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CHEM 472/572 — Statistical Mechanics for Molecules and Materials

Statistical mechanics is the language that connects microscopic laws to macroscopic behavior. It underpins
modern research in chemistry, materials science, physics, data science, and chemical engineering. This
course introduces the core ideas of quantum statistical mechanics and shows how they are used to understand
and predict the behavior of molecules and materials in gases, liquids, and solids.
The course emphasizes both physical insight and practical tools. You will learn how classical thermody-
namics emerges from quantum mechanics, and how theoretical ideas translate into computational methods
widely used in research and industry. By the end of the course, you will be able to analyze complex molec-
ular systems using the same concepts and techniques found in current scientific literature.
Topics include statistical ensembles; Boltzmann, Fermi, and Bose statistics; density matrices; mean-field
theories; phase transitions; chemical reaction dynamics; time-correlation functions; Monte Carlo methods;
and molecular dynamics simulations.

Course Materials
Required Text: David Chandler, Introduction to Modern Statistical Mechanics, Oxford University Press
(Chs. 3–8).
Additional References: Hill, McQuarrie, Reif, Kubo, Friedman, and Tuckerman (details on course web-
site).
Lecture notes, assignments, and computational examples are available at: https://batistalab.com/
teaching/chem-472-572

Who Should Take This Course
Designed for senior undergraduates and first-year graduate students with interests in molecular science, ma-
terials, theory, or computation. No prior experience with simulations is required—methods are introduced
step by step.

Grading
Homework and assignments: 30% Midterm exam: 50% Final computational project: 20%
The final project replaces a traditional final exam and allows you to explore a topic of interest using compu-
tational tools introduced in class.

Tentative Schedule

• Jan. 12–21: Statistical Methods and Ensembles

• Jan. 26–Feb. 4: Ideal Systems

• Feb. 9–25: Phase Transitions

• Mar. 2–6: Monte Carlo Methods

Contact
Office hours by Zoom or appointment. Email: victor.batista@yale.edu
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1 Introduction

Statistical mechanics builds a bridge between two descriptions of nature: macroscopic observables that we
measure in the lab (temperature, pressure, energy, heat capacities, phase behavior), and the microscopic
laws that govern electrons, atoms, and molecules. In this sense, it provides the molecular foundation of
thermodynamics by explaining how macroscopic regularities emerge from microscopic physics.
A helpful analogy is a crowded city: we cannot track every person’s motion, yet we can predict average
traffic flow, density, and rush-hour patterns. Likewise, instead of following the exact trajectory of every
particle in a macroscopic system, statistical mechanics focuses on the statistics of accessible microscopic
states.

1.1 Classical microscopic states, ensembles, and time averages

Microscopic state (classical). For a classical system with N particles, a microscopic state is specified by a
single point in phase space,

Γ ≡ (q, p) = (q1, . . . , q3N , p1, . . . , p3N),

i.e., the complete set of coordinates and conjugate momenta at an instant of time. You can think of Γ as the
“full snapshot” of the system at that instant.
Ensemble (classical). An ensemble is a large collection of replicas of the system, each prepared under the
same macroscopic conditions, but possibly occupying different microscopic states. In classical statistical
mechanics, an ensemble is described by a probability density ρ(Γ) over phase space (or by probabilities Pj
in a discrete description). The key idea is that ρ(Γ) quantifies our uncertainty about which microscopic state
the system occupies.
Observables as time averages. An observable is a function of the microscopic state, A(Γ) (for example,
energy, pressure, or potential energy). A measurement performed over a time interval [0, t f ] can be modeled
as a time average along the trajectory Γ(t):

〈A〉time =
1
t f

∫ t f

0
A(Γ(t)) dt =

1
t f

∫ t f

0
A(t) dt.

Operationally: follow the system as it moves through phase space, evaluate A at each visited microscopic
state, and average over the measurement time.

1.2 Numerical trajectories in phase space: Velocity Verlet

To compute Γ(t) numerically, we integrate Newton’s equations. For a one-dimensional coordinate q with
momentum p and potential energy V(q),

q̇ =
p
m

, ṗ = F(q) = −dV
dq

.

Thus, once V(q) is specified, the force F(q) is determined, and the microscopic state (q(t), p(t)) can be
propagated forward in time.
A widely used, stable, and time-reversible integrator is the velocity Verlet algorithm:

qn+1 = qn + vn∆t + 1
2 an∆t2,

an+1 =
F(qn+1)

m
,

vn+1 = vn +
1
2 (an + an+1)∆t,
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with v = p/m and a = F/m. The algorithm is popular because it is simple, time-reversible, and typically
conserves energy well over long times for conservative forces (the energy usually oscillates slightly around
the correct value, rather than drifting steadily, when ∆t is reasonable). Appendix B describes a Python
implementation of the velocity Verlet algorithm as applied to the Harmonic oscillator example.
Why time-averaging becomes impossible for macroscopic systems. To compute 〈A〉time by explicit dy-
namics, we must know (i) the initial conditions (q(0), p(0)) and (ii) all interactions, encoded by the po-
tential energy function V(q). For a system with roughly one mole of particles (∼ 1023), this becomes
hopeless in practice: the state space is enormous and the exact interactions are far too complex to track
particle-by-particle over relevant time scales.
Ensemble averages and the Boltzmann distribution. Statistical mechanics replaces time averages with
ensemble averages. In the canonical ensemble (fixed N, V, T), the probability of occupying a microscopic
state j with energy Ej is assumed to be

Pj ∝ e−βEj , β =
1

kBT
.

Normalization gives

Pj =
e−βEj

Zβ
, Zβ = ∑

j
e−βEj , ∑

j
Pj = 1.

Then the ensemble average of an observable is

〈A〉ens = ∑
j

Pj Aj.

The message is: instead of following one system for a long time, we average over the distribution of states
that are thermally accessible.
Ergodic hypothesis. The key assumption connecting these two ways of averaging is that, for an equilibrium
system observed long enough,

〈A〉time =
1
t f

∫ t f

0
A(t) dt ≈ 〈A〉ens = ∑

j
Pj Aj.

This is the Ergodic Hypothesis: time averages along a single long trajectory can be estimated by ensemble
averages over thermally populated microscopic states.
Exercise (for the motivated student). Find an example where the time average does not match the canon-
ical ensemble average on accessible time scales (e.g., metastable systems, disconnected regions of phase
space, glassy dynamics, or very high barriers).
The canonical partition function. Zβ is called the canonical partition function. Conceptually, Zβ is the
normalization constant that makes probabilities add to one; physically, it is the central quantity from which
equilibrium thermodynamic properties can be derived.

1.3 Example: Classical partition function of the harmonic oscillator

The harmonic oscillator plays a central role in molecular physics and chemistry. Near equilibrium, the po-
tential energy surface of a molecule can be expanded about a stable configuration, and to leading order this
expansion is quadratic in the nuclear displacements. As a result, molecular vibrations, lattice phonons, and
small-amplitude fluctuations around equilibrium structures are all well described by collections of (indepen-
dent or weakly coupled) harmonic oscillators. For this reason, the harmonic oscillator provides the simplest
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nontrivial setting in which to connect microscopic dynamics, statistical mechanics, and thermodynamic
averages relevant to molecular systems.
For a classical one-dimensional harmonic oscillator with Hamiltonian

H(q, p) =
p2

2m
+

1
2

kq2,

the canonical partition function is obtained by integrating the Boltzmann factor over phase space:

Zβ =
∫ ∞

−∞
dq
∫ ∞

−∞
dp e−βH(q,p).

Because the Hamiltonian is quadratic in both q and p, the integrals factorize, yielding

Zβ =

(∫ ∞

−∞
e−β

p2
2m dp

)(∫ ∞

−∞
e−β

kq2
2 dq

)
=

√
2πm

β

√
2π

βk
=

2π

βω
,

where ω =
√

k/m. (In many treatments an additional factor such as 1/h is included to render Zβ dimen-
sionless; the essential β-dependence, which controls the thermodynamics, is unchanged.)
Ensemble-average energy from the partition function. In molecular statistical mechanics, thermody-
namic observables are obtained as ensemble averages. A key identity relates the mean energy to the partition
function,

〈E〉 = − ∂

∂β
ln Zβ.

For the classical harmonic oscillator, ln Zβ = ln(2π/ω)− ln β, and therefore

〈E〉 = 1
β
= kBT.

This result reflects the equipartition theorem: each quadratic degree of freedom contributes 1
2 kBT, giving

〈K〉 = 1
2 kBT and 〈V〉 = 1

2 kBT.
Time averages versus ensemble averages. In molecular simulations, thermodynamic quantities are typi-
cally estimated from time averages along a single trajectory rather than explicit ensemble sampling. For the
harmonic oscillator, the canonical ensemble predicts

〈V〉ens =
1
2 kBT =

〈E〉
2

.

In the numerical simulation discussed above, the total energy is fixed at E = 0.5, and the long-time average
yields 〈V〉time ≈ 0.25 = E/2. This agreement illustrates, in the simplest molecular setting, how time
averages generated by Hamiltonian dynamics reproduce ensemble predictions, providing a concrete example
of the ergodic hypothesis that underlies molecular dynamics simulations.

Link to Dr. Uriel Morzan’s Introduction to Statistical Mechanics

2 Postulates of Statistical Mechanics

In the previous section, we illustrated how to computed observables in terms of the probabilities Pj =

Z−1e−Ej of observing the system in the various possible microscopic states j of energy Ej, even when
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we might lack detailed knowledge of the microscopic time-evolution of the system during the time of the
measurement.

This approach rests on just two postulates, known as the fundamental postulates of Statistical Mechanics.

First Postulate : The experimentally measured value of an observable in a macroscopic system is equal
to its ensemble average.

Second Postulate : A macroscopic system at equilibrium is described by the ensemble that maximizes
the entropy, subject to the macroscopic constraints defining the system.

In the next section, we introduce Gibbs’ definition of entropy and we show that when the ensemble maxi-
mizes its entropy subject to the constraint of energy E, then Pj = Z−1e−Ej and states with the same energy
have the same probability. So, observables can be computed as averages over microscopic states with prob-
abilities Pj = Z−1e−Ej , as illustrated in the previous section for the harmonic oscillator.

2.1 Ergodicity

An alternative approach is to compute observables as time averages:

O = lim
τ→∞

1
τ

∫ τ

0
O(t) dt, (1)

after computing the trajectory of the system in phase-space, as done in molecular dynamics simulations, and
obtaining O(t) for each instantaneous configuration x(t), p(t). However, for macroscopic systems, this is
impossible since the number of degrees of freedom is enormous, and neither the initial conditions nor the
detailed interactions with the environment are known.
The first postulate thus provides a powerful alternative. Instead of following one system in time, we imagine
a large collection of identical, independently prepared copies (or replicas) of the system—an ensemble. We
then compute the observable for each microscopic state and average over the ensemble,

O = ∑
j

Pj O(j), (2)

where Pj is the probability that a replica of the system is in microscopic state j. This approach bypasses the
need to track microscopic dynamics, provided we can determine how many replicas occupy each state.

The second postulate supplies exactly this missing information. By maximizing the entropy subject to
macroscopic constraints (such as fixed energy or particle number), we find that Pj = Z−1e−Ej . This
maximum-entropy principle implies that all microscopic states with the same energy and particle number
are equally probable.

Returning to the dynamical picture, the second postulate implies that during the measurement, the system
must spend equal fractions of time in all microscopic states with the same energy and when the ensemble
average coincides with the time average the system is called ergodic. When expressed in this way, the
second postulate is known as the ergodic hypothesis of statistical mechanics.

3 Examples of Ensemble Averages

3.1 Example 1: Spins Coupled to an External Field

We consider a system of two noninteracting spins with magnetic moments µ1 and µ2 in thermal equilibrium
with a heat bath at temperature T. An external magnetic field B couples to each spin. Each spin can point
either up (+) or down (−) relative to the field, with energies

E(i,±) = ±µiB, i = 1, 2. (3)

11



Because the spins do not interact, the total energy is simply the sum of the individual spin energies.

Our goal is to compute, using the canonical ensemble:

(A) the average internal energy,

(B) the mean-square energy fluctuation,

(C) the entropy,

(D) the Helmholtz free energy,

(E) the average magnetization.

Solution

(A) Average internal energy
Each spin has two possible orientations, so the system has four microstates in total. The corresponding
energies are

(−µ1 − µ2)B, (−µ1 + µ2)B, (µ1 − µ2)B, (µ1 + µ2)B.

The partition function is therefore

Z = e−βB(−µ1−µ2) + e−βB(−µ1+µ2) + e−βB(µ1−µ2) + e−βB(µ1+µ2). (4)

Factoring this expression yields
Z = 4 cosh(βBµ1) cosh(βBµ2). (5)

The average internal energy follows from

Ē = −∂ ln Z
∂β

,

which gives
Ē = −Bµ1 tanh(βBµ1)− Bµ2 tanh(βBµ2). (6)

Physical interpretation. Each spin contributes independently to the total energy. At high temperatures
(βBµi � 1), thermal fluctuations randomize the spins and Ē → 0. At low temperatures (βBµi � 1), both
spins align with the field and the energy approaches its minimum value −B(µ1 + µ2).

(B) Energy fluctuations
The mean-square fluctuation of the energy is

(δE)2 = −∂Ē
∂β

.

Using the result above, we obtain

(δE)2 =
(Bµ1)

2

cosh2(βBµ1)
+

(Bµ2)2

cosh2(βBµ2)
. (7)

Physical interpretation. Energy fluctuations are largest when thermal energy and magnetic alignment com-
pete most strongly. They vanish at low temperatures, where the system is frozen into its ground state, and
also at very high temperatures, where all microstates are nearly equally populated.

(C) Entropy
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The entropy in the canonical ensemble is given by

S = kβĒ + k ln Z. (8)

Substituting the expressions for Ē and Z yields

S = − kβBµ1 tanh(βBµ1)− kβBµ2 tanh(βBµ2)

+ k ln[4 cosh(βBµ1) cosh(βBµ2)] .
(9)

Physical interpretation. At high temperatures the four spin configurations are nearly equally likely, and the
entropy approaches k ln 4. As the temperature decreases, the magnetic field orders the spins, reducing the
number of accessible microstates and hence the entropy.

(D) Helmholtz free energy
The Helmholtz free energy is

A = −kT ln Z = −kT ln[4 cosh(βBµ1) cosh(βBµ2)] . (10)

Physical interpretation. The free energy encodes the competition between minimizing energy and maxi-
mizing entropy. At low temperatures it is dominated by the internal energy of aligned spins, while at high
temperatures the entropic contribution becomes increasingly important.

(E) Average magnetization
Each spin contributes mi(±) = ±µi to the total magnetization. The ensemble average magnetization is

M = ∑
j

pjmj, pj = Z−1e−βEj . (11)

Evaluating the sum over the four microstates gives

M = µ1 tanh(βBµ1) + µ2 tanh(βBµ2). (12)

Physical interpretation. The magnetization measures the degree of spin alignment with the magnetic field.
At high temperatures thermal agitation destroys alignment and M → 0. At low temperatures both spins
align with the field, and the magnetization approaches its maximum value µ1 + µ2.

