appendix V: Python

Python is a great general-purpose programming language on its own, but with the help of a few
popular libraries (numpy, scipy, matplotlib) it becomes a powerful environment for scientific com-
puting. I expect that many of you will have some experience with Python and numpy; for the rest
of you, this section will serve as a quick crash course both on the Python programming language
and on the use of Python for scientific computing.

In this tutorial, we will cover:

• Basic Python: Basic data types (Containers, Lists, Dictionaries, Sets, Tuples), Functions,
Classes

• Numpy: Arrays, Array indexing, Datatypes, Array math, Broadcasting
• Matplotlib: Plotting, Subplots, Images
• IPython: Creating notebooks, Typical workflows

24.1 A Brief Note on Python Versions

As of Janurary 1, 2020, Python has officially dropped support for python2. We’ll be using Python
3.7 for this iteration of the course. You can check your Python version at the command line by
running python --version. In Colab, we can enforce the Python version by clicking Runtime
-> Change Runtime Type and selecting python3. Note that as of April 2020, Colab uses
Python 3.6.9 which should run everything without any errors.

[6]: !python --version

Python 3.6.9

24.1.1 Basics of Python

Python is a high-level, dynamically typed multiparadigm programming language. Python code is
often said to be almost like pseudocode, since it allows you to express very powerful ideas in very
few lines of code while being very readable. As an example, here is an implementation of the
classic quicksort algorithm in Python:

[7]: def quicksort(arr):
if len(arr) <= 1:

return arr
pivot = arr[len(arr) // 2]
left = [x for x in arr if x < pivot]
middle = [x for x in arr if x == pivot]
right = [x for x in arr if x > pivot]
return quicksort(left) + middle + quicksort(right)

print(quicksort([3,6,8,10,1,2,1]))

[1, 1, 2, 3, 6, 8, 10]

24.1.1.1 Basic data types
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24.1.1.1.1 Numbers Integers and floats work as you would expect from other languages:
[8]: x = 3

print(x, type(x))

3 <class 'int'>

[9]: print(x + 1) # Addition
print(x - 1) # Subtraction
print(x * 2) # Multiplication
print(x ** 2) # Exponentiation

4
2
6
9

[10]: x += 1
print(x)
x *= 2
print(x)

4
8

[11]: y = 2.5
print(type(y))
print(y, y + 1, y * 2, y ** 2)

<class 'float'>
2.5 3.5 5.0 6.25

Note that unlike many languages, Python does not have unary increment (x++) or decrement
(x–) operators.

Python also has built-in types for long integers and complex numbers; you can find all of the
details in the documentation.

24.1.1.1.2 Booleans Python implements all of the usual operators for Boolean logic, but uses
English words rather than symbols (&&, ||, etc.):

[12]: t, f = True, False
print(type(t))

<class 'bool'>

Now we let’s look at the operations:
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[13]: print(t and f) # Logical AND;
print(t or f) # Logical OR;
print(not t) # Logical NOT;
print(t != f) # Logical XOR;

False
True
False
True

24.1.1.1.3 Strings
[14]: hello = ’hello’ # String literals can use single quotes

world = "world" # or double quotes; it does not matter
print(hello, len(hello))

hello 5

[15]: hw = hello + ’ ’ + world # String concatenation
print(hw)

hello world

[16]: hw12 = ’{} {} {}’.format(hello, world, 12) # string formatting
print(hw12)

hello world 12

String objects have a bunch of useful methods; for example:
[17]: s = "hello"

print(s.capitalize()) # Capitalize a string
print(s.upper()) # Convert a string to uppercase; prints "HELLO"
print(s.rjust(7)) # Right-justify a string, padding with spaces
print(s.center(7)) # Center a string, padding with spaces
print(s.replace(’l’, ’(ell)’)) # Replace all instances of one

↪→substring with another

print(’ world ’.strip()) # Strip leading and trailing whitespace

Hello
HELLO

hello
hello
he(ell)(ell)o
world

You can find a list of all string methods in the documentation.
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24.1.1.2 Containers Python includes several built-in container types: lists, dictionaries, sets,
and tuples.