High-temperature limit and Curie’s law
In the high-temperature (or weak-field) limit, βBµi � 1, the hyperbolic tangent may be expanded to leading
order:

tanh(βBµi) ' βBµi. (13)

Using this approximation, the average magnetization becomes

M ' βB(µ2
1 + µ2

2) =
µ2

1 + µ2
2

kT
B. (14)

Defining the magnetic susceptibility χ through M = χB, we obtain

χ =
µ2

1 + µ2
2

kT
. (15)

Thus the susceptibility is inversely proportional to the temperature,

χ ∝
1
T

, (16)

which is Curie’s law for a system of noninteracting magnetic moments.

Physical interpretation. At high temperatures thermal fluctuations dominate over magnetic alignment. The
external field produces only a small imbalance between spin-up and spin-down states, leading to a magneti-
zation that is linear in the field and decreases as 1/T, characteristic of paramagnetic behavior.
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3.2 Example 2: Helix–Coil Transition in Polypeptides

Small synthetic polypeptides composed of identical amino acids can undergo a structural transition between
two distinct states:

• an α-helical state with energy Eα = −∆,

• a coiled state with energy Ec = +∆.

A schematic illustration of these configurations is shown in Fig. 1. For long polypeptides, many helical and
coiled segments may coexist along the chain.

Figure 1: Helix–coil transition in polypeptides. (a) Helix–coil transition in a single segment. (b) Multiple
helices and coils in a long polypeptide.

We consider a polypeptide consisting of a large number N of independent segments at thermal equilibrium
with a heat bath at temperature T. Each segment can be in either the helix or coil state.

Our goal is to determine how thermodynamic quantities, such as internal energy, entropy and molar
fraction of helical and coil domains depend on temperature.

(A) Ensemble average internal energy
Let n(j)

k = ±1 denote the state of segment k in configuration j, where nk = −1 corresponds to the α-helical
state and nk = +1 to the coiled state. The total energy of configuration j is

Ej =
N

∑
k=1

n(j)
k ∆. (17)

The canonical partition function is therefore

Z = ∑
j

e−βEj =
N

∏
k=1

∑
nk=±1

e−βnk∆ = [2 cosh(β∆)]N . (18)

The ensemble average internal energy follows from

Ē = −∂ ln Z
∂β

, (19)

14



which yields
Ē = −N∆ tanh(β∆). (20)

Physical interpretation. Each segment behaves like a two-level system. At high temperatures (β∆ � 1),
thermal fluctuations populate helix and coil states nearly equally, so Ē ≈ 0. At low temperatures (β∆� 1),
most segments occupy the lower-energy helical state and the energy approaches its minimum value −N∆.

(B) Entropy
The entropy in the canonical ensemble is given by the Gibbs definition

S = −∑
j

pj ln pj, pj = Z−1e−βEj . (21)

Equivalently,
S = kβĒ + k ln Z. (22)

Substituting the expressions for Ē and Z, we obtain

S = −∆N
T

tanh(β∆) + k ln
[
(2 cosh(β∆))N

]
. (23)

Physical interpretation. The entropy measures the number of accessible helix–coil configurations. At high
temperatures all 2N configurations are nearly equally probable and S → k ln(2N) = Nk ln 2. As the
temperature decreases, the system becomes increasingly ordered and the entropy decreases accordingly.

(C) Fraction of helical segments
Let N(α)

j be the number of helical segments in configuration j. The total energy may be written as

Ej = N∆− 2∆N(α)
j . (24)

The average number of helical segments can be obtained from the partition function via

∂ ln Z
∂(β∆)

= 2N̄(α) − N. (25)

Defining the fraction of helical segments as

χα =
N̄(α)

N
, (26)

we find
χα =

1
2
[1 + tanh(β∆)] . (27)

Physical interpretation. The helix fraction interpolates smoothly between two limits. At high temperatures,
χα → 1/2, indicating equal probabilities of helix and coil states. At low temperatures, χα → 1, meaning
that nearly all segments are helical. The transition is gradual rather than sharp, reflecting the absence of
cooperativity in this simple noninteracting model.
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4 Entropy

Gibbs introduced the following definition of entropy:

S = −k ∑
j

Pj ln Pj, (28)

where Pj is the probability of finding the system in microscopic state j and k is Boltzmann’s constant.
Remarkably, this is the unique function of the probabilities alone that is extensive: if a system is composed
of independent subsystems, its total entropy is the sum of the entropies of the subsystems.

Extensivity is a fundamental requirement for a definition of entropy, and it plays a central role in estab-
lishing Eq. (28) as the correct definition, as shown in the following exercise.

4.1 Exercise: Entropy Extensivity

Show that the entropy defined in Eq. (28) is extensive. That is, for two uncorrelated subsystems A and B,
prove that

SAB = SA + SB.

Solution. If subsystems A and B are independent, the joint probability of finding A in configuration jA and
B in configuration jB factorizes:

PjA,jB = PjA PjB .

The entropy of the combined system is therefore

SAB = −k ∑
jA

∑
jB

PjA,jB ln PjA,jB

= −k ∑
jA

∑
jB

PjA PjB ln
(

PjA PjB
)

. (29)

Using the identity ln(ab) = ln a + ln b, this becomes

SAB = −k ∑
jA

∑
jB

PjA PjB
[
ln PjA + ln PjB

]
= −k ∑

jA

PjA ln PjA ∑
jB

PjB − k ∑
jB

PjB ln PjB ∑
jA

PjA . (30)

Since probabilities are normalized, ∑jA
PjA = ∑jB PjB = 1, we obtain

SAB = SA + SB,

as required.

One can go further and show that the logarithm is essentially the only function that satisfies this additivity
property. Suppose a function f (p) obeys

f (pjA pjB) = f (pjA) + f (pjB).

Taking the partial derivative with respect to pjA gives

∂ f (pjA pjB)

∂(pjA pjB)
pjB =

∂ f (pjA)

∂pjA

, (31)

16



and similarly for pjB ,
∂ f (pjA pjB)

∂(pjA pjB)
pjA =

∂ f (pjB)

∂pjB
. (32)

Combining these results yields

p
d f (p)

dp
= c, (33)

where c is a constant. Integrating,
f (p) = c ln p,

showing that the logarithm is uniquely singled out by the requirement of extensivity.

4.2 Maximum Entropy Principle

We now show that maximizing the entropy leads directly to the Boltzmann distribution,

Pj = Z−1e−βEj , (34)

for systems with fixed extensive variables (such as volume V and particle number N) and fixed average
energy,

E = ∑
j

PjEj. (35)

The derivation uses the method of Lagrange multipliers to maximize the entropy subject to the constraints
of energy conservation and probability normalization. Equivalently, we minimize the functional

f = k ∑
j

Pj ln Pj + γ

(
∑

j
PjEj − E

)
+ γ′

(
∑

j
Pj − 1

)
, (36)

where γ and γ′ are Lagrange multipliers.
The extremum condition,

∂ f
∂Pj

∣∣∣
X
= 0, (37)

yields
k
(
ln Pj + 1

)
+ γEj + γ′ = 0. (38)

Solving for Pj, we obtain

Pj = exp(−βEj) exp
[
−
(

γ′

k
+ 1
)]

, (39)

where β = γ/k.
Finally, normalization ∑j Pj = 1 determines the prefactor,

exp
[
−
(

γ′

k
+ 1
)]

=

(
∑

j
e−βEj

)−1

≡ Z−1,

where Z is the partition function. Thus,
Pj = Z−1e−βEj , (40)

which is the Boltzmann distribution.

17

https://en.wikipedia.org/wiki/Lagrange_multiplier


5 Stationarity, Constancy, and Liouville’s Theorem

As shown in the previous section, a classical system at equilibrium is described by an ensemble with the
following phase-space probability density:

P(x, p) = Z−1e−βH(x,p), (41)

where H(x, p) is the Hamiltonian, β = (kT)−1, and

Z =
∫

dx dp e−βH(x,p)

is the canonical partition function.

5.1 Classical Liouville Equation

The total time derivative of a phase-space density P(x, p, t) along a trajectory is

dP
dt

=
∂P
∂t

+ ẋ
∂P
∂x

+ ṗ
∂P
∂p

. (42)

Using Hamilton’s equations,

ẋ =
∂H
∂p

, ṗ = −∂H
∂x

, (43)

Eq. (42) becomes
dP
dt

=
∂P
∂t

+
∂H
∂p

∂P
∂x
− ∂H

∂x
∂P
∂p

=
∂P
∂t

+ {P, H}. (44)

where we have introduced the Poisson bracket which for any two functions A(x, p) and B(x, p) is defined,
as follows:

{A, B} ≡ ∂A
∂x

∂B
∂p
− ∂A

∂p
∂B
∂x

. (45)

Poisson brackets encode the structure of classical Hamiltonian dynamics and provide a compact way to
express time evolution.

Liouville’s theorem, discussed in Sec. D, states that the probability density is conserved along classical
trajectories:

dP
dt

= 0. (46)

Equation (44) therefore implies the Liouville equation,

∂P
∂t

= −{P, H}. (47)

5.2 Stationarity of the Equilibrium Distribution

For the equilibrium density in Eq. (41), the probability depends on phase-space coordinates only through
the Hamiltonian, i.e. P = f (H). Using the definition of the Poisson bracket,

{P, H} = { f (H), H} = f ′(H){H, H} = 0, (48)

since the Poisson bracket of any function with itself vanishes. Substituting into Eq. (47) yields

∂P
∂t

= 0. (49)

Thus, we find that the equilibrium phase-space density is stationary.
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5.3 Constancy Along Trajectories

Combining stationarity with Liouville’s theorem, we obtain

dP
dt

=
∂P
∂t

+ {P, H} = 0.

Therefore, the equilibrium density P(x, p) is not only time-independent, but also constant along every
Hamiltonian trajectory in phase space. This result provides the classical foundation for equilibrium statis-
tical mechanics.

6 Temperature

So far, the parameter

T ≡ 1
kβ

=
1
γ

has appeared simply as the inverse of the Lagrange multiplier γ introduced in the entropy maximization
problem. At this stage, this definition is purely formal and does not yet justify calling T the temperature.

A deeper and more useful definition follows from substituting Pj = Z−1e−βEj into the definition of
entropy, S = −kB ∑j PjlnPj, giving

S =
E
T
+ kBlnZ, (50)

which relates T directly to the entropy:
1
T

=

(
∂S
∂E

)
N

. (51)

This equation tells us that temperature measures how sensitively the entropy changes when energy is added
to the system, while keeping the number of particles fixed.

The goal of this section is to show that this quantity T has exactly the defining property of temperature
in thermodynamics: it is uniform throughout a system in thermal equilibrium. In other words, when two
systems can exchange energy freely, equilibrium requires that they share the same T.

Consider an isolated system at equilibrium, with a fixed total number of particles N and total energy
E, in the state of maximum entropy. Imagine dividing the system into two subsystems (or compartments),
labeled (1) and (2), which are separated by a wall that allows the transfer of energy (heat) but not particles.
The situation is illustrated schematically below.

(1) (2)

S(1) T(1) E(1)

N1

S(2) T(2) E(2)

N2

6

Thermal (Heat) Conductor

Each compartment is characterized by its entropy, energy, and temperature:(
S(1), E(1), T(1)), (

S(2), E(2), T(2)),
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with N1 and N2 particles, respectively.

Now imagine a small amount of energy δE being transferred from compartment (1) to compartment (2).
This implies

δE(1) = − δE, δE(2) = δE. (52)

Because the total system was initially in a state of maximum entropy, any such small redistribution of
energy can only decrease the entropy. Therefore, the resulting change in entropy must satisfy

δSE,N ≤ 0. (53)

The total change in entropy is the sum of the changes in each compartment:

δS = δS(1) + δS(2)

=

(
∂S(1)

∂E(1)

)
N1

δE(1) +

(
∂S(2)

∂E(2)

)
N2

δE(2)

=

(
− 1

T(1)
+

1
T(2)

)
δE ≤ 0. (54)

Crucially, the energy transfer δE could be either positive or negative. The inequality in Eq. (54) must
therefore hold for any infinitesimal exchange of energy. The only way this can be guaranteed is if

T(1) = T(2) .

We conclude that equilibrium requires equality of T across all parts of the system. This result justifies
identifying the parameter T, defined through

1
T

=

(
∂S
∂E

)
N

,

with the thermodynamic temperature.

7 Minimum Energy Principle

The minimum energy principle follows directly from the maximum entropy principle. While the latter
states that equilibrium corresponds to a maximum of entropy at fixed energy, the former describes the same
equilibrium state from a complementary viewpoint: at fixed entropy, equilibrium corresponds to a minimum
of energy.

To see this explicitly, consider a system at thermal equilibrium composed of two subsystems, labeled
(1) and (2), which can exchange energy but not particles. Each subsystem is characterized by an entropy
S(E(i), X), where X denotes all other extensive variables held fixed (such as volume and particle number).

(1) (2)

S(E(1), X)

N1

S(E(2), X)

N2

6

Thermal (Heat) Conductor 20



Now imagine imposing a constraint on the system by transferring a small amount of energy δE from
subsystem (2) to subsystem (1). The new energy distribution becomes

E(1) → E(1) + δE, E(2) → E(2) − δE.

Because the system was initially in equilibrium, its entropy was maximal. Any such constrained redis-
tribution of energy must therefore reduce the total entropy:

S(E(1) + δE, X) + S(E(2) − δE, X) < S(E(1), X) + S(E(2), X). (55)

Now remove the constraint and allow the system to relax back to equilibrium while keeping the entropy
fixed. Let E denote the total energy of the unconstrained equilibrium state. By definition,

S(E, X) = S(E(1) + δE, X) + S(E(2) − δE, X). (56)

Combining Eqs. (55) and (56), we obtain

S(E, X) < S(E(1), X) + S(E(2), X). (57)

Since temperature is defined by (
∂S
∂E

)
V,N

=
1
T

> 0, (58)

entropy is a monotonically increasing function of energy. Therefore, the inequality in Eq. (57) implies

E < E(1) + E(2). (59)

We conclude that imposing internal constraints at fixed entropy forces the system away from equilibrium
and increases its total energy. Conversely, when entropy is held fixed, the equilibrium state is the one that
minimizes the internal energy:

dE
∣∣∣
S,V
≥ 0. (60)

This statement is known as the minimum energy principle.

Physical Example

Consider two balloons filled with nitrogen gas at room temperature, placed in thermal contact. At equilib-
rium, they share the same temperature and collectively minimize their internal energy at fixed entropy.

Lowering the temperature would reduce the molecular kinetic energy and therefore the total internal
energy. Because ∂S/∂E > 0, this reduction in energy would also reduce the entropy.

However, entropy can also be reduced without changing the total energy. For example, imagine exchang-
ing a small number of fast molecules from one balloon with slow molecules from the other, then separating
the balloons. One balloon becomes slightly warmer and the other slightly colder. Although the total energy
remains unchanged, the system is now out of equilibrium and has lower entropy.

If the balloons are then allowed to re-equilibrate while keeping the entropy fixed, the only way to return
to equilibrium is by reducing the total internal energy. Thus, equilibrium can be reached either by maximiz-
ing entropy at fixed energy or by minimizing energy at fixed entropy—two equivalent descriptions of the
same physical principle.
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8 Canonical and Microcanonical Enseles

In the previous sections we showed that, at thermal equilibrium, the probability of finding a system in
microstate j is given by the Boltzmann probability distribution

pj = Z−1 exp(−βEj), (61)

where β = (kT)−1, T is the temperature of the ensemble, k is the Boltzmann constant, and Z is the partition
function that ensures normalization of the probabilities.

This expression applies to a canonical ensemble, in which the system is in thermal contact with a heat
reservoir and is therefore allowed to exchange energy. As a result, different microstates generally have
different energies Ej, and lower-energy states are more probable than higher-energy ones.

A particularly important limiting case is the microcanonical ensemble. In this ensemble, the system is
completely isolated: its energy, volume, and number of particles are all fixed. Consequently, every accessible
microstate has exactly the same energy,

Ej = E.

Because the system has no way to exchange energy with its surroundings, there is no physical reason
to favor one accessible microstate over another. The fundamental assumption of statistical mechanics is
therefore that all such microstates are equally likely. If W denotes the total number of accessible microstates,
then

pj =
1

W
. (62)

Substituting this uniform probability distribution into Gibbs’ definition of entropy,

S = −k ∑
j

pj ln pj,

we immediately obtain
S = k ln W. (63)

This expression is the famous formula introduced by Boltzmann. It provides a direct and profound con-
nection between macroscopic thermodynamics and microscopic physics: entropy measures the logarithm of
the number of accessible microscopic configurations of the system.

In summary, the canonical ensemble describes systems at fixed temperature, where microstates are
weighted according to their energy, while the microcanonical ensemble describes isolated systems, where
all accessible microstates are equally probable. Despite their different assumptions, both ensembles lead to
consistent definitions of entropy and equilibrium in the appropriate limits.

9 Equivalency of Ensembles

A central idea in statistical mechanics is that macroscopic properties of a system should not depend on
the particular ensemble used to describe it, provided the system is sufficiently large and in equilibrium. In
particular, the microcanonical and canonical ensembles must yield the same thermodynamic predictions.
We now show how this equivalence emerges in a transparent and general way.

Consider the canonical ensemble, whose partition function is defined as

Z = ∑
k

e−βEk = e−βA, (64)
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Figure 2: Boltzmann’s grave in Vienna, bearing the formula S = k ln W.

where the sum runs over all microstates k, each with energy Ek, and A is the Helmholtz free energy.

Many distinct microstates may share the same energy. It is therefore natural to reorganize the sum by
grouping together all states with identical energy. Let El denote a distinct energy level, and let Ω(El) be
the number of microstates with that energy. Rewriting the partition function in terms of these energy levels
gives

Z = ∑
l

Ω(El) e−βEl . (65)

For macroscopic systems, the energy spectrum is extremely dense, and it is convenient to replace the
discrete sum over energy levels by an integral. In this continuous limit, Eq. (65) becomes

Z =
∫ ∞

0
dE Ω(E) e−βE. (66)

Equation (66) shows that the canonical partition function Z(β) is the Laplace transform of the micro-
canonical density of states Ω(E). Since the Laplace transform is unique, there is a one-to-one correspon-
dence between Z(β) and Ω(E): knowing either function determines the other.

This result demonstrates that the canonical and microcanonical ensembles contain the same statistical
information about the system. Although they describe equilibrium in different ways—one at fixed tempera-
ture and the other at fixed energy—they are mathematically equivalent and lead to identical thermodynamic
predictions in the thermodynamic limit.
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9.1 Example: Two-Level System

As a concrete illustration of the equivalence between the microcanonical and canonical ensembles, we com-
pute the internal energy of a system of N noninteracting two-level particles. The purpose of this example is
to show explicitly that the ensemble-average internal energy is identical in both descriptions.

Each particle can occupy either a ground state with energy 0 or an excited state with energy ε.

Microcanonical Ensemble

Let m denote the number of particles in the excited state. The total internal energy of the system is then

E = mε =
N

∑
j=1

njε, (67)

where nj = 0, 1.

For a fixed value of m, the number of microstates is equal to the number of ways of choosing m excited
particles out of N:

Ω(E) =
(

N
m

)
=

N!
m!(N −m)!

. (68)

The entropy is therefore
S = k ln Ω(E). (69)

The temperature follows from the microcanonical definition

1
T

=

(
∂S
∂E

)
N
=

1
ε

(
∂S
∂m

)
N

. (70)

Using Stirling’s approximation for large N,

ln N! ' N ln N − N, (71)

and similarly for m! and (N −m)!, we obtain

1
T

=
k
ε

ln
(

N −m
m

)
. (72)

Introducing β = (kT)−1, this relation can be written as

βε = ln
(

N
m
− 1
)

. (73)

Solving for m/N, we find

m
N

=
1

1 + eβε
⇒ E =

Nε

1 + eβε
. (74)
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Canonical Ensemble

In the canonical ensemble, the system is in thermal contact with a heat reservoir at temperature T. Since the
particles do not interact, the partition function factorizes:

Z =
N

∏
j=1

1

∑
nj=0

e−βεnj =
(

1 + e−βε
)N

. (75)

Taking the logarithm,
ln Z = N ln

(
1 + e−βε

)
. (76)

The internal energy is obtained from

E = −
(

∂ ln Z
∂β

)
N,V

=
Nε

1 + eβε
. (77)

This result is identical to the one obtained in Eq. (74) using the microcanonical ensemble. The two
descriptions therefore yield the same equilibrium internal energy, explicitly demonstrating the equivalence
of ensembles for this system.

10 Thermal Fluctuations

In the previous section we showed that, for a system of N two-level particles, the ensemble-average internal
energy is the same whether it is computed in the microcanonical or canonical ensemble, provided N is
sufficiently large. There is, however, an important conceptual difference between the two descriptions.

In the microcanonical ensemble, the internal energy is fixed by construction and does not fluctuate from
one member of the ensemble to another. In contrast, in the canonical ensemble the system is in thermal
contact with a heat reservoir, and its energy fluctuates among different replicas of the system.

The purpose of this section is to show that this apparent difference does not contradict the equivalence of
ensembles. The key point is that, although energy fluctuations exist in the canonical ensemble, their relative
magnitude becomes vanishingly small as N increases.

We begin by computing the mean-squared fluctuation of the internal energy,

(δE)2 ≡ 〈(E− 〈E〉)2〉,

in the canonical ensemble. Using the density operator ρ̂, this can be written as

(δE)2 = Tr
{

ρ̂(Ĥ − Ē)2} = Tr
{

ρ̂
(

Ĥ2 − 2ĤĒ + Ē2)} , (78)

where Ē ≡ 〈E〉.
Using Tr{ρ̂} = 1 and Tr{ρ̂Ĥ} = Ē, this expression simplifies to

(δE)2 = Tr{ρ̂Ĥ2} − Ē2. (79)

Writing the trace explicitly in the energy eigenbasis yields

(δE)2 = ∑
k

pkE2
k −

(
∑

k
pkEk

)2

, (80)
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where pk = Z−1e−βEk and Z = Tr{e−βĤ} is the canonical partition function.
Substituting these expressions, we obtain

(δE)2 =
Tr{Ĥ2e−βĤ}

Z
−

(
Tr{Ĥe−βĤ}

)2

Z2 . (81)

Noting that derivatives of Z with respect to β generate powers of the Hamiltonian, this expression can
be rewritten as

(δE)2 =
1
Z

∂2Z
∂β2 −

1
Z2

(
∂Z
∂β

)2

. (82)

This leads to a compact and useful result:

(δE)2 =
∂2 ln Z

∂β2 = −
(

∂E
∂β

)
N,V

. (83)

We now examine the relative size of the energy fluctuations. Dividing the root-mean-square fluctuation
by the mean energy gives √

(δE)2

E
=

√
−∂E/∂β

E
∝

1√
N

. (84)

Thus, although the absolute energy fluctuations grow with system size, their relative magnitude de-
creases as N−1/2. For macroscopic systems, where N ∼ 1023, these fluctuations are utterly negligible. This
is why the canonical and microcanonical ensembles yield the same macroscopic predictions, despite their
different treatments of energy.

Connection to Heat Capacity

As a by-product of this analysis, we obtain a remarkable and important result: energy fluctuations in the
canonical ensemble are directly related to the heat capacity of the system.

Using Eq. (83) and the relation β = (kT)−1, we find

(δE)2 = −
(

∂E
∂T

)
N,V

(
∂T
∂β

)
= kT2

(
∂E
∂T

)
N,V

. (85)

Defining the heat capacity at constant volume as

CV ≡
(

∂E
∂T

)
N,V

, (86)

we obtain the final result
(δE)2 = kT2CV . (87)

This relation shows that the system’s response to changes in temperature is encoded in the size of its
equilibrium energy fluctuations—a deep and general connection between thermodynamic response functions
and statistical fluctuations.
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10.1 Exercise: Probability of a Small Fluctuation

A closed system in thermal equilibrium with a reservoir at temperature T has (up to normalization) the
energy probability density

P(E) ∝ Ω(E) e−βE.

Estimate the probability of observing an energy fluctuation

E = Ē + δE, δE = 10−6 Ē,

by computing the ratio P(E)/P(Ē).
Take 10−3 moles of an ideal gas, for which

Ē =
3
2

NkBT, CV =
3
2

NkB.

Solution

A convenient way to estimate P(E)/P(Ē) is to expand ln P(E) about its maximum at E = Ē:

ln P(E) = ln P(Ē) +
∂ ln P

∂E

∣∣∣∣
Ē

δE +
1
2

∂2 ln P
∂E2

∣∣∣∣
Ē
(δE)2 + · · · . (88)

10.1.0.1 Step 1: The linear term vanishes at equilibrium. Since ln P(E) = ln Ω(E)− βE + const,

∂ ln P
∂E

∣∣∣∣
Ē
=

∂ ln Ω
∂E

∣∣∣∣
Ē
− β =

1
kBT
− β = 0, (89)

because β = (kBT)−1. Thus the first nonzero correction is quadratic.

10.1.0.2 Step 2: Evaluate the curvature. Differentiate once more:

∂2 ln P
∂E2

∣∣∣∣
Ē
=

∂

∂E

(
∂ ln Ω

∂E

)∣∣∣∣
Ē
=

∂

∂E

(
1

kBT

)∣∣∣∣
Ē

(90)

= − 1
kBT2

∂T
∂E

∣∣∣∣
Ē
= − 1

kBT2 CV
, (91)

since CV =
(

∂E
∂T

)
N,V

implies
(

∂T
∂E

)
N,V

= 1/CV .

Therefore,

ln
P(E)
P(Ē)

= ln P(E)− ln P(Ē) = −1
2

(δE)2

kBT2 CV
. (92)

10.1.0.3 Step 3: Substitute ideal-gas expressions. With CV = 3
2 NkBT and Ē = 3

2 NkBT, we have
CV T = Ē and

ln
P(E)
P(Ē)

= −1
2

(δE)2

kBT2 CV
= −1

2
(10−6Ē)2

kBT2 CV
. (93)

Using Ē = 3
2 NkBT gives

ln
P(E)
P(Ē)

= −3
4

N (10−6)2. (94)
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Now compute N for 10−3 moles:

N = (10−3)NA ≈ 10−3 × 6.023× 1023 = 6.023× 1020.

Hence,

ln
P(E)
P(Ē)

= −3
4
(6.023× 1020)(10−12) = −3

4
(6.023× 108) ≈ −4.52× 108. (95)

10.1.0.4 Final answer.
P(E)
P(Ē)

= exp
(
−4.52× 108) ≈ 0 (96)

In words: a 10−6 fractional energy fluctuation is astronomically unlikely even for a “small” macroscopic
sample like 10−3 moles.

11 Grand Canonical Ensemble

In the canonical ensemble the system can exchange energy with a heat reservoir, so the temperature T
is fixed while the particle number N is fixed. In many physical situations (e.g., adsorption on a surface,
electrons in a metal exchanging with leads, molecules in a container connected to a gas supply), the system
can exchange both energy and particles with its environment. The appropriate description is then the grand
canonical ensemble.

Our goal is to maximize the Gibbs entropy

S = −k ∑
j

pj ln pj, (97)

subject to the constraints that (at fixed volume V) the ensemble has a fixed average energy and a fixed
average particle number:

E = ∑
j

pjEj, (98)

N̄ = ∑
j

pjNj. (99)

Physically, the grand canonical ensemble represents a collection of replicas in equilibrium with

• a heat reservoir that fixes the temperature T, and

• a particle reservoir that fixes the chemical potential µ (at the same temperature T).

The system is free to exchange energy and particles with these reservoirs, so E and N fluctuate from replica
to replica, but their averages E and N̄ are fixed.
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11.1 Maximum-Entropy Derivation

We use Lagrange multipliers to enforce the constraints in the minimization of

f (p1, p2, . . .) ≡ k ∑
j

pj ln pj + γ

(
∑

j
pjEj − E

)
+ γ′

(
∑

j
pjNj − N̄

)

+ γ′′
(

∑
j

pj − 1

)
,

(100)

where γ, γ′, γ′′ are Lagrange multipliers.
Taking the derivative with respect to pj and setting it to zero gives

∂ f
∂pj

= k(ln pj + 1) + γEj + γ′Nj + γ′′ = 0. (101)

Solving for pj,

pj = exp
(
−1− γ′′

k

)
exp

(
−γ

k
Ej −

γ′

k
Nj

)
. (102)

It is conventional to introduce

β ≡ 1
kT

β ≡ γ

k
βµ ≡ −γ′

k

so that the probability distribution takes the familiar form

pj =
e−βEj+βµNj

∑j e−βEj+βµNj
= Ξ−1e−βEj+βµNj . (103)

The normalization factor
Ξ ≡∑

j
e−βEj+βµNj (104)

is called the grand canonical partition function.

Equation (103) is the generalized Boltzmann distribution: microstates are weighted not only by their
energy Ej, but also by their particle number Nj. The chemical potential µ plays the role of the “price” (in
energy units) for adding a particle.

11.2 Entropy and the Grand Partition Function

Substituting Eq. (103) into the entropy definition (97) gives

S = −k ∑
j

pj
(
−βEj + βµNj − ln Ξ

)
. (105)

Using ∑j pj = 1, ∑j pjEj = E, and ∑j pjNj = N̄, this becomes

S = kβE− kβµN̄ + k ln Ξ. (106)

Solving for ln Ξ yields
ln Ξ = β (−E + TS + µN̄) . (107)
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Since the Helmholtz free energy is A ≡ E− TS, we obtain

ln Ξ = β (−A + µN̄) . (108)

Important note. The identity above should be read as the definition of the grand potential

ΦG ≡ −kT ln Ξ,

which satisfies ΦG = A− µN̄ (and, in the thermodynamic limit, ΦG = E− TS− µN).

11.3 Relation Between Z and Ξ

A common and very useful relationship is obtained by expressing the grand canonical partition function as
a sum over canonical partition functions at fixed particle number:

Ξ(β, µ, V) =
∞

∑
N=0

eβµN ZN(β, V) (109)

where ZN(β, V) is the canonical partition function for a system with exactly N particles.

We now derive Eq. (109) carefully, because it reveals what the grand canonical ensemble really is: a
mixture of canonical ensembles with different N.

Step 1: Start from the definition of Ξ

By definition, the grand canonical partition function is a sum over all microstates j accessible when both
energy and particle number are allowed to fluctuate:

Ξ(β, µ, V) ≡∑
j

e−βEj+βµNj . (110)

Here each microstate j has an energy Ej and a particle number Nj.