1. List item

2. List item

3. List item

4. List item

24.1.1.2.1 Lists A list is the Python equivalent of an array, but is resizeable and can contain
elements of different types:

[18]: xs = [3, 1, 2] # Create a list
print(xs, xs[2])
print(xs[-1]) # Negative indices count from the end of the list;

↪→prints "2"

[3, 1, 2] 2
2

Lists can be generated from arrays, as follows:
[20]: import numpy as np

int_list = [] # list initialization
int_list = [0,0,1,2,3] # list with commas
int_list.append(4) # add 4 to end of the list
int_list.pop(2) # remove element with index 2

int_list2 = list(range(5)) # make list [0,1,2,3,4]
int_array = np.array(int_list) # make array [] with no commas: [0 1 2

↪→3 4]

int_array2 = np.arange(5) # make array [] with no commas: [0 1 2 3 4]
int_list2 = int_array.tolist() # convert array to list

first = 0
last = 4
float_array = np.linspace(first,last,num=5)

print(’int_list=’,int_list)
print(’int_list2=’,int_list2)
print(’int_array=’,int_array)
print(’int_array2=’,int_array2)
print(’float_array=’,float_array)

int_list= [0, 0, 2, 3, 4]
int_list2= [0, 0, 2, 3, 4]
int_array= [0 0 2 3 4]
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int_array2= [0 1 2 3 4]
float_array= [0. 1. 2. 3. 4.]

[21]: xs[2] = ’foo’ # Lists can contain elements of different types
print(xs)

[3, 1, 'foo']

Lists have methods, including append, insert, remove, sort
[22]: xs.append(’bar’) # Add a new element to the end of the list

print(xs)

[3, 1, 'foo', 'bar']

[23]: x = xs.pop() # Remove and return the last element of the list
print(x, xs)

bar [3, 1, 'foo']

As usual, you can find all the gory details about lists in the documentation.

24.1.1.2.2 Slicing In addition to accessing list elements one at a time, Python provides con-
cise syntax to access sublists; this is known as slicing:

[24]: nums = list(range(5)) # range is a built-in function that creates
↪→a list of integers

print(nums) # Prints "[0, 1, 2, 3, 4]"
print(nums[2:4]) # Get a slice from index 2 to 4 (exclusive);

↪→prints "[2, 3]"

print(nums[2:]) # Get a slice from index 2 to the end; prints
↪→"[2, 3, 4]"

print(nums[:2]) # Get a slice from the start to index 2
↪→(exclusive); prints "[0, 1]"

print(nums[:]) # Get a slice of the whole list; prints ["0, 1,
↪→2, 3, 4]"

print(nums[:-1]) # Slice indices can be negative; prints ["0, 1,
↪→2, 3]"

nums[2:4] = [8, 9] # Assign a new sublist to a slice
print(nums) # Prints "[0, 1, 8, 9, 4]"

[0, 1, 2, 3, 4]
[2, 3]
[2, 3, 4]
[0, 1]
[0, 1, 2, 3, 4]
[0, 1, 2, 3]
[0, 1, 8, 9, 4]

24.1.1.2.3 Loops You can loop over the elements of a list like this:
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[25]: animals = [’cat’, ’dog’, ’monkey’]
for animal in animals:

print(animal)

cat
dog
monkey

If you want access to the index of each element within the body of a loop, use the built-in
enumerate function:

[26]: animals = [’cat’, ’dog’, ’monkey’]
for idx, animal in enumerate(animals):

print(’#{}: {}’.format(idx + 1, animal))

#1: cat
#2: dog
#3: monkey

24.1.1.2.4 List comprehensions: When programming, frequently we want to transform one
type of data into another. As a simple example, consider the following code that computes square
numbers:

[27]: nums = [0, 1, 2, 3, 4]
squares = []
for x in nums:

squares.append(x ** 2)
print(squares)

[0, 1, 4, 9, 16]

You can make this code simpler using a list comprehension:
[28]: nums = [0, 1, 2, 3, 4]

squares = [x ** 2 for x in nums]
print(squares)

[0, 1, 4, 9, 16]

List comprehensions can also contain conditions:
[29]: nums = [0, 1, 2, 3, 4]

even_squares = [x ** 2 for x in nums if x % 2 == 0]
print(even_squares)

[0, 4, 16]

24.1.1.2.5 Dictionaries A dictionary stores (key, value) pairs, similar to a Map in Java or an
object in Javascript. You can use it like this:
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[30]: d = {}
d = {’cat’: ’cute’, ’dog’: ’furry’} # Create a new dictionary with

↪→some data

print(d[’cat’]) # Get an entry from a dictionary; prints "cute"
print(’cat’ in d) # Check if a dictionary has a given key; prints

↪→"True"

cute
True

[31]: d[’fish’] = ’wet’ # Set an entry in a dictionary
print(d[’fish’]) # Prints "wet"

wet

[32]: print(d[’monkey’]) # KeyError: ’monkey’ not a key of d

↪→---------------------------------------------------------------------------

KeyError Traceback (most
↪→recent call last)

[33]: print(d.get(’monkey’, ’N/A’)) # Get an element with a default;
↪→prints "N/A"

print(d.get(’fish’, ’N/A’)) # Get an element with a default;
↪→prints "wet"

N/A
wet

[34]: del d[’fish’] # Remove an element from a dictionary
print(d.get(’fish’, ’N/A’)) # "fish" is no longer a key; prints "N/A"