Step 2: Group microstates by particle number

The key observation is that the full set of microstates can be partitioned into disjoint groups labeled by N:

{all microstates} =
∞⋃

N=0

{microstates with particle number N},

and no microstate belongs to two different groups because Nj is a well-defined integer.
Therefore we can rewrite the sum over all microstates as an “outer” sum over N, and for each N an

“inner” sum over microstates having that particle number:

Ξ(β, µ, V) =
∞

∑
N=0

∑
j: Nj=N

e−βEj+βµN . (111)

Step 3: Pull out the factor eβµN

Inside the inner sum, N is fixed (all states in that inner sum have the same particle number), so the factor
eβµN is constant with respect to j and can be pulled outside:

Ξ(β, µ, V) =
∞

∑
N=0

eβµN ∑
j: Nj=N

e−βEj . (112)
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Step 4: Recognize the canonical partition function ZN

But the inner sum is precisely the definition of the canonical partition function for fixed N:

ZN(β, V) ≡ ∑
j: Nj=N

e−βEj . (113)

Substituting Eq. (113) into Eq. (112) immediately gives

Ξ(β, µ, V) =
∞

∑
N=0

eβµN ZN(β, V), (114)

which is exactly the boxed result in Eq. (109).

Physical interpretation. Equation (109) shows that the grand canonical ensemble is a weighted sum of
canonical ensembles with different particle numbers. The weight of each N-sector is controlled by eβµN:

• if µ is large and positive, larger N are favored;

• if µ is very negative, states with fewer particles dominate.

In this sense, µ plays the role of a “knob” that tunes the typical particle number in equilibrium.

Optional viewpoint (useful later). From Eq. (109), one can also read off the probability that the system
contains exactly N particles:

P(N) =
eβµNZN(β, V)

Ξ(β, µ, V)
. (115)

This makes the mixture interpretation completely explicit: the system samples different N with probability
P(N), and within each fixed N it behaves canonically.

11.4 Thermodynamic Identities in the Grand Canonical Ensemble

Once the grand canonical partition function

Ξ(β, µ, V) =
∞

∑
N=0

eβµNZN(β, V)

is known, all thermodynamic properties follow from simple derivatives of ln Ξ.

Average particle number.

N̄ =
1
β

(
∂ ln Ξ

∂µ

)
β,V

(116)

Average internal energy.

E = −
(

∂ ln Ξ
∂β

)
µ,V

+ µN̄ (117)

Entropy. Using S = − (∂ΦG/∂T)µ,V with ΦG = −kT ln Ξ, one finds

S = k ln Ξ + kβE− kβµN̄ (118)
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Grand potential and pressure.
The grand canonical ensemble is most naturally described in terms of the grand potential

ΦG(β, µ, V) ≡ −kT ln Ξ(β, µ, V). (119)

This quantity plays for the grand canonical ensemble the same role that the Helmholtz free energy A =
−kT ln Z plays for the canonical ensemble: once ΦG is known, all equilibrium thermodynamics follow
from its derivatives.

Step 1: Identify the natural variables of ΦG

From its definition, ΦG is a function of (T, µ, V). Its differential can be obtained by combining the funda-
mental thermodynamic identity

dE = T dS− P dV + µ dN

with the definition of the grand potential,

ΦG ≡ E− TS− µN.

Taking the differential,

dΦG = dE− T dS− S dT− µ dN − N dµ

= (T dS− P dV + µ dN)− T dS− S dT− µ dN − N dµ

= −S dT− P dV − N dµ. (120)

This shows that ΦG has the natural variables (T, V, µ) and immediately gives the thermodynamic derivatives

S = −
(

∂ΦG

∂T

)
µ,V

, N = −
(

∂ΦG

∂µ

)
T,V

, P = −
(

∂ΦG

∂V

)
T,µ

. (121)

Step 2: Derive pressure in terms of Ξ

Using ΦG = −kT ln Ξ in Eq. (121), we obtain

P = −
(

∂ΦG

∂V

)
T,µ

= −
(

∂

∂V
[−kT ln Ξ(T, µ, V)]

)
T,µ

= kT
(

∂ ln Ξ
∂V

)
T,µ

. (122)

So, in full generality,

P = kT
(

∂ ln Ξ
∂V

)
T,µ

. (123)

Step 3: Why ΦG = −PV in the thermodynamic limit

For a homogeneous macroscopic system (no special boundaries, no long-range fields), thermodynamic po-
tentials are extensive: they scale in proportion to the system size. In particular, at fixed T and µ, the only
extensive variable in ΦG(T, µ, V) is V, so in the thermodynamic limit one must have

ΦG(T, µ, V) = V φG(T, µ), (124)
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where φG(T, µ) is an intensive quantity (independent of V).
Using Eq. (121),

P = −
(

∂ΦG

∂V

)
T,µ

= −
(

∂

∂V
[VφG(T, µ)]

)
T,µ

= −φG(T, µ).

Substituting back into Eq. (124) gives

ΦG(T, µ, V) = −PV (125)

in the thermodynamic limit.

Step 4: The commonly used expression for P

Combining ΦG = −kT ln Ξ with ΦG = −PV yields

− kT ln Ξ = −PV ⇒ P =
kT
V

ln Ξ . (126)

Important remark. Equation (126) relies on the thermodynamic-limit scaling ΦG ∝ V (homogeneity/ex-
tensivity). When surface effects or strong finite-size effects are important, the more general derivative form
in Eq. (123) should be used.

Summary. The grand canonical ensemble trades the fixed particle number N of the canonical ensemble for
a fixed chemical potential µ. In return, thermodynamic observables are generated directly from ln Ξ by dif-
ferentiation, making the grand canonical ensemble especially powerful for systems with particle exchange,
quantum gases, and many-body problems.

12 Density Fluctuations

In this section we study fluctuations in the number of particles in a system at fixed volume V and temperature
T. Our main goals are:

• to show that particle-number fluctuations can be computed directly from the grand canonical partition
function, and

• to demonstrate that the relative size of these fluctuations scales as 1/
√

N and therefore becomes
negligible in macroscopic systems.

Particle-number fluctuations in the grand canonical ensemble
The ensemble-averaged squared fluctuation in the number of particles is defined as

(δN)2 ≡ (N − N)2 = N2 − N2, (127)

where the overline denotes an ensemble average. Writing this explicitly in terms of microstates j,

(δN)2 = ∑
j

pjN2
j −

(
∑

j
pjNj

)2

. (128)
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In the grand canonical ensemble, the probability of microstate j is

pj = Ξ−1e−βEj+βµNj ,

where Ξ is the grand partition function. Substituting this expression into Eq. (128) gives

(δN)2 = Ξ−1 ∑
j

N2
j e−βEj+βµNj −

(
Ξ−1 ∑

j
Nje−βEj+βµNj

)2

. (129)

This expression can be written compactly in terms of derivatives of Ξ:

(δN)2 =

(
∂2 ln Ξ
∂(βµ)2

)
V
=

(
∂N

∂(βµ)

)
V

. (130)

Physical interpretation. Equation (130) shows that number fluctuations are not independent quantities: they
are directly tied to the system’s response to changes in chemical potential. Large fluctuations correspond
to a system that is highly sensitive to particle exchange with the reservoir, while small fluctuations indicate
strong stability of the particle number.

12.1 Example: Uncorrelated particles in boxes

To gain intuition, consider a simple model in which uncorrelated particles are distributed among m boxes.
Assume that the average occupancy of each box is very small, 〈nj〉 � 1, so that each box contains either
zero or one particle: nj = 0 or 1. The total number of particles is

N =
m

∑
j=1

nj.

The squared fluctuation in N is

(δN)2 = N2 − N2
=

m

∑
j=1

m

∑
k=1
〈njnk〉 −

(
m

∑
j=1
〈nj〉

)2

. (131)

Separating diagonal and off-diagonal terms,

(δN)2 =
m

∑
j=1
〈n2

j 〉+ ∑
j 6=k
〈njnk〉

−
m

∑
j=1
〈nj〉2 −∑

j 6=k
〈nj〉〈nk〉.

(132)

Since nj = 0, 1, we have 〈n2
j 〉 = 〈nj〉. Because the particles are uncorrelated, 〈njnk〉 = 〈nj〉〈nk〉 for j 6= k.

These terms cancel, leaving

(δN)2 =
m

∑
j=1
〈nj〉 −

m

∑
j=1
〈nj〉2 =

m

∑
j=1
〈nj〉(1− 〈nj〉). (133)

For 〈nj〉 � 1, this simplifies to
(δN)2 = m〈n1〉 = N. (134)
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Therefore, √
(δN)2

N
=

1√
N

. (135)

Physical interpretation. The absolute size of particle-number fluctuations grows as
√

N, but the relative
size of fluctuations decreases as 1/

√
N. For macroscopic systems with N ∼ 1023, relative fluctuations are

extraordinarily small, explaining why thermodynamic variables appear sharply defined in everyday systems.

Connection to thermodynamics
Combining Eqs. (130) and (134), we obtain

N =

(
∂N

∂(βµ)

)
V

. (136)

This implies (
∂ ln N
∂(βµ)

)
V
= 1. (137)

Integrating and dividing by the volume V, we find

ln
(

N
V

)
= βµ + c, (138)

where c is a constant.

Physical interpretation. This result expresses the fundamental relationship between particle density, temper-
ature, and chemical potential. It shows that the chemical potential controls the average density of particles
in the system, providing the thermodynamic link between microscopic particle exchange and macroscopic
observables.

13 Pure States

13.1 From classical ensembles to quantum states.

The classical framework developed above provides a powerful and intuitive description of equilibrium sys-
tems in terms of phase-space trajectories, probability densities, and ensemble averages. For many molecular
systems at sufficiently high temperatures, this picture offers quantitatively accurate predictions. However, at
the microscopic scale, nature is fundamentally quantum mechanical. Energy levels become discrete, phase-
space points are replaced by state vectors, and observables are represented by operators rather than functions
of (q, p).

Despite these differences, the core questions of statistical mechanics remain unchanged: how do we
assign probabilities to microscopic states, how do we compute expectation values of observables, and how
do macroscopic thermodynamic laws emerge from microscopic dynamics? To address these questions in the
quantum regime, we must first understand the most complete description available for an individual quan-
tum system—the pure state. This provides the foundation upon which quantum ensembles and statistical
mixtures are built.

A pure state represents the most complete description that quantum mechanics allows for a physical
system. It is described by a state vector (or ket) |ψ〉. Intuitively, a pure state corresponds to a situation in
which we have maximal information about the system’s quantum state.1

1If you are becoming comfortable with bra–ket notation, you may find the notes at this link helpful.
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The time evolution of a pure state is governed by the time-dependent Schrödinger equation,

ih̄
∂|ψ〉

∂t
= Ĥ|ψ〉, (139)

where Ĥ is the Hamiltonian operator. This equation is deterministic: once the initial state |ψ(0)〉 is specified,
the state at all future times is fully determined. In this sense, |ψ〉 encodes the maximum possible information
about the system.

13.2 Expanding a pure state in an eigenbasis

To connect the abstract state vector to physical measurements, it is useful to expand |ψ〉 in the eigenstates
of an observable. Let ô be a Hermitian operator representing an observable (such as position, momentum,
or energy), with eigenstates |φk〉 and eigenvalues ok,

ô|φk〉 = ok|φk〉. (140)

The state |ψ〉 can then be written as
|ψ〉 = ∑

k
ak|φk〉, (141)

where the complex coefficients ak specify how much each eigenstate contributes to |ψ〉.
It is convenient to express these coefficients in terms of amplitudes and phases,

ak =
√

pk eiθk , (142)

where pk ≥ 0 and ∑k pk = 1. The quantity pk has a direct physical meaning: it is the probability of
obtaining the measurement outcome ok when the observable ô is measured in the state |ψ〉.

13.3 Expectation values

The expectation value of the observable ô in the state |ψ〉 is

〈ψ|ô|ψ〉 = ∑
k

pk ok. (143)

This result is a probability-weighted average of the possible measurement outcomes.
More generally, consider an operator Â that does not share the same eigenstates as ô. Its expectation value
can still be computed using the {|φk〉} basis,

〈ψ|Â|ψ〉 = ∑
k

pk〈φk|Â|φk〉+ ∑
k

∑
j 6=k

√
pk pj ei(θj−θk)〈φk|Â|φj〉. (144)

The first term looks like a classical average over states. The second term depends on the relative phases
θj − θk and represents quantum coherence (interference) between different basis states. These coherence
terms are responsible for uniquely quantum phenomena such as interference and superposition.

13.4 Pure states and ensembles

Now imagine preparing a large number N of identical replicas of the system, each described by the same
state vector |ψ〉. This collection is still described by a pure state. In this case, ensemble averages coincide
with quantum expectation values:

〈ô〉 = 〈ψ|ô|ψ〉, 〈Â〉 = 〈ψ|Â|ψ〉.

This equivalence becomes especially important when we later contrast pure states with mixed states, where
incomplete information requires a different description.
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13.5 Example: Two-level system in NMR (spin-1
2 nucleus)

In nuclear magnetic resonance (NMR), many nuclei of chemical interest (e.g., 1H, 13C, 15N) behave, to
an excellent approximation, as spin- 1

2 particles. When placed in a strong static magnetic field B0, such a
nucleus has two Zeeman energy levels corresponding to spin alignment parallel or antiparallel to the field.
These two levels form a natural realization of a quantum two-level system.
Let {|α〉, |β〉} denote the eigenstates of the Zeeman Hamiltonian,

ĤZ = −γh̄B0 Îz,

with eigenvalues Eα and Eβ. These states are eigenstates of Îz and play the role of the computational basis
{|0〉, |1〉} in a qubit description.
A general pure state of a single nuclear spin can be written as

|ψ〉 = aα|α〉+ aβ|β〉 =
√

pα |α〉+
√

pβ eiθ |β〉, (145)

where pα + pβ = 1 and θ is the relative quantum phase between the Zeeman states.

If one measures the spin projection along the magnetic field, corresponding to the observable Îz, the possible
outcomes are ± 1

2 h̄ with probabilities pα and pβ. The expectation value is therefore

〈 Îz〉 = pα

( 1
2 h̄
)
+ pβ

(
− 1

2 h̄
)

, (146)

which depends only on the level populations and is insensitive to the relative phase θ.
By contrast, NMR experiments typically probe transverse spin components, such as Îx or Îy, which do not
commute with Îz. For a general observable Â that couples the two Zeeman states, the expectation value is

〈Â〉 = pα〈α|Â|α〉+ pβ〈β|Â|β〉+ 2
√

pα pβ Re
[
eiθ〈α|Â|β〉

]
. (147)

The final term depends explicitly on the relative phase θ and represents quantum coherence. In NMR, this
coherence corresponds to transverse magnetization and gives rise to the observable NMR signal. In the
language of quantum information, it represents the off-diagonal elements of a qubit’s density matrix, which
are manipulated by control pulses and ultimately determine the system’s ability to store and process quantum
information.

14 Statistical Mixtures of States

In practice, it is often impossible to prepare a quantum system in exactly the same pure state every time.
Instead, we consider a large collection of independently prepared replicas of the system. This collection
is called an ensemble. Each replica is prepared under the same macroscopic conditions, but may occupy
different microscopic quantum states.
An ensemble of N replicas is said to be in a statistical mixture of states {|φk〉} if nk members of the
ensemble are found in state |φk〉. The probability of finding a replica in state |φk〉 is then

pk =
nk

N
, ∑

k
pk = 1.

The essential point is conceptual: each individual replica is in a definite state |φk〉. The randomness is not
a quantum superposition within one system, but rather our uncertainty about which state a given replica
occupies.
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Ensemble averages for mixed states

Because the replicas are not coherently superposed, ensemble averages are computed as probability-weighted
sums of expectation values within each state. For an observable Â,

A = ∑
k

pk〈φk|Â|φk〉, (148)

and for an observable ô with eigenvalues ok,

o = ∑
k

pk〈φk|ô|φk〉 = ∑
k

pkok. (149)

It is useful to compare these expressions with the pure-state expectation value in Eq. (144). The ensemble
average o in Eq. (149) has the same form as the corresponding pure-state expression in the {|φk〉} basis.
However, the average A in Eq. (148) differs from the pure-state result because Eq. (148) contains only
“diagonal” contributions. The “off-diagonal” interference terms present in Eq. (144) are absent.
Physical interpretation. A statistical mixture has no phase coherence between different states. Therefore,
there are no interference contributions to ensemble averages coming from pairs of states |φk〉 and |φj〉 with
k 6= j. In this sense, a statistical mixture behaves like a classical probability distribution over quantum
states.

Incoherent superpositions

The statistical mixture above is also equivalent to an ensemble of replicas described by wavefunctions of the
form

|ψ(ξ)〉 = ∑
k

√
pk eiθk(ξ)|φk〉, (150)

where ξ labels the members of the ensemble and the phases θk(ξ) are randomly and uniformly distributed.
Why this reproduces a mixture. When phases vary randomly from replica to replica, the interference
terms average to zero in the ensemble. As a result, ensemble averages computed using Eq. (150) reduce to
the mixture formula in Eq. (148). This provides a useful intuition: mixed states can be viewed as incoherent
superpositions, in contrast to pure states which involve coherent superpositions with well-defined relative
phases.

Common statistical ensembles

In what follows we introduce the most important statistical ensembles, focusing first on systems with a
single molecular species.

• Canonical ensemble (NVT). All replicas are in thermal equilibrium with a heat reservoir at temper-
ature T. This ensemble is the natural framework for laboratory conditions at fixed N, V, and T, and
it is central to Monte Carlo simulations.

• Microcanonical ensemble (NVE). All replicas have the same energy E and the same number of
particles N. Although less directly matched to typical laboratory conditions, it is central to molecular
dynamics simulations, where energy is conserved by construction.

• Grand canonical ensemble (µVT). The replicas exchange both energy and particles with reservoirs
at temperature T and chemical potential µ. This ensemble is useful for open systems (e.g., adsorption,
exchange with a bath) where N fluctuates.

Exercise 1. Compute the ensemble average Ā associated with the incoherent superposition of states in
Eq. (150) and verify that it coincides with Eq. (148).
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15 Density Operator

The density operator provides a single, compact formalism for computing ensemble averages for both pure
states and statistical mixtures. The key result is

A = Tr{ρ̂Â}, (151)

where ρ̂ encodes the state (pure or mixed) of the ensemble.

Definition of the density operator

For a statistical mixture of states {|φk〉} with probabilities {pk}, the density operator is

ρ̂ = ∑
k

pk|φk〉〈φk|. (152)

For a pure state |ψ〉, this reduces to the projector

ρ̂ = |ψ〉〈ψ|. (153)

What ρ̂ does for us. Instead of keeping track of either a state vector (pure state) or a list of states with
probabilities (mixed state), we work with a single object ρ̂. The trace formula in Eq. (151) then automatically
produces the correct expectation values: it includes interference terms for pure states, and excludes them for
mixtures.

Why the trace formula works (sketch)

To see why Eq. (151) reproduces pure-state expectation values, consider a pure state |ψ〉 = ∑k ak|φk〉 in a
complete orthonormal basis {|φk〉}, with 〈φk′ |φk〉 = δkk′ . Then

A = Tr{ρ̂Â} = ∑
k′
〈φk′ |ψ〉〈ψ|Â|φk′〉. (154)

Substituting the expansion of |ψ〉 yields

A = ∑
k′

∑
j

∑
k
〈φk′ |φk〉 aka∗j 〈φj|Â|φk′〉, (155)

and using 〈φk′ |φk〉 = δkk′ gives

A = ∑
k

pk〈φk|Â|φk〉+ ∑
k

∑
j 6=k

√
pk pj ei(θk−θj)〈φj|Â|φk〉, (156)

which is identical to Eq. (144).
For a mixed state with ρ̂ given by Eq. (152),

A = Tr{ρ̂Â} = ∑
k′

∑
k

pk〈φk′ |φk〉〈φk|Â|φk′〉 = ∑
k

pk〈φk|Â|φk〉, (157)

which reproduces Eq. (148).
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Purity, coherence, and decoherence

The quantity Tr{ρ̂2} measures how “pure” a state is:

• Tr{ρ̂} = 1 for any physical state (pure or mixed).

• Tr{ρ̂2} = 1 for pure states.

• Tr{ρ̂2} < 1 for mixed states.

Thus, Tr{ρ̂2} can be used as a measure of coherence: as interference is lost (decoherence), the state becomes
more mixed and Tr{ρ̂2} decreases.
Exercise 2.

(A) Show that Tr{ρ̂} = 1 for both mixed and pure states.

(B) Show that Tr{ρ̂2} = 1 for pure states.

(C) Show that Tr{ρ̂2} ≤ 1 for mixed states.

16 Time Evolution of Ensembles

The time evolution of both pure and mixed states can be written in a single equation for the density operator:

∂ρ̂

∂t
= − [ρ̂, Ĥ]

ih̄
. (158)

This is the Liouville–von Neumann equation. It is the density-matrix analogue of the Schrödinger equation:
instead of evolving |ψ〉, we evolve ρ̂.
Exercise 3. Using the Schrödinger equation (Eq. (139)), show that Eq. (158) describes the time evolution of
ρ̂ for a pure state.
Exercise 4. Using the linearity of Eq. (139), show that Eq. (158) also describes the time evolution of ρ̂ for
a mixed state.

Example: Two-level mixed state (contrast with a qubit pure state)

For a two-level system with basis states {|0〉, |1〉}, a pure state can be written as

|ψ〉 = √p0 |0〉+
√

p1 eiθ |1〉, p0 + p1 = 1.

Here the relative phase θ is meaningful and affects expectation values of observables that do not commute
with ô.
A mixed state with the same populations is instead described by

ρ̂ = p0|0〉〈0|+ p1|1〉〈1|.

This state cannot be represented by a single |ψ〉 unless p0 = 1 or p1 = 1.
For an observable diagonal in this basis, both descriptions give the same average. However, for an observable
that couples the two levels, the mixed state produces only diagonal contributions (no interference term). In
other words, the mixed state does not retain a well-defined relative phase between |0〉 and |1〉.
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Pure vs. mixed states: key differences

Property Pure State Mixed State
Mathematical description |ψ〉 ρ̂ = ∑k pk|φk〉〈φk|
Information content maximal incomplete (statistical uncertainty)
Coherence between states yes no
Interference terms present absent
Tr{ρ̂2} = 1 < 1
Typical realization isolated, well-controlled thermal/open systems, noise

This comparison highlights why the density operator is essential in statistical mechanics: it naturally de-
scribes statistical uncertainty and decoherence, which are unavoidable in realistic physical systems.

17 Classical Analogue

Many core ideas of quantum statistical mechanics have direct classical counterparts. Seeing these parallels
helps clarify what changes when we move from classical to quantum descriptions.

Microscopic states

In quantum statistical mechanics, microscopic states live in Hilbert space and are specified by quantum
numbers (or by a state vector |ψ〉).
In classical statistical mechanics, a microscopic state is a point in phase space,

(x1, . . . , x f ; p1, . . . , p f ),

where f is the number of degrees of freedom. At any instant, the system occupies one such point.

Ensembles

Quantum ensembles are described by the density operator ρ̂. Classical ensembles are described by a phase-
space density

ρ = ρ(x1, . . . , x f , p1, . . . , p f ),

where ρ dx dp is the probability of finding the system in the corresponding phase-space volume element.

Time evolution of ensembles: Liouville’s theorem

The quantum evolution equation for ρ̂ (Eq. (158)) has a classical analogue known as Liouville’s theorem:

∂ρ

∂t
= − (ρ, H) , (159)

where ρ is the phase-space density and (·, ·) denotes the Poisson bracket. This equation expresses conser-
vation of probability in phase space: as trajectories flow, probability is transported without being created or
destroyed.
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Poisson brackets and commutators

The classical analogue of the quantum commutator [G, F]/(ih̄) is the Poisson bracket,

(G, F) ≡
f

∑
j=1

(
∂G
∂xj

∂F
∂pj
− ∂G

∂pj

∂F
∂xj

)
. (160)

In the appropriate classical limit, commutators reduce to Poisson brackets, linking quantum and classical
dynamics.
Exercise 5. Prove Eq. (159) using Hamilton’s equations,

dpj

dt
= −∂H

∂xj
,

dxj

dt
=

∂H
∂pj

, (161)

where

H =
f

∑
j=1

p2
j

2mj
+ V(x1, . . . , x f ).

Ensemble averages

Quantum ensemble averages are computed via

〈Â〉 = Tr{ρ̂Â}.

The classical analogue is

Ā =

∫
dx
∫

dp ρ(x, p) A(x, p)∫
dx
∫

dp ρ(x, p)
, (162)

where dx dp is a phase-space volume element.

Worked example: Classical harmonic oscillator in phase space

Consider the one-dimensional harmonic oscillator

H(x, p) =
p2

2m
+

1
2

kx2.

A microscopic state is a point (x, p) in phase space. Hamilton’s equations,

ẋ =
p
m

, ṗ = −kx,

generate periodic motion. Eliminating time gives

p2

2m
+

1
2

kx2 = E,

which is an ellipse in phase space. Thus, at fixed energy E, the system repeatedly visits the same closed
curve of microscopic states.
Now consider an ensemble of oscillators with the same energy E but different initial phases. The phase-
space density ρ(x, p) is supported on the energy ellipse and is transported along it without distortion, in
accordance with Liouville’s theorem.
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The time average of any observable A(x, p) over one period is

〈A〉time =
1
T

∫ T

0
A(x(t), p(t)) dt.

For example,

〈V〉time =

〈
1
2

kx2
〉

=
E
2

,

because the oscillator exchanges energy equally between kinetic and potential forms over a cycle.
This example illustrates: microscopic states as phase-space points, deterministic trajectories from Hamil-
ton’s equations, conservation of phase-space probability, and the relationship between time averages and
ensemble averages in simple systems.

18 Entropy

The entropy S̄ of an ensemble can be defined in terms of the density operator ρ̂ as follows,

S ≡ −kTr{ρ̂ lnρ̂}, (163)

where k is the Botzmann constant. Equation (22) is the Von Neumann definition of entropy. This is the most
fundamental definition of S because it is given in terms of the density operator ρ̂, which provides the most
complete description of an ensemble. In particular, the Gibbs entropy formula,

S = −k ∑
k

pklnpk, (164)

can be obtained from Eq. (163) by substituting ρ̂ in accord with Eq. (152).
From Eq. (164) one can see that the entropy of a pure state is zero, while the entropy of a statistical

mixture is always positive. Therefore,
S ≥ 0, (165)

which is the fourth law of Thermodynamics.

18.1 Exercise: Entropy Extensivity

Show that the definition of entropy, introduced by Eq. (164), fulfills the requirement of extensivity (i.e.,
when dividing the system into fragments A and B, the entropy of the system including both fragments SAB
equals the sum of the entropies of the fragments SA and SB).
Solution: We consider that the fragments are independent so the joint probability pjA,jB of configurations
jA and jB of fragments A and B is equal to the product of the probabilities pjA and pjB of the configurations
of each fragment. Therefore, SAB = ∑jA ∑jB pjA,jB ln(pjA,jB) = ∑jA ∑jB pjA pjB ln(pjA pjB), with SA =

∑jA
pjA ln(pjA) and SB = ∑jB pjB ln(pjB). So, SAB = SA + SB, since ln(pjA pjB) = ln(pjA) + ln(pjB).
We can show that there is no other function but the logarithm that fulfills that condition, as follows.

Consider a function that fulfills the following condition: f (pjA pjB) = f (pjA) + f (pjB) and compute the
partial derivative with respect to pjA , as follows:

∂ f (pjA pjB)

∂(pjA pjB)
pjB =

∂ f (pjA)

∂pjA

. (166)
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Analogously, we compute the partial derivatives with respect to pjB , as follows:

∂ f (pjA pjB)

∂(pjA pjB)
pjA =

∂ f (pjB)

∂pjB
. (167)

Therefore,

pjA

∂ f (pjA)

∂pjA

= pjB
∂ f (pjB)

∂pjB
= c, (168)

where c is a constant.
Therefore,

∂ f (pjA )

∂pjA
= c

pjA
and

∫
dpjA

∂ f (pjA )

∂pjA
= c

∫
dpjA

1
pjA

, giving f (pjA) = c ln(pjA).

19 Maximum-Entropy Density Operator

The goal of this section is to obtain the density operator ρ̂, with Tr{ρ̂} = 1, that maximizes the entropy
S = −kTr{ρ̂lnρ̂} of a system characterized by an ensemble average internal energy

E = Tr{ρ̂Ĥ}, (169)

and fix extensive properties X such as X = (V, N) (i.e., canonical and microcanonical ensembles).
This is accomplished by implementing the method of Lagrange Multipliers to maximize the function

f (ρ̂) ≡ −kTr{ρ̂lnρ̂}+ γ(E− Tr{ρ̂Ĥ}) + γ′(1− Tr{ρ̂}), (170)

where γ and γ′ are Lagrange Multipliers. We, therefore, solve for ρ̂ from the following equation

∂ f
∂ρ̂

)
X

= 0, (171)

and we obtain that the density operator that satisfies Eq. (171) must satisfy the following equation:

Tr{−klnρ̂− k− γĤ − γ′} = 0. (172)

Therefore,

− lnρ̂ = 1 +
γ

k
Ĥ +

γ′

k
. (173)

Exponentiating both sides of Eq. (173) we obtain

ρ̂ = exp(−(1 + γ′

k
))exp(−γ

k
Ĥ), (174)

and, since Tr{ρ̂}=1,

exp(−(1 + γ′

k
)) =

1
Z

, (175)

where Z is the partition function
Z ≡ Tr{exp(−βĤ)}, (176)

with β ≡ γ/k.
Substituting Eqs. (176) and (175) into Eq. (174), we obtain that the density operator that maximizes the

entropy of the ensemble, subject to the contraint of average ensemble energy Ē, is

ρ̂ = Z−1exp(−βĤ). (177)

Note that
∂ρ̂

∂t
= 0, (178)

when ρ̂ is defined according to Eq. (177) and, therefore, the system is at equilibrium.
Exercise 6: Use Eqs. (158) and (177) to prove Eq. (178).
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20 Internal Energy and Helmholtz Free Energy

Substituting Eqs. (176) and (175) into Eq. (169) we obtain that the internal energy E can be computed from
the partition function Z as follows,

E = −∂lnZ
∂β

)
X

. (179)

Furthermore, substituting Eqs. (176) and (175) into Eq. (163) we obtain

S = −kTr{ρ̂(−βĤ − lnZ)} = kβE + klnZ. (180)

In the next section we prove that the parameter T ≡ (kβ)−1 can be identified with the temperature of the
ensemble. Therefore,

A = E− TS = −kTlnZ, (181)

is the Helmholtz free energy, that according to Eq. (179) satisfies the following thermodynamic equation,

E =
∂(βA)

∂β

)
X

. (182)
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21 Notes for the Inquisitive Mind: Measures of Information

21.1 Shannon Entropy

The goal of this section is to show that the Shannon entropy,

S = −∑
j

Pj log2Pj, (183)

is a measure of an amount of information (i.e., information = data). In fact, in this section, we show that if
we consider a message composed of symbols xj with probabilty Pj (as obtained when transmitted through a
noisy communication channel), then S gives the average number of bits necessary to store each one of the
symbols of that message. Such fundamental observation has given birth to the field of information theory
and is known as the Shannon’s source coding theorem, as follows: It is impossible to compress the data of
a long stream of a random variable such that the average number of bits per symbol is less than the Shannon
entropy of the source without loosing information.