N/A

You can find all you need to know about dictionaries in the documentation.
It is easy to iterate over the keys in a dictionary:

[35]: d = {’person’: 2, ’cat’: 4, ’spider’: 8}
for animal, legs in d.items():

print(’A {} has {} legs’.format(animal, legs))

139

https://docs.python.org/2/library/stdtypes.html#dict


A person has 2 legs
A cat has 4 legs
A spider has 8 legs

Add pairs to the dictionary
[36]: d[’bird’]=2

List keys
[37]: d.keys()

[37]: dict_keys(['person', 'cat', 'spider', 'bird'])

List Values
[38]: d.values()

[38]: dict_values([2, 4, 8, 2])

Query values from keys
[39]: d[’bird’]

[39]: 2

Dictionary comprehensions: These are similar to list comprehensions, but allow you to easily
construct dictionaries. For example:

[40]: nums = [0, 1, 2, 3, 4]
even_num_to_square = {x: x ** 2 for x in nums if x % 2 == 0}
print(even_num_to_square)

{0: 0, 2: 4, 4: 16}

Convert array to list

24.1.1.2.6 Sets (like dictionaries but with no values, add & remove)
A set is an unordered collection of distinct elements. As a simple example, consider the follow-

ing:
[41]: animals = {’cat’, ’dog’}

print(’cat’ in animals) # Check if an element is in a set; prints
↪→"True"

print(’fish’ in animals) # prints "False"

True
False

[42]: animals.add(’fish’) # Add an element to a set
print(’fish’ in animals)
print(len(animals)) # Number of elements in a set;

True
3
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[43]: animals.add(’cat’) # Adding an element that is already in the
↪→set does nothing

print(len(animals))
animals.remove(’cat’) # Remove an element from a set
print(len(animals))

3
2

Loops: Iterating over a set has the same syntax as iterating over a list; however since sets are
unordered, you cannot make assumptions about the order in which you visit the elements of the
set:

[44]: animals = {’cat’, ’dog’, ’fish’}
for idx, animal in enumerate(animals):

print(’#{}: {}’.format(idx + 1, animal))

#1: fish
#2: dog
#3: cat

Set comprehensions: Like lists and dictionaries, we can easily construct sets using set com-
prehensions:

[45]: from math import sqrt
print({int(sqrt(x)) for x in range(30)})

{0, 1, 2, 3, 4, 5}

24.1.1.2.7 Tuples A tuple is an (immutable) ordered list of values. A tuple is in many ways
similar to a list; one of the most important differences is that tuples can be used as keys in dictio-
naries and as elements of sets, while lists cannot. Here is a simple example:

[46]: d = {(x, x + 1): x for x in range(10)} # Create a dictionary with
↪→tuple keys

print(d)

tt = () # initialization of empty tuple
t1 = (66,) # initialization of tuple with a single value
t = (5, 6) # Create a tuple
tt = tt+t1+t
print("tt=",tt)
print("tt[2]=",tt[2])
print("tt[1:3]=",tt[1:3])
print("66 in tt", 66 in tt)

print(type(t))
print(d[t])
print(d[(1, 2)])
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{(0, 1): 0, (1, 2): 1, (2, 3): 2, (3, 4): 3, (4, 5): 4, (5, 6): 5, (6,
↪→7): 6,

(7, 8): 7, (8, 9): 8, (9, 10): 9}
tt= (66, 5, 6)
tt[2]= 6
tt[1:3]= (5, 6)
66 in tt True
<class 'tuple'>
5
1

[47]: t[0] = 1

↪→---------------------------------------------------------------------------

TypeError Traceback (most
↪→recent call last)

<ipython-input-47-c8aeb8cd20ae> in <module>()
----> 1 t[0] = 1

TypeError: 'tuple' object does not support item assignment

24.1.1.3 Functions Python functions are defined using the def keyword. For example:
[48]: def sign(x):

if x > 0:
return ’positive’

elif x < 0:
return ’negative’

else:
return ’zero’

for x in [-1, 0, 1]:
print(sign(x))

negative
zero
positive

We will often define functions to take optional keyword arguments, like this:
[49]: def hello(name, loud=False):

if loud:
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print(’HELLO, {}’.format(name.upper()))
else:

print(’Hello, {}!’.format(name))

hello(’Bob’)
hello(’Fred’, loud=True)

Hello, Bob!
HELLO, FRED

24.1.1.4 Classes A new class creates a new type of object, bounding data and functionality that
allows new instances of the type made. Each class instance can have attributes attached to it, so
we can make class instances as well as instances to variables and methods for maintaining the
state of the class. Instances of the method can have attributes and can modify the state of the
class, as clearly described by the documentation.