As an example, consider that the ’message’ is a set of n snapshots reporting the position of a fluctuating
particle. Storing each symbol xj requires specifying K bits (e.g., an array of K elements that can be either 1 or
0, indicating for example which position is occupied by the particle when the coordinate range is discretized
into 2K boxes). The more snapshots (i.e., ’symbols’), the more information the message has with regards
to the particle whereabouts. Therefore, the amount of information S scales with the number n of symbols:
S = Kn.

The number of bits required to store a symbol (i.e., K) can be given in terms of the total number of
possible symbols Ω = 2K, as follows: K = −log2(1/Ω), where 1/Ω is the probability of a symbol when
randomly picked out of Ω equally probable choices. More generally, when considering two messages, one
with n1 symbols from a library of Ω1 = 2K1 possibilities, and the other one with n2 symbols chosen from
Ω2 = 2K2 possibilities, the amount of information in the two messages is the same when the number of
possibilities for the two messages is equal, so Ωn1

1 = Ωn2
2 , since then n1log2Ω1 = n2log2Ω2 as pointed

out by Hartley in the [The Bell System Technical Journal, July 1928, p. 535] so the total number of bits
required to store the two messages is the same: K1n1 = K2n2 and K1/log2Ω1 = K2/log2Ω2. This relation
holds for all values of Ω only when K = K0logΩ, where the arbitrary constant K0 can be omitted since the
logarithmic base is also arbitrary. The particular base of the log fixes the size of the unit of information.
With the base 2, the resulting units are called binary digits, or more briefly bits as suggested by [J.W. Tukey].
If the base 10 is used, the units may be called decimal digits, with log2Ω = log10Ω/log102.

The amount of information (i.e, the number of bits) of each symbol is therefore equal to the logarithm
of the number of possible symbols. The amount of information of a message is the number of possible
messages (which is the number of symbols times the number of possible symbols: S = nlog2Ω). It is,
therefore, clear that for a message composed of symbols with probability Pj, the average number of bits
necessary to store one of its symbols is given by Eq. (183), as discussed by Claude E. Shannon in his
seminal work on communication theory published in [The Bell System Technical Journal 27: 379-423,
1948], with symbols drawn with probability Pj as randomly picked from Ωj = 1/Pj equally probable
choices.

21.2 Majorization

When comparing the entropies of two sources with probabilities p = (p1, p2, ..., pn) with pj+1 < pj and
q = (q1, q2, ..., qn) with qj+1 < qj, it is possible to show that S(p) < S(q) when p majorizes q, as follows:

j

∑
i=1

pi >
j

∑
i=1

qi, (184)

46

http://ursula.chem.yale.edu/~batista/classes/v572/Hartley1928.pdf
https://en.wikipedia.org/wiki/John_Tukey
http://ursula.chem.yale.edu/~batista/classes/v572/shannon1948.pdf
http://ursula.chem.yale.edu/~batista/classes/v572/shannon1948.pdf


for any j < n with

n

∑
i=1

qi =
n

∑
i=1

pi = 1. (185)

This can be shown by substracting Eq. (184) from Eq (185) to obtain:

n

∑
i=j+1

qi >
n

∑
i=j+1

pi. (186)

Therefore,

n

∑
j=1

[
n

∑
i=j+1

qi

]
log
(

q(i)
q(j + 1)

)
>

n

∑
j=1

[
n

∑
i=j+1

pi

]
log
(

q(i)
q(j + 1)

)
. (187)

Changing the order of the sums in Eq. (187), we obtain:

n

∑
i=1

[
i−1

∑
j=1

qi

]
log
(

q(i)
q(j + 1)

)
>

n

∑
i=1

[
i−1

∑
j=1

pi

]
log
(

q(i)
q(j + 1)

)
, (188)

and canceling equal terms within the sums over j, we obtain:

n

∑
i=1

qilog
(

q(1)
q(i)

)
>

n

∑
i=1

pilog
(

q(1)
q(i)

)
,

log(q(1))−
n

∑
i=1

qilog(q(i)) > log(q(1))−
n

∑
i=1

pilog(q(i)),

−
n

∑
i=1

qilog (q(i)) > −
n

∑
i=1

pilog (q(i)) .

(189)

Furthermore, since log(x) < x− 1, we obtain:

log
(

q(i)
p(i)

)
<

q(i)
p(i)
− 1,

p(i)log
(

q(i)
p(i)

)
< q(i)− p(i),

n

∑
i=1

p(i)log
(

q(i)
p(i)

)
< 0,

n

∑
i=1

p(i)log (q(i)) <
n

∑
i=1

p(i)log (p(i)) ,

−
n

∑
i=1

p(i)log (q(i)) > −
n

∑
i=1

p(i)log (p(i)) .

(190)

Therefore, according to Eqs. (189) and (190), we obtain:

−
n

∑
i=1

q(i)log (q(i)) > −
n

∑
i=1

p(i)log (p(i)) . (191)
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21.3 Maximum Entropy Image Reconstruction

Maximum entropy reconstruction is a widely applicable technique for generating images with maximum
information, from noisy data, as discussed by Skillin and Bryan in the [Mon. Not. R. Astr. Soc. (1984) 211,
111-124]. The image is regarded as a set of positive numbers f1, · · · , fN giving the intensity of pixels which
are to be determined for image reconstruction (e.g., the image of a galaxy, or cell culture). The observational
constraints on permitted reconstructions come from data points Dk that are related to the actual image in
some known way by means of the measuring device, and subject to some form of noise due to interference
with the background. In a linear experiment, Dk = ∑ Rkj f j + nkσk, where R is the instrument response,
σk is the standard error on the data and nk is a random variable of zero mean and unit variance. Naively,
one may attempt to recover the image P from the data D by applying R−1 but this usually fails whenever
the data are incomplete since R−1 is not uniquely defined, or when R−1 is badly conditioned as in most
deconvolution problems.

The reconstruction is set up by comparing the noisy data Dk with the simulated data Fk which would
be obtained in the absence of noise: Fk = ∑ Rkj f j. A reconstruction is said to be feasible if the simulated
data agree with the actual data to within the noise. The misfit is usually measured by the chi-squared value:
χ2 = ∑k(Fk − Dk)

2/σ2
k , where the summation is over the observed data points k.

According to the maximum entropy criteria, one selects the feasible image with greatest entropy: S =
−∑k Pklog2Pk, where Pk = fk/ ∑j f j, by maximizing S subject to minimum χ2. Using the Lagrange
multiplier method for Q = S− λχ2− µ(1−∑k Pk), with some value of the Lagrange multipliers λ and µ,
we make ∂Q/∂ f j = 0 to obtain f j.

As pointed out by Skilling and Bryan, the resulting maximum entropy fitting provides a unique approach
to reconstruct an image without introducing correlations beyond those which are required by the data. Max-
imizing the entropy can also be justified in terms of information. Given an image radiating with intensity
pattern f j, the entropy measures the average number of bits needed to define (or store) the position j of a
single radiated photon coming from the image. Maximizing S, subject to observational constraints, involves
seeking a maximally non-biased answer to the fundamental question ’Where would the next photon come
from?’. The practical merit of maximizing entropy is that the resulting image has minimum configurational
information, so that there must be evidence in the data for any structure which is seen, and the displayed
structure is uniquely easy to comprehend.

21.4 Fisher Index

Another measure of information is the Fisher index I, defined as follows:

I =
∫ ∞

−∞
dxP(x)

(
1

P(x)
∂P(x)

∂x

)2

,

=
∫ ∞

−∞
dxP(x)

(
∂log[P(x)]

∂x

)2 (192)

For an ergodic system, P(x) is determined by the time the variable is found at x over the total observation
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time, so the total probability is normalized:

1 =
∫ ∞

−∞
dxP,

= lim
t f→∞

1
t f

∫ t f /2

−t f /2
dt,

= lim
t f→∞

1
t f

∫ ∞

−∞
dx
∣∣∣∣ ∂t
∂x

∣∣∣∣ ,

= lim
t f→∞

1
t f

∫ ∞

−∞
dx

1√
v2

,

(193)

from where we identify 1/P = t f
√

v2, with t f → ∞. Therefore,

I = lim
t f→∞

t f

∫ ∞

−∞
dx
√

v2

(
∂P
∂x

)2

,

= lim
t f→∞

t f

∫ ∞

−∞
dxv2

∣∣∣∣ ∂t
∂x

∣∣∣∣ (∂P
∂x

)2

,

= lim
t f→∞

t f

∫ ∞

−∞
dx
∣∣∣∣ ∂t
∂x

∣∣∣∣ (∂P
∂t

)2

,

= lim
t f→∞

t f

∫ ∞

−∞
dt
(

∂P
∂t

)2

,

(194)

In the third row of Eq. (194), we have used that ∂P/∂x = −1/v ∂P/∂t, since according to the continuity
equation dP/dt = ∂P/∂t + v∂P/∂x and dP/dt = 0 for the system at equilibrium. Furthermore,

∂P
∂t

=
1
t f

∂

∂t
(v2)−1/2,

=
1
t f

(
−1

2

)
(v2)−3/22v

∂v
∂t

= − 1
t f

1
v2

∂v
∂t

= − 1
t f

a
v2 = − 1

t f m
F
v2 .

(195)

Therefore,

I = lim
t f→∞

1
t f

∫ t f /2

−t f /2
dt

F2

(mv2)2 ,

=

〈
F2

(mv2)2

〉
,

(196)

21.5 Mutual Information

The goal of this section is to introduce measures of mutual information (or uncertainty) shared by variables
x1 and x2. Such measures estimate the amount of uncertainty about a variable x1 reduced by measuring
a variable x2. In particular, when x1 and x2 are completely uncorrelated, knowing one of the two vari-
ables does not provide any information about the other and the joint probability distribution P(x1, x2) is
equal to the product of the marginal probability distributions P1(x1) =

∫
dx2P(x1, x2) and P2(x2) =∫

dx1P(x1, x2).
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The most common measure of mutual information is the index Ix1,x2 , defined as follows:

Ix1,x2 =
∫

dx1dx2P(x1, x2) (log[P(x1, x2)]− log[P1(x1)P2(x2)]) . (197)

Note that in the particular case of uncorrelated variables, Ix1,x2 = 0.
Analogously, another measure of mutual information can be defined, as follows:

Ĩx1,x2 =
∫ ∞

−∞
dx1

∫ ∞

−∞
dx2P

(
1

P2

(
∂P
∂x1

)2

+
1

P2

(
∂P
∂x2

)2

− 1
P2

1

(
∂P1

∂x1

)2

− 1
P2

2

(
∂P2

∂x2

)2
)

. (198)
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22 Bose-Einstein and Fermi-Dirac Distributions

Consider a system consisting of N quantum particles of a certain kind (e.g., bosons, or fermions with a
certain spin). If the interaction of the particles is weak enough, each particle has its own motion which is
independent of all others and the system is an ideal gas of quantum particles. The quantum states allowed
for this individual motion are the one-particle states |j > that satisfy the eigenvalue problem

H|j >= εj|j >, (199)

where εj are the eigenvalues. Since identical particles are indistiguishable in quantum mechanics, each
quantum state |ξ > for the complete system is completely specified when the number of particles occupying
each one-particle state is specified —i.e., the quantum numbers ξ of the whole system are determined by the
set of occupation numbers n1, n2, n3, .... The total energy of each quantum state |ξ > is, therefore,

Eξ = ∑
j

njεj. (200)

Furthermore, since the quantum particles are indistinguishable,

P̂jk|ξ(1, 2, 3, ..., j, j + 1, ..., k, k + 1, ...) >= ±|ξ(1, 2, 3, ..., k, j + 1, ..., j, k + 1, ...) >, (201)

where P̂jk is the operator that permutes particles j and k. The plus sign, in Eq. (201), corresponds to a
system of bosons (i.e., integer spin particles) and the minus sign corresponds to a system of fermions (i.e.,
half-integer spin particles). The Pauli Exclusion Principle is a consequence of the symmetry requirement
introduced by Eq. (201). Such principle establishes that in a system of fermions with the same spin there
cannot be two particles occupying the same spatial state and, therefore, nj = 0, 1. In a system of bosons,
however, nj = 0, 1, 2, ... —i.e., there can be an arbitrary large number of particles in each state j.
The grand canonical partition function for a system of indistigushable particles is defined, according to Eq.
(104),

Ξ = ∑
ξ

exp(−βEξ + βµnξ), (202)

or in terms of occupation numbers nj,

Ξ = ∑
n1,n2,...

exp(−β ∑
k

εknk + βµ ∑
k

nk). (203)

The grand canonical partition function for a system of fermions is

Ξ = ∏
k

1

∑
nk=0

exp(−βεknk + βµnk) = ∏
k
(1 + eβ(µ−εk)), (204)

due to the Pauli Exclusion Principle and Eq. (203). Therefore, the average occupation number

nk = Ξ−1 ∑
n1,n2,...

nke−β ∑k εknk+βµ ∑k nk = ∂lnΞ/∂(−βεj), (205)

is given by the following expression

nk =
eβ(µ−εk)

eβ(µ−εk) + 1
=

1
1 + eβ(εk−µ)

, (206)

which is the Fermi-Dirac distribution.
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Analogously, the grand canonical partition function for a system of bosons is

Ξ = ∏
k

∞

∑
nk=0

e−β(εk−µ)nk = ∏
k

1
1− eβ(µ−εk)

. (207)

Therefore, the average occupation number is given by the following expression

nk =
1

eβ(εk−µ) − 1
, (208)

which is the Bose-Einstein distribution.

22.1 Chemical Potential

The chemical potential µ, introduced Eq. (105), defines the increase in free energy of the system upon
addition of an infinitesimal amount of particles since

G = µN = E− TS + TkBlnΞ,
= H − TS,
= E + PV − TS,

(209)

so a change in extensive property gives

dG)T,P = µdN,

= dE + PdV − TdS,
(210)

Alternatively, we can define the chemical potential as the increase in internal energy due an increase in the
average number of particles since according to Eq. (210), µ = ∂G

∂N

)
T,P

= ∂E
∂N

)
V,S

.

Chemical Potential of Photons: The chemical potential of photons is zero since photons do not interact
with each other and the number of photons (thermal radiation) is automatically adjusted by the walls of the
container that emit and absorb photons until thermal equilibrium is reached. Noting that, lnΞ = lnZ+ βµN,
and µ = 0, we obtain that for photons Ξ = Z. Therefore, the partition function of a gas of photons is

Z = ∏
k

∞

∑
nk=0

e−βεknk = ∏
k

1
1− e−βεk

. (211)

and the average number of photons with energy εj is

nj =
1

eβεj − 1
, (212)

where εj = h̄k jc, with k j = |kj| defined by the components of momenta kj = (k(j)
x , k(j)

y , k(j)
z ) of the

electromagnetic standing waves in the container, with k(j)
x,y,z = n(j)

x,y,zπ/Lx,y,z defined by the dimensions of
the container Lx, Ly and Lx, with quantum numbers nx,y,z = 1, 2, · · · .