The syntax for defining classes in Python is straightforward:
[50]: class Greeter:

""" My greeter class """
# Constructor (method of construction of class in a specific

↪→state)

v1 =’papa’ # class variable shared by all instances
def __init__(self, name_inp): # name_inp: argument given to

↪→Greeter for class instantiation

self.name = name_inp # Create an instance variable
↪→maintaining the state

# instance variables are unique to each
↪→instance

# Instance method
# note that the first argument of the function method is the

↪→instance object

def greet(self, loud=False):
if loud:

print(’HELLO, {}’.format(self.name.upper()))
self.name = ’Haote’

else:
print(’Hello, {}!’.format(self.name))
self.name = ’Victor’

# Class instantiation (returning a new instance of the class assigned
↪→to g):

# Constructs g of type Greeter & initialzes its state
# as defined by the class variables (does not execute methods)
g = Greeter(’Fred’)

# Call an instance method of the class in its current state:
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# prints "Hello, Fred!" and updates state varible to ’Victor’ since
↪→loud=False

g.greet() # equivalent to Greeter.greet(g) since the first arg of
↪→greet is g

# Call an instance method; prints "HELLO, VICTOR" and updates
↪→variable to ’Haote’

g.greet(loud=True) # equivalent to Greeter.greet(g,loud=True)
#since the first arg of greet is g

print(g.v1)
g.greet() # Call an instance method; prints "Hello, Haote!"

# A method object is created by packing
↪→(pointers to) the

# instance object g and the function object greet

g2 = Greeter(’Lea’) # Class instance reinitializes variable to ’Lea’

g2.greet() # Call an instance method; prints "Hello, Lea!"
g2.__doc__
g2.x=20 # Data attributes spring into existence upon

↪→assignment

print(g2.x)
del g2.x # Deletes attribute
g2.v1

Hello, Fred!
HELLO, VICTOR
papa
Hello, Haote!
Hello, Lea!
20

[50]: 'papa'

For loops (iterators). Behind the scenes, the for statement calls iter() on the container object.
[51]: for element in [1,2,3]: # elements of list

print(element)
for element in (1,2,3): # elements of tuple
print(element)

for key in {’first’:1, ’second’:2, ’third’:3}: # elements of
↪→dictionary

print(’key=’,key)
for char in ’1234’:
print(char)

#for line in open(’’myfile.txt)
# print(line,end=’’)
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1
2
3
1
2
3
key= first
key= second
key= third
1
2
3
4

24.1.1.5 Modules A module is a .py file containing Python definitions and statements that can
be imported into a Python script, as described in the Python documentation.

As an example, after mounting your Google drive as described by the Navigating_tutorial.ipynb
Jupyter notebook, use a text editor and write a module with the line:

[52]: greeting = "Good Morning!"

Save the document with the name mymod.py
Next, go the the folder where you saved that file and open a notebook with the lines:

[ ]: import mymod as my
print(my.greeting)

you will see that the notebook has imported the variable greetingfrom the module mymod.py
and has invoked the variable as an attribute of the module mymod that was imported as my when
printing Good Morning!!.

Modules are very convenient since they allow you to import variables, functions and classes
that you might have developed for previous projects, without having to copy them into each pro-
gram. So, you can build from previous projects, or split your work into several files for easier
maintenance.

Within a module, the module’s name (as a string) is available as the value of the global variable
__name__.

24.1.2 Numpy

Numpy is the core library for scientific computing in Python. It provides a high-performance multi-
dimensional array object, and tools for working with these arrays. If you are already familiar with
MATLAB, you might find this tutorial useful to get started with Numpy.

To use Numpy, we first need to import the numpy package:
[54]: import numpy as np

24.1.2.1 Arrays A numpy array is a grid of values, all of the same type, and is indexed by a tuple
of nonnegative integers. The number of dimensions is the rank of the array; the shape of an array
is a tuple of integers giving the size of the array along each dimension.
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We can initialize numpy arrays from nested Python lists, and access elements using square
brackets:

[55]: a = np.array([1, 2, 3]) # Create a rank 1 array
print(type(a), a.shape, a[0], a[1], a[2])
a[0] = 5 # Change an element of the array
print(a)

<class 'numpy.ndarray'> (3,) 1 2 3
[5 2 3]

[56]: b = np.array([[1,2,3],[4,5,6]]) # Create a rank 2 array
print(b)

[[1 2 3]
[4 5 6]]

[57]: print(b.shape)
print(b[0, 0], b[0, 1], b[1, 0])

(2, 3)
1 2 4

Numpy also provides many functions to create arrays:
[58]: a = np.zeros((2,2)) # Create an array of all zeros

print(a)

[[0. 0.]
[0. 0.]]