The number of states with energy smaller that εj is given by the octant volume of the Hilbert space with
positive quantum numbers within the sphere of radius nj, which is 1

8
4
3 πn3

j =
V

6π2 k3
j . Therefore, the number
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of states with momenta between k j and k j + dk j is V
2π2 k2

j dk j. Considering 2 states of polarization per mode,
we obtain:

E =
V

h̄3c3π2

∫ ∞

0
dε

ε3

eβε − 1
,

=
Vk4

BT4

h̄3c3π2

∫ ∞

0
dx

x3

ex − 1
.

(213)

According to Eq. (275), 3
x3

∫ x
0 dγ γ3

eγ−1 = π
5x3 when x � 1. Therefore,

∫ ∞
0 dx x3

ex−1 = π
15 giving

E =
Vk4

BT4

15h̄3c3π
. (214)

This equation can be used to obtain the Stefan-Boltzmann law, giving the energy radiated per unit time
through a hole of unit area in the wall of the container:

R = σT4, (215)

where σ is the Stefan-Boltzmann constant.
Furthermore, Eq. (213) allows us to obtain the energy per unit volume with frequency between w and

w + dw, with ε = h̄w = hν = hc/λ, as follows:

ρ(w, β)dw =
h̄

c3π2
w3

eβh̄w − 1
dw, (216)

which is the famous Planck’s blackbody distribution law that agrees with the experimental spectral radiance
and solves the paradox of the ‘ultraviolet catastrophe’ introduced by the Rayleigh-Jeans law of classical
physics (incorrect prediction of spectral radiance proportional to λ−4 and T that significantly deviates from
the experimental spectra in the ultraviolet range).
Exercise: Compute the derivative of the energy density with respect to λ and make it equal to zero to
obtain that λmax(T) (the wavelength of maximum radiance) is inversely proportional to temperature –i.e.,
Wien displacement law. Considering that the λmax of the solar spectrum is close to 500 nm, estimate the
temperature of the surface of the sun (you would get T ≈ 5270K, so you can classify the sun as a yellow
star. Analogously, we can estimate the temperature of other stars from their spectrum. The same law
quantitatively describes the wavelength of light radiated by a nail as it gets red hot and then colorless as in
gets hotter.

23 Classical limit of Quantum Statistical Distributions

According to Eqs. (206) and (208), the average number nj of noninteracting quantum particles in state j is

nj =
1

eβ(εj−µ) ∓ 1
, (217)

where the minus sign corresponds to the Bose-Einstein distribution and the plus sign corresponds to the
Fermi-Dirac distribution.

In the limit when nj → 0 the system is very "dilute", since there are much more energetically accessible
states than particles. This limit is achieved for all states of energy εj when

eβ(εj−µ) >> 1. (218)
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Therefore, in the limit when nj → 0,
nj ≈ e−β(εj−µ), (219)

and the average number of particles is

N = ∑
j

nj ≈∑
j

e−β(εj−µ), (220)

so that
βµ = lnN̄ − ln ∑

j
e−βεj . (221)

Moreover, according to Eqs. (219) and (220),

nj

N
=

e−βεj

∑j e−βεj
, (222)

which is the classical Boltzmann distribution. Therefore, in the limit when nj → 0 both the Fermi-Dirac
and the Bose-Einstein distributions converge to the classical Boltzmann distribution.

Furthermore, according to Eqs. (204) and (207),

lnΞ = ∓∑
j

ln(1∓ e−β(εj−µ)). (223)

and in the limit when eβ(εj−µ) >> 1,
lnΞ ≈∑

j
e−β(εj−µ), (224)

since
lim
x→0

ln(1 + x) = x. (225)

Therefore, according to Eqs. (220) and (224),

lnΞ ≈ N, (226)

and according to Eqs. (226) and (109),
N ≈ lnZ + βµN. (227)

Substituting Eq. (221) into Eq. (226), we obtain

N ≈ lnZ + NlnN − Nln ∑
j

e−βεj , (228)

and according to the Stirling formula, introduced by Eq. (71),

Z =

(
∑j e−βεj

)N

N!
, (229)

where the 1/N! factor, in Eq. (229), indicates that quantum particles remain indistinguishable even in the
classical limit!
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24 Gibbs Paradox

The factor 1/N!, in Eq. (229), is essential to resolve the paradox formulated by Gibbs before the discovery
of Quantum Mechanics, stating that the entropy of a gas of N particles in a volume V at temperature T
decreases by a factor of N k ln(2) when the system is divided in 2 by an internal membrane, although the
thermodynamic quantities that define the state (i.e., N, T, V) remain constant.

To explain the paradox and its solution, consider a monatomic gas of N non-interacting molecules at
temperature T and volume V, with internal energy E = 3

2 NkT and entropy S = E
T + kln(Z).

If we ignore the factor 1/N!, in Eq. (229), we obtain:

Z =

(
∑

j
e−βεj

)N

=

(∫
dr
∫

dpe−β p2
2m

)N

= VN
(

π2m
β

)3N/2

(230)

Therefore, ln(Z) = Nln(V) + 3
2 Nln

(
π2m

β

)
and the entropy is:

S =
3
2

Nk + Nkln(V) +
3
2

Nkln
(

π2m
β

)
. (231)

Equation (231) leads to the Gibbs paradox when we consider twice the entropy S1/2 of half of the system
(e.g., with half the number of particles N/2 and volume V/2):

2× S1/2 =
3
2

Nk + Nkln(V) +
3Nk

2
ln
(

π2m
β

)
− Nkln(2), (232)

since 2× S1/2 6= S and the sum of the entropies of the halves should be equal to the total entropy.
In contrast, correcting Eq. (231) with the factor 1/N!, using the Sterling approximation ln(N!) ≈

Nln(N)− N, we obtain:

S =
3
2

Nk + Nkln(V) +
3Nk

2
ln
(

π2m
β

)
− Nkln(N) + Nk (233)

and

2× S1/2 =
3
2

Nk + Nkln(V) +
3Nk

2
ln
(

π2m
β

)
− Nkln(2)− Nkln(N) + Nk + Nkln(2). (234)

showing that S = 2× S1/2.
The origin of the paradox is thus the misleading assumption that particles are distinguishable. How-

ever, that would require a method to determine whether a specific molecule is on one side of the dividing
membrane or the other.

25 Example 1: Ideal Gas of Structureless Quantum Particles

An ideal gas of N non-interacting structureless paticles of mass m is described by the N-particle Hamiltonian

Ĥ =
N

∑
j=1

ĥj, (235)
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where ĥj is the one-particle Hamiltonian

ĥj = −
h̄2

2m
∇2

Rj
= − h̄2

2m

(
∂2

∂x2
j
+

∂2

∂y2
j
+

∂2

∂z2
j

)
, (236)

with Rj = (xj, yj, zj). The eigenstates of ĥj are the free-particle states

φj(x, y, z) = Aekj·R, (237)

where kj = (kxj, kyj, kzj), and A is a normalization constant determined by the volume of the box that
contains the gas. The one-particle eigenstates satisfy the eigenvalue problem

ĥj|φj >= εj|φj >, (238)

with εj = (h̄kj)
2/(2mj). Note that since the volume of the box is V=Lx×Ly×Lz, and |φj > are stationary

states, then Kx Lx = nx π, Ky Ly = ny π and Kz Lz = nz π, with nx,ny,nz=1,2,...
Therefore,

∑
nx,ny,nz

= ∑
Kx,Ky,Kz

V
π3 ...

and

Z =
1

N!

(
∑

j
e−βεj

)N

=
1

N!π3N

(
V
∫ ∞

0
dKx

∫ ∞

0
dKy

∫ ∞

0
dKze−

βh̄2
2m (K2

x+K2
y+K2

z )

)N

. (239)

Computing the Gaussian integrals analytically, we obtain

Z =
1

N!π3N

(
V
23

(
π2m
βh̄2

)3/2)N

=
VN

23N N!π3N

(
2πm
βh̄2

)3N/2

, (240)

since
∫ ∞

0 e−αx2
dx = 1

2

√
π
α . Therefore,

Z =
VN

N!h3N

(
2πm

β

)3N/2

⇒ E = −∂lnZ
∂β

)
V,N

=
3
2

NkT. (241)

In addition, according to Eq. (109),
∂ln
∂V

Ξ =
∂ln
∂V

Z, (242)

since βµN depends only on T. Considering that G = µN = H − TS = E + pV − TS = β−1lnΞ −
β−1lnZ, with TS = E + β−1lnZ, or E + pV − TS = β−1lnΞ− TS + E, we obtain pV = β−1lnΞ, so we
can define p as follows:

βp ≡ ∂lnΞ
∂V

)
T,N

. (243)

and according to Eq. (242),

βp ≡ ∂lnZ
∂V

)
T,N

. (244)

Therefore, we obtain

βp =
N
V
⇒ pV = NkT , (245)

which is the equation of state for an ideal gas of structureless particles.
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26 Example 2: Dilute Gas of Diatomic Molecules

In the previous example, we showed that the state of a structureless particle is completely defined by the
vector K = (Kx, Ky, Kz) that specifies the momentum Kh̄ of the center of mass. Specifying the state
of a molecule, however, requires the specification of its internal state besides specifying the translation of
the molecule as a whole, since the molecule can vibrate, rotate, or undergo electronic excitations while
translating as specified by the vector K.
Contrary to structureless particles, molecules are described by the Hamiltonian

Ĥ = − h̄2

2m
∇2

R + Ĥel(R, r), (246)

where, R and r are the nuclear and electronic coordinates.
A simple expression for the cononical partition function of an ideal gas of diatomic molecules in the ground
electronic state can be obtained by factorizing the total energy into translational, rotational and vibrational
modes (i.e., assuming that these modes are uncoupled from each other) and then modeling vibrations accord-
ing to the harmonic approximation and rotations according to the rigid rotor approximation. The resulting
partition function is

Z =
(∑j e−βEj)N

N!
, (247)

Here, Ej = Erot(J(j)) + Etransl(n(i)) + Evib(ν(j)), where J(j) specifies the rotational quantum number,
ν(j) the vibrational quantum number and n(j) the translational modes of particle j. Therefore,

Z =
(qtransl ∗ qint)

N

N!
, where qint = qrot ∗ qvib, (248)

with

qvib =
∞

∑
ν=0

e−βh̄ω0(1/2+ν) =
e−βh̄ω0/2

1− e−βh̄ω0/2 , (249)

qtransl =
V
h3

(
2πm

β

)3/2

, (250)

and

qrot =
∞

∑
J=0

(2J + 1)e−β h̄2
2I0

J(J+1),

=
∞

∑
J=0

f (J),

=
∫ ∞

0
f (J)dJ +

1
2
[ f (∞) + f (0)] +

∞

∑
j=1

(−1)j Bj

(2j)!
[ f 2j−1(0)− f 2j−1(∞)],

(251)

where f (J) = (2J + 1)e−β h̄2
2I0

J(J+1). In the third line, we have introduced the Euler-MacLaurin formula,
where B1 = 1/6, B2 = 1/30, B3 = 1/42, · · · . Note that f (0) = 1, f (∞) = 0 and

∫ ∞
0 dJ f (J) =

− 2I0
βh̄2

∫ ∞
0 dJ d

dJ e−β h̄2
2I0

J(J+1)
= 2I0

βh̄2 . Also, note that for simplicity we have ignored the internal structure of
nuclei and the degeneracy factor associated with the permutation of indistinguishable nuclei.
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27 Example 3: Phonons in a Solid Lattice

Having computed the partition function of a harmonic oscillator, we now compute the partition function of
the normal modes of a solid at low temperature. According to the harmonic approximation, the Hamiltonian
of the system is

Ĥ =
DN

∑
α=1

ĥα, (252)

where DN is the number of normal modes, with D the dimensionality of the lattice and ĥα is the Hamiltonian
of a harmonic oscillator with a frequency ωα and eigenvalues

En(α) = h̄ωα(
1
2
+ nα), (253)

with nα = 1, 2...
An arbitrary vibrational state ξ of the lattice can be specified by the DN normal mode frequencies ωα and
vibrational quantum numbers nα. The energy of such state is

Eξ =
DN

∑
α=1

[nαh̄ωα +
h̄
2

ωα]. (254)

The canonical partition function for the lattice is

Z(β, N) = ∑
n1

∑
n2

∑
n3

...exp

(
− β

DN

∑
α=1

nαh̄ωα +
h̄
2

ωα

)
, (255)

which according to Eq.(174) becomes,

Z(β, N) =
DN

∏
α

e−β h̄ωα
2

1− e−βh̄ωα
=

DN

∏
α=1

(eβ h̄ωα
2 − e−β h̄ωα

2 )−1, (256)

and

lnZ = −
DN

∑
α=1

ln(eβ h̄ωα
2 − e−β h̄ωα

2 ), (257)

or in the continuous representation,

lnZ = −
∫ ∞

0
dωg(ω)ln(eβ h̄ω

2 − e−β h̄ω
2 ) (258)

where g(ω) is the density of states —i.e., the number of vibrational states with frequencies between ω and
ω + dω.

27.1 Einstein Model

The Einstein model assumes that all vibrational modes in a solid lattice have the same frequency ωE and,
therefore,

g(ω) = DNδ(ω−ωE). (259)

Substituting Eq. (259) into Eq. (258) we obtain

lnZ = −NDln

(
e+βh̄ωE/2 − e−βh̄ωE/2

)
. (260)
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The average internal energy of the lattice can be computed from Eq. (260) as follows,

E =
∂lnZ

∂(−β)
= +DN

h̄ωE

2
coth(βh̄ωE/2). (261)

Note that in the high temperature limit,

lim
β→0

E =
DN

β
= DNkT. (262)

The heat capacity at constant volume Cv can also be obtained from Eq. (260) as follows,

Cv =
∂E
∂T

)
v

=

(
− ND

kT2

)(
h̄
2

ωE

)2

((
eβh̄ωE/2 − e−βh̄ωE/2

)2

−
(

eβh̄ωE/2 + e−βh̄ωE/2

)2)
(

eβh̄ωE/2 − e−βh̄ωE/2

)2 . (263)

The expression introduced by Eq. (263) can be simplified to obtain

Cv =

(
θ

T

)2
NDk(

e−
θ

2T (e
θ
T − 1)

)2 = NDk

(
θ

T

)2
e

θ
T(

e
θ
T − 1

)2 , (264)

with θ ≡ h̄ωE
2k .

Limiting cases
(i) At high temperature, θ << T and e

θ
T ≈ 1 + θ

T . Therefore,

Cv = NDk

(
θ

T

)2
1 + θ

T + ...

(1 + θ
T − 1 + ...)2

= NDk. (265)

Eq. (265) is the Dulong-Petit’s law —i.e., the experimental limit for Cv at high temperature.
(ii). At low temperature, θ >> T. Therefore,

Cv = NDk

(
θ

T

)2

e−
θ
T . (266)

It is important to note that Eq. (266) does not predict the correct limit for Cv at low temperature, since Cv
should be proportional to T3 when T → 0.