[59]: b = np.ones((1,2)) # Create an array of all ones
print(b)

[[1. 1.]]

[60]: c = np.full((2,2), 7) # Create a constant array
print(c)

[[7 7]
[7 7]]

[61]: d = np.eye(2) # Create a 2x2 identity matrix
print(d)

[[1. 0.]
[0. 1.]]
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[62]: e = np.random.random((2,2)) # Create an array filled with random
↪→values

print(e)

[[0.32071297 0.96986179]
[0.32331846 0.50510489]]

24.1.2.2 Array indexing Numpy offers several ways to index into arrays.
Slicing: Similar to Python lists, numpy arrays can be sliced. Since arrays may be multidimen-

sional, you must specify a slice for each dimension of the array:
[63]: import numpy as np

# Create the following rank 2 array with shape (3, 4)
# [[ 1 2 3 4]
# [ 5 6 7 8]
# [ 9 10 11 12]]
a = np.array([[1,2,3,4], [5,6,7,8], [9,10,11,12]])

# Use slicing to pull out the subarray consisting of the first 2 rows
# and columns 1 and 2; b is the following array of shape (2, 2):
# [[2 3]
# [6 7]]
b = a[:2, 1:3]
print(b)

[[2 3]
[6 7]]

A slice of an array is a view into the same data, so modifying it will modify the original array.
[64]: print(a[0, 1])

b[0, 0] = 77 # b[0, 0] is the same piece of data as a[0, 1]
print(a[0, 1])

2
77

You can also mix integer indexing with slice indexing. However, doing so will yield an array
of lower rank than the original array. Note that this is quite different from the way that MATLAB
handles array slicing:

[65]: # Create the following rank 2 array with shape (3, 4)
a = np.array([[1,2,3,4], [5,6,7,8], [9,10,11,12]])
print(a)

[[ 1 2 3 4]
[ 5 6 7 8]
[ 9 10 11 12]]
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Two ways of accessing the data in the middle row of the array. Mixing integer indexing with
slices yields an array of lower rank, while using only slices yields an array of the same rank as the
original array:

[66]: row_r1 = a[1, :] # Rank 1 view of the second row of a
row_r2 = a[1:2, :] # Rank 2 view of the second row of a
row_r3 = a[[1], :] # Rank 2 view of the second row of a
print(row_r1, row_r1.shape)
print(row_r2, row_r2.shape)
print(row_r3, row_r3.shape)

[5 6 7 8] (4,)
[[5 6 7 8]] (1, 4)
[[5 6 7 8]] (1, 4)

[67]: # We can make the same distinction when accessing columns of an array:
col_r1 = a[:, 1]
col_r2 = a[:, 1:2]
print(col_r1, col_r1.shape)
print()
print(col_r2, col_r2.shape)

[ 2 6 10] (3,)

[[ 2]
[ 6]
[10]] (3, 1)

Integer array indexing: When you index into numpy arrays using slicing, the resulting array
view will always be a subarray of the original array. In contrast, integer array indexing allows you
to construct arbitrary arrays using the data from another array. Here is an example:

[68]: a = np.array([[1,2], [3, 4], [5, 6]])

# An example of integer array indexing.
# The returned array will have shape (3,) and
print(a[[0, 1, 2], [0, 1, 0]])

# The above example of integer array indexing is equivalent to this:
print(np.array([a[0, 0], a[1, 1], a[2, 0]]))

[1 4 5]
[1 4 5]

[69]: # When using integer array indexing, you can reuse the same
# element from the source array:
print(a[[0, 0], [1, 1]])

148



# Equivalent to the previous integer array indexing example
print(np.array([a[0, 1], a[0, 1]]))

[2 2]
[2 2]

One useful trick with integer array indexing is selecting or mutating one element from each row
of a matrix:

[70]: # Create a new array from which we will select elements
a = np.array([[1,2,3], [4,5,6], [7,8,9], [10, 11, 12]])
print(a)

[[ 1 2 3]
[ 4 5 6]
[ 7 8 9]
[10 11 12]]

[71]: # Create an array of indices
b = np.array([0, 2, 0, 1])

# Select one element from each row of a using the indices in b
print(a[np.arange(4), b]) # Prints "[ 1 6 7 11]"

[ 1 6 7 11]

[72]: # Mutate one element from each row of a using the indices in b
a[np.arange(4), b] += 10
print(a)

[[11 2 3]
[ 4 5 16]
[17 8 9]
[10 21 12]]

Boolean array indexing: Boolean array indexing lets you pick out arbitrary elements of an
array. Frequently this type of indexing is used to select the elements of an array that satisfy some
condition. Here is an example:

[73]: import numpy as np

a = np.array([[1,2], [3, 4], [5, 6]])

bool_idx = (a > 2) # Find the elements of a that are bigger than 2;
# this returns a numpy array of Booleans of the

↪→same

# shape as a, where each slot of bool_idx tells
# whether that element of a is > 2.
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print(bool_idx)

[[False False]
[ True True]
[ True True]]

[74]: # We use boolean array indexing to construct a rank 1 array
# consisting of the elements of a corresponding to the True values
# of bool_idx
print(a[bool_idx])

# We can do all of the above in a single concise statement:
print(a[a > 2])

[3 4 5 6]
[3 4 5 6]

For brevity we have left out a lot of details about numpy array indexing; if you want to know
more you should read the documentation.

24.1.2.3 Datatypes Every numpy array is a grid of elements of the same type. Numpy provides
a large set of numeric datatypes that you can use to construct arrays. Numpy tries to guess a
datatype when you create an array, but functions that construct arrays usually also include an
optional argument to explicitly specify the datatype. Here is an example:

[75]: x = np.array([1, 2]) # Let numpy choose the datatype
y = np.array([1.0, 2.0]) # Let numpy choose the datatype
z = np.array([1, 2], dtype=np.int64) # Force a particular datatype

print(x.dtype, y.dtype, z.dtype)

int64 float64 int64

You can read all about numpy datatypes in the documentation.

24.1.2.4 Array math Basic mathematical functions operate elementwise on arrays, and are
available both as operator overloads and as functions in the numpy module:

[76]: x = np.array([[1,2],[3,4]], dtype=np.float64)
y = np.array([[5,6],[7,8]], dtype=np.float64)

# Elementwise sum; both produce the array
print(x + y)
print(np.add(x, y))

150

http://docs.scipy.org/doc/numpy/reference/arrays.dtypes.html


[[ 6. 8.]
[10. 12.]]
[[ 6. 8.]
[10. 12.]]

[77]: # Elementwise difference; both produce the array
print(x - y)
print(np.subtract(x, y))

[[-4. -4.]
[-4. -4.]]
[[-4. -4.]
[-4. -4.]]

[78]: # Elementwise product; both produce the array
print(x * y)
print(np.multiply(x, y))

[[ 5. 12.]
[21. 32.]]
[[ 5. 12.]
[21. 32.]]

[79]: # Elementwise division; both produce the array
# [[ 0.2 0.33333333]
# [ 0.42857143 0.5 ]]
print(x / y)
print(np.divide(x, y))

[[0.2 0.33333333]
[0.42857143 0.5 ]]
[[0.2 0.33333333]
[0.42857143 0.5 ]]

[80]: # Elementwise square root; produces the array
# [[ 1. 1.41421356]
# [ 1.73205081 2. ]]
print(np.sqrt(x))

[[1. 1.41421356]
[1.73205081 2. ]]

Note that unlike MATLAB, * is elementwise multiplication, not matrix multiplication. We instead
use the dot function to compute inner products of vectors, to multiply a vector by a matrix, and
to multiply matrices. dot is available both as a function in the numpy module and as an instance
method of array objects:
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[81]: x = np.array([[1,2],[3,4]])
y = np.array([[5,6],[7,8]])

v = np.array([9,10])
w = np.array([11, 12])

# Inner product of vectors; both produce 219
print(v.dot(w))
print(np.dot(v, w))

219
219

You can also use the @ operator which is equivalent to numpy’s dot operator.
[82]: print(v @ w)

219

[83]: # Matrix / vector product; both produce the rank 1 array [29 67]
print(x.dot(v))
print(np.dot(x, v))
print(x @ v)

[29 67]
[29 67]
[29 67]

[84]: # Matrix / matrix product; both produce the rank 2 array
# [[19 22]
# [43 50]]
print(x.dot(y))
print(np.dot(x, y))
print(x @ y)

[[19 22]
[43 50]]
[[19 22]
[43 50]]
[[19 22]
[43 50]]

Numpy provides many useful functions for performing computations on arrays; one of the most
useful is sum:

[85]: x = np.array([[1,2],[3,4]])

print(np.sum(x)) # Compute sum of all elements; prints "10"
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print(np.sum(x, axis=0)) # Compute sum of each column; prints "[4 6]"
print(np.sum(x, axis=1)) # Compute sum of each row; prints "[3 7]"

10
[4 6]
[3 7]

You can find the full list of mathematical functions provided by numpy in the documentation.
Apart from computing mathematical functions using arrays, we frequently need to reshape or

otherwise manipulate data in arrays. The simplest example of this type of operation is transposing
a matrix; to transpose a matrix, simply use the T attribute of an array object:

[86]: print(x)
print("transpose\n", x.T)

[[1 2]
[3 4]]
transpose
[[1 3]
[2 4]]

[87]: v = np.array([[1,2,3]])
print(v )
print("transpose\n", v.T)

[[1 2 3]]
transpose
[[1]
[2]
[3]]

24.1.2.5 Broadcasting Broadcasting is a powerful mechanism that allows numpy to work with
arrays of different shapes when performing arithmetic operations. Frequently we have a smaller
array and a larger array, and we want to use the smaller array multiple times to perform some
operation on the larger array.

For example, suppose that we want to add a constant vector to each row of a matrix. We could
do it like this:

[88]: # We will add the vector v to each row of the matrix x,
# storing the result in the matrix y
x = np.array([[1,2,3], [4,5,6], [7,8,9], [10, 11, 12]])
v = np.array([1, 0, 1])
y = np.empty_like(x) # Create an empty matrix with the same shape

↪→as x

# Add the vector v to each row of the matrix x with an explicit loop
for i in range(4):

y[i, :] = x[i, :] + v
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print(y)

[[ 2 2 4]
[ 5 5 7]
[ 8 8 10]
[11 11 13]]

This works; however when the matrix x is very large, computing an explicit loop in Python could
be slow. Note that adding the vector v to each row of the matrix x is equivalent to forming a matrix
vv by stacking multiple copies of v vertically, then performing elementwise summation of x and
vv. We could implement this approach like this:

[89]: vv = np.tile(v, (4, 1)) # Stack 4 copies of v on top of each other
print(vv) # Prints "[[1 0 1]

# [1 0 1]
# [1 0 1]
# [1 0 1]]"

[[1 0 1]
[1 0 1]
[1 0 1]
[1 0 1]]

[90]: y = x + vv # Add x and vv elementwise
print(y)

[[ 2 2 4]
[ 5 5 7]
[ 8 8 10]
[11 11 13]]

Numpy broadcasting allows us to perform this computation without actually creating multiple
copies of v. Consider this version, using broadcasting:

[91]: import numpy as np

# We will add the vector v to each row of the matrix x,
# storing the result in the matrix y
x = np.array([[1,2,3], [4,5,6], [7,8,9], [10, 11, 12]])
v = np.array([1, 0, 1])
y = x + v # Add v to each row of x using broadcasting
print(y)

[[ 2 2 4]
[ 5 5 7]
[ 8 8 10]
[11 11 13]]
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The line y = x + v works even though x has shape (4, 3) and v has shape (3,) due to
broadcasting; this line works as if v actually had shape (4, 3), where each row was a copy of v,
and the sum was performed elementwise.

Broadcasting two arrays together follows these rules:

1. If the arrays do not have the same rank, prepend the shape of the lower rank array with 1s
until both shapes have the same length.

2. The two arrays are said to be compatible in a dimension if they have the same size in the
dimension, or if one of the arrays has size 1 in that dimension.

3. The arrays can be broadcast together if they are compatible in all dimensions.
4. After broadcasting, each array behaves as if it had shape equal to the elementwise maximum

of shapes of the two input arrays.
5. In any dimension where one array had size 1 and the other array had size greater than 1,

the first array behaves as if it were copied along that dimension

If this explanation does not make sense, try reading the explanation from the documentation
or this explanation.

Functions that support broadcasting are known as universal functions. You can find the list of
all universal functions in the documentation.

Here are some applications of broadcasting:
[92]: # Compute outer product of vectors

v = np.array([1,2,3]) # v has shape (3,)
w = np.array([4,5]) # w has shape (2,)
# To compute an outer product, we first reshape v to be a column
# vector of shape (3, 1); we can then broadcast it against w to yield
# an output of shape (3, 2), which is the outer product of v and w:

print(np.reshape(v, (3, 1)) * w)

[[ 4 5]
[ 8 10]
[12 15]]

[93]: # Add a vector to each row of a matrix
x = np.array([[1,2,3], [4,5,6]])
# x has shape (2, 3) and v has shape (3,) so they broadcast to (2, 3),
# giving the following matrix:

print(x + v)

[[2 4 6]
[5 7 9]]

[94]: # Add a vector to each column of a matrix
# x has shape (2, 3) and w has shape (2,).
# If we transpose x then it has shape (3, 2) and can be broadcast
# against w to yield a result of shape (3, 2); transposing this result
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# yields the final result of shape (2, 3) which is the matrix x with
# the vector w added to each column. Gives the following matrix:

print((x.T + w).T)

[[ 5 6 7]
[ 9 10 11]]

[95]: # Another solution is to reshape w to be a row vector of shape (2, 1);
# we can then broadcast it directly against x to produce the same
# output.
print(x + np.reshape(w, (2, 1)))

[[ 5 6 7]
[ 9 10 11]]

[96]: # Multiply a matrix by a constant:
# x has shape (2, 3). Numpy treats scalars as arrays of shape ();
# these can be broadcast together to shape (2, 3), producing the
# following array:
print(x * 2)

[[ 2 4 6]
[ 8 10 12]]

Broadcasting typically makes your code more concise and faster, so you should strive to use it
where possible.

This brief overview has touched on many of the important things that you need to know about
numpy, but is far from complete. Check out the numpy reference to find out much more about
numpy.

24.1.3 Matplotlib

Matplotlib is a plotting library. In this section give a brief introduction to the matplotlib.pyplot
module, which provides a plotting system similar to that of MATLAB.

[97]: import matplotlib.pyplot as plt

By running this special iPython command, we will be displaying plots inline:
[98]: %matplotlib inline

24.1.3.1 Plotting The most important function in matplotlib is plot, which allows you to plot
2D data. Here is a simple example:

[99]: # Compute the x and y coordinates for points on a sine curve
x = np.arange(0, 3 * np.pi, 0.1)
y = np.sin(x)
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# Plot the points using matplotlib
plt.plot(x, y)

[99]: [<matplotlib.lines.Line2D at 0x7f78639a1748>]

With just a little bit of extra work we can easily plot multiple lines at once, and add a title,
legend, and axis labels:

[100]: y_sin = np.sin(x)
y_cos = np.cos(x)

# Plot the points using matplotlib
plt.plot(x, y_sin)
plt.plot(x, y_cos)
plt.xlabel(’x axis label’)
plt.ylabel(’y axis label’)
plt.title(’Sine and Cosine’)
plt.legend([’Sine’, ’Cosine’])

[100]: <matplotlib.legend.Legend at 0x7f78634f2860>
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24.1.3.2 Subplots You can plot different things in the same figure using the subplot function.
Here is an example:

[101]: # Compute the x and y coordinates for points on sine and cosine curves
x = np.arange(0, 3 * np.pi, 0.1)
y_sin = np.sin(x)
y_cos = np.cos(x)

# Set up a subplot grid that has height 2 and width 1,
# and set the first such subplot as active.
plt.subplot(2, 1, 1)

# Make the first plot
plt.plot(x, y_sin)
plt.title(’Sine’)

# Set the second subplot as active, and make the second plot.
plt.subplot(2, 1, 2)
plt.plot(x, y_cos)
plt.title(’Cosine’)

# Show the figure.
plt.show()
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You can read much more about the subplot function in the documentation.

24.2 Torch tensor

Figure 64: Schematic representation of a Py-
Torch tensor.

The pytorch tensor class involves two data attribute
(i.e., two data containers), including one analogous
to a numpy multidimensional array with the ele-
ments of the tensor, and the other container with
the gradients of an input function with respect to the
tensor elements (Fig. 64). In addition, the tensor
class involves the attribute backward method for the
so-called backward propagation procedure applied
for training neural networks that computes the gradi-
ents of the loss function with respect to the elements
of the tensor. In addition, PyTorch has modules and
functions summarized in Fig. 65.

As an example, we consider the following numpy
multiarray

[102]: nt=np.ones((2,2))

which can be used to build a corresponding
torch tensor, with associated gradients, as follows:

[103]: import torch
import torch.nn as nn
import torch.nn.functional as F
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import torch.optim as optim

[104]: r = torch.tensor(nt, requires_grad=True)

The resulting torch tensor can be combined with other torch tensors to define, for example, a
function f as follows:

[105]: p = torch.ones((2,2), requires_grad=True)
p2 = p+p
y=(r+2)+p2
z=y*y*3
f = z.mean()
print("r=",r)
print("p=",p)
print("f=",f)

print(’before backward: r.grad=’, r.grad)

r= tensor([[1., 1.],
[1., 1.]], dtype=torch.float64, requires_grad=True)

p= tensor([[1., 1.],
[1., 1.]], requires_grad=True)

f= tensor(75., dtype=torch.float64, grad_fn=<MeanBackward0>)
before backward: r.grad= None

Note that the torch tensor r does not have any gradients (i.e.,before backward: r.grad=
None) since so far we have not invoked the method backward for any function of r.

Now we can compute the gradient of f with respect to the elments of r by instantiating the
backward attribute of f, as follows:

[106]: f.backward()

We can now check that the tensor r has the correct gradients of f with respect to the 4 elements
of r, as follows:

[107]: print(’after backward: r.grad=’, r.grad)

after backward: r.grad= tensor([[7.5000, 7.5000],
[7.5000, 7.5000]], dtype=torch.float64)

We can also zero the gradients, as follows:
[108]: r.grad.data.zero_()

print(’after zero: r.grad=’, r.grad)

after zero: r.grad= tensor([[0., 0.],
[0., 0.]], dtype=torch.float64)
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Figure 65: Summary of PyTorch modules and functions.
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