27.2 Debye Model

Debye approximated the normal vibrations with the elastic vibrations of an isotropic continuous body where
the number of vibrational modes with frequencies between ω and ω + dω is

g(ω) =

{
ξω2, when ω < ω0,
0, otherwise,

(267)
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where ξ ≡ 3V/(2π2c3) and ∫ ω0

0
dωg(ω) = 3N =

Vω3
0

2π2c3 . (268)

Therefore,
ξ = 9N2π2c3/(ω3

02π2c3). (269)

According to Eqs.(268) and (258),

lnZ = −
∫ ω0

0
dωξω2ln

(
eβh̄ω/2 − e−βh̄ω/2

)
. (270)

Therefore,

lnZ = −
∫ ω0

0
dωξω2lneβh̄ω/2 −

∫ ω0

0
dωξω2ln(1− e−βh̄ω), (271)

and

lnZ = −βh̄
2

ξ
ω4

0
4
−
∫ ω0

0
dωξω2ln(1− e−βh̄ω). (272)

The internal energy E is computed from Eqs. (272) and (269) as follows,

E =
∂lnZ

∂(−β)
=

h̄
2

9Nω4
0

ω3
04

+
∫ ω0

0
dωξω3h̄

e−βh̄ω

1− e−βh̄ω
, (273)

and introducing the change of variables γ ≡ βh̄ω,

E =
h̄
2

9Nω0

4
+

1
βh̄

∫ βh̄ω0

0
dγξ

γ3

(βh̄)3 h̄
1

(eγ − 1)
. (274)

Considering that

f (x) =
3
x3

∫ x

0
dγ

γ3

eγ − 1
=

{
1− 3

8 x + ... x << 1
π

5x3 + ... x >> 1,
(275)

we obtain, according to Eqs. (274) and (275),

Ẽ = E− h̄
2

9Nω0

4
=

ω3
03N

βω3
0
×
{

1− ... = 3NkT when T → ∞
π

5(βh̄ω0)3 = (kT)4π3N
5(h̄ω0)3 when T → 0.

(276)

Therefore the Debye model predicts the following limits for the heat capacity of a solid lattice,

Cv =

{
3Nk when T → ∞
3Nk4 π4

5(h̄ω0)3 T3 when T → 0.
(277)

which are the correct high and low temperature limits, represented by the following diagram:

-

6

3Nk

T0

6

T3
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28 Example 4: Electrons in Metals

The goal of this section is to show that even at room temperature, the conducting electrons in metals can be
modeled as an ideal gas of fermions contained in a box of volume V = L3, where L defines the dimensions
of the piece of metal. Such a goal is accomplished by comparing the kinetic energy of conducting electrons,
modeled as an ideal gas of fermions, with typical energy fluctuations due to thermal motion.
The average number of electrons occupying the j-th energy state is

nj =
1

eβ(εj−µ) + 1
, (278)

where

εj =
h̄2K2

j

2m
, (279)

and
Kj = (nx(j), ny(j), nz(j))π/L (280)

with nx(j), ny(j), nz(j) = 1, 2, ... Therefore, the average number of electrons is

N = ∑
j

nj, (281)

N = 2 ∑
nx

∑
ny

∑
nz

1
eβ(ε(nx ,ny,nz)−µ) + 1

, (282)

or,

N = 2
∫ ∞

−∞
dkx

∫ ∞

−∞
dky

∫ ∞

−∞
dkz

(
L
π

)3
1

eβ( h̄2K2
2m −µ) + 1

. (283)

In particular, at T = 0,
1

1 + eβ( h̄2K2
2m −µ)

=

{
1, h̄2K2

2m < µ,

0, h̄2K2

2m > µ,
(284)

therefore,

N = 8π
∫ K f

0
dKK2

(
L

2π

)3

= 8π

(
L

2π

)3 K3
f

3
=

2V
(2π)3

4
3

πK3
f , (285)

where K f is the Fermi momentum defined as follows

h̄2K2
f

2m
= µ. (286)

The value of K f for a specific metal can be found, according to Eq. (285) and using the values of the density
and atomic weight of the corresponding metal, assuming that each atom in the metal donates an electron to
the conducting electron gas. Such value of K f , can be used to compute the chemical potential according to
Eq. (286). The calculation for Cu, with a density of 9 g/cm3 and atomic weight of 63.5 g/mol gives

µ/k ≈ 80, 000K, (287)

which indicates that even at room temperature the ideal gas approximation is accurate.
Thermal Energy and Heat Capacity
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The remaining of this section proves that at low temperature T the heat capacity Cv of electrons in metals is
proportional T.
The thermal energy E of electrons in metals is

E = ∑
j

2njεj, (288)

where index j specifies a one-electron quantum state with energy εj and nj is the average number of electrons
with one kind of spin in such state. The factor 2, introduced by Eq. (288) counts for the spin degeneracy.
Substituting nj according to Eq. (278) and changing the sum over j by a sum over energy levels we obtain

E = 2
∫ ∞

0
dε

ρ(ε)ε

eβ(ε−µ) + 1
, (289)

where ρ(ε) is the degeneracy of the energy level.
Eq. (289) can be integrated by parts, according to

∫ b

a
udφ = u ∗ φ

∣∣∣∣∣
b

a

−
∫ b

a
φdu, (290)

defining dφ = ερ(ε)dε and u(ε) = 1/(exp(β(ε− µ))+ 1). Note that according to this choice of variables
φ(ε) =

∫ ε
0 dε̄ρ(ε̄)ε̄. We obtain

E = lim
ε→∞

2
∫ ε

0 dε′ρ(ε′)ε′

eβ(ε−µ) + 1
− lim

ε→0

2
∫ ε

0 dε′ρ(ε′)ε′

eβ(ε−µ) + 1
− 2

∫ ∞

0
dε[
∫ ε

0
dε′ρ(ε′)ε′]

(−eβ(ε−µ)β)

(eβ(ε−µ) + 1)2
. (291)

Note that the first term, introduced by Eq. (291) is equal to 0 since in the limit when ε→ ∞ the denominator
becomes extremely large. The second term introduced by Eq. (291) is also equal 0 since in the limit when
ε→ 0 the numerator is equal to 0. Therefore, introducing the definition

F(ε) ≡ 1
eβ(ε−µ) + 1

, (292)

we obtain that Eq. (291) can be rewritten as follows,

E = −2
∫ ∞

0
dεφ(ε)

∂F
∂ε

. (293)

At this point, it is important to note that ∂F/∂ε is a function peaked at ε = µ, as represented by the following
diagram,

-

6
∂F
∂ε

0 ε
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since F(ε) is a step function represented by the following diagram,

-

6
F(ε)

1

ε

2kT

µ

-�

Therefore we can approximate φ(ε), in Eq. (293), by its expansion around ε = µ,

φ(ε) = φ(µ + x) ≈
∞

∑
0

∂nφ

∂εn

∣∣∣∣∣
ε=µ

(ε− µ)n

n!
, (294)

where x ≡ ε− µ. Substituting Eq. (294) into Eq. (293) for a given spin, we obtain,

E = −
∫ ∞

0
dε

∞

∑
n=0

∂nφ

∂εn

∣∣∣∣∣
ε=µ

(ε− µ)n

n!
∂F
∂ε

. (295)

Considering the first few terms of Eq. (295) we obtain,

E = φ(µ)

(
−
∫ ∞

0 dε ∂F
∂ε

)
+ ∂φ

∂ε

∣∣∣
ε=µ

∫ ∞
0 dε(ε− µ) eβ(ε−µ)

e2β(ε−µ)+2eβ(ε−µ)+1

+ ∂2φ
∂ε2

∣∣∣
ε=µ

∫ ∞
0 dε

(ε−µ)2

2
eβ(ε−µ)

e2β(ε−µ)+2eβ(ε−µ)+1
+ ...,

(296)

where the first term is equal to φ(µ) because F(∞) = 0 and F(0) = 1. To show that the second term in Eq.
(296) is equal to 0 we rewrite Eq. (296) in terms of the variable x̄ = βx,

E = φ(µ) + ∂φ
∂ε

∣∣∣
ε=µ

∫ ∞
−∞ dx̄ x̄

β
1

ex̄+e−x̄+2

+ (kT)2

2
∂2φ
∂ε2

∣∣∣
ε=µ

∫ ∞
−∞ dx̄ x̄2

ex̄+e−x̄+2 + ...,
(297)

where the lower integration limit has been changed from 0 to−∞ since the integrand is approximately equal
to zero whenever abs(ε− µ) is large. Note that the integral introduced by the second term of Eq. (297) is
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equal to 0 because the integrand is odd. In addition,∫ ∞

−∞
dx̄

x̄2

ex̄ + e−x̄ + 2
=

π2

3
, (298)

therefore,

E = φ(µ) +
(kT)2

2
∂2φ

∂ε2

)
ε=µ

(
π2

3

)
+ ..., (299)

At sufficiently low T, higher order terms in Eq. (299) are negligible. Therefore, at low T

Cv ∝ T, (300)

as observed in experiments.

28.1 Continuous Approximation

The goal of this subsection is to show that the error introduced by approximating Eq. (282) according to Eq.
(283) is negligible when L y sufficiently large. For simplicty, we show this for a 1-dimensional problem,
where

∞

∑
Kx=π/L

1

eβ( h̄2
2m K2

x−µ) + 1
= ∑

Kx

f (Kx)∆K, (301)

with
f (Kx) =

1
eβ(ε(Kx)−µ) + 1

Lx

π
, (302)

a decreasing function of Kx and
∆K =

π

Lx
, (303)

Remember, that Kx = Kx(nx) is a function of the quantum number nx, as defined by Eq. (280), where
nx = 1, 2, ..., with Kx = nxπ/L.
The discrete sum, introduced by Eq. (301), can be represented by the following diagram,

-

6

f (Kx)

Kx

Kx(0)Kx(1)Kx(2)Kx(3)Kx(4)︸︷︷︸
∆K

The diagram shows that,
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∞

∑
nx=1

f (Kx(nx))∆K ≤
∫ ∞

0
dK f (K) ≤

∞

∑
nx=0

f (Kx(nx))∆K =
∞

∑
nx=1

f (Kx(nx))∆K + f (Kx(0))∆K, (304)

since f (Kx(nx) is a decreasing function of Kx. So,

0 ≤
∫ ∞

0
dK f (K)−

∞

∑
nx=1

f (Kx(nx))∆K ≤ f (Kx(0))∆K ≤ 1. (305)

Therefore, Eq. (305) shows that the discrete sum and the integral become equal to each other when Lx
is very large since

0 ≤
∫ ∞

0
dKx

1
eβ(ε(Kx)−µ) + 1

−
∞

∑
Kx=π/L

∆Kx
1

eβ(ε(Kx(nx))−µ) + 1
≤ π

Lx
, (306)

so

lim
Lx→∞

Lx

π

∫ ∞

0
dKx

1
eβ(ε(Kx)−µ) + 1

=
∞

∑
nx=1

1
eβ(ε(Kx(nx))−µ) + 1

. (307)

28.2 Joint Probabilities

The goal of this section is to show that the joint probability gij that an electron is in state i and another
electron of the same spin is in state j is

gij = ninj − δijni, (308)

where ni is the average population of state i. Note that the average ninj thus provides information about
correlations between different particles.
Consider the population of state i, ni, in terms of the sum of occupation variables n(α)

i over all electrons α,

ni = ∑
α

n(α)
i , (309)

where n(α)
i = 1, 0. Therefore, the probability that states i and j are populated is

ninj = ∑
β

∑
α

n(α)
i n(β)

j = ∑
α

n(α)
i n(α)

j + ∑
α

∑
β 6=α

n(α)
i n(β)

j .︸ ︷︷ ︸
gijby definition

(310)

Note that

∑
α

n(α)
i n(α)

j = ∑
α

(n(α)
i )2δij, (311)

and that
n2

i = ∑
α

∑
β

n(α)
i n(β)

i = ∑
α

(n(α)
i )2 + ∑

α
∑
β 6=α

n(α)
i n(β)

i , (312)

where the double sum with β 6= α in Eq. (312) is equal to 0 because it corresponds to the joint probability
that both particles α and β are in state i.
Substituting Eqs. (311) and (312) into Eq. (310), we obtain

ninj = n2
i δij + gij. (313)
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Eq. (313) is identical to Eq. (308) because n2
i = ni when ni = 0, 1.

Finally, note that according to Eq. (204),

njni =
1
Ξ

∂2Ξ
∂(−βεi)∂(−βεj)

∣∣∣∣∣
V,T

=
∂2lnΞ

∂(−βεj)∂(−βεi)
+

∂lnΞ
∂(−βεj)

∂lnΞ
∂(−βεi)

=

(
∂

∂(−βεj)

∣∣∣∣∣
V,T

+ nj

)
ni,

=

(
δij

∂

∂(−βεi)

∣∣∣∣∣
V,T

+ nj

)
ni,

(314)

Therefore,

gij =

(
δij

∂

∂(−βεi)

∣∣∣∣∣
V,T

+ nj − δij

)
ni. (315)

29 Chemical Equilibrium

The goal of this section is to derive the law of mass action and to obtain an expresion of the equilibrium con-
stant for a chemical reaction in the gas phase in terms of the canonical partition function of the molecular
constituents. To achieve these goals, we first obtain an expression of the chemical potential for the con-
stituent molecules in terms of their canonical partition functions and then we derive the law of mass action
by using the minimum energy principle. Finally, we combine both results and we obtain an expression of
the equilibrium constant in terms of the molecular canonical partition functions.
The grand canonical ensemble of a multicomponent system is described by the density operator, introduced
by Eq. (??) but where

pj =
e−βEj+β ∑k µk Nj(k)

∑j e−βEj+β ∑k µk Nj(k)
= Ξ−1e−βEj+β ∑k µk Nj(k), (316)

with µk the chemical potential of species k and Nj(k) the number of particles of species k in quantum state
j. Eq. (316) is obtained by maximizing the entropy of the system, introduced by Eq. (164), subject to the
constraints of constant volume, average internal energy Ej and average number of particles Nj(k) for all the
different species k in the system.
Substituting Eq. (316) into Eq. (97), we obtain

S =
E
T
− 1

T ∑
k

µkN(k) + klnΞ. (317)

Therefore,
G ≡∑

k
µkN(k) = E− TS + TklnΞ, (318)

and since G = H − TS = E + PV − TS,

PV = kTlnΞ. (319)

Eqs. (317)—(319) provide an expression for the change in internal energy dE due to changes in the extensive
properties of the system such as changes of volume dV, number of particles dN(k) and entropy dS,
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dE = TdS− PdV + ∑
k

µkdN(k). (320)

According to Eq. (320), µk can be computed as follows,

µk =
∂E

∂N(k)

)
S,V

, (321)

and since A = E− TS and dA = dE− TdS− SdT,

µk =
∂A

∂N(k)

)
T,V

. (322)

Furthermore, according to Eqs. (322) and (64),

βµk = −
∂lnZ

∂N(k)

)
T,V

. (323)

The canonical partition function,

Z = ∏
k

(qt(k) ∗ qint(k))N(k)

N(k)!
, (324)

is computed according to Eq. (248), where qt(j) = V(2πmjkT)3/2/h3 and qint are the translational and
internal canonical partition functions of species j, respectively. The underlying assumption, when computing
Z according to Eq. (324), is that the constituents of the systems in the gas phase do not interact with each
other except when they undergo reactive collisions.
Substituting Eq. (324) into Eq. (323) and using the Stirling Formula, introduced by Eq. (71), we obtain

βµk = −ln

(
qt(k) ∗ qint(k)

N(k)

)
. (325)

To derive the law of mass action, we consider the following chemical reaction,

aA + bB
 cC + dD, (326)

where the stoichiometric coefficients (ck =a, b, c and d) determine the relative changes in the number of
moles of the molecular constituents due to the chemical reaction, as follows:

dN(A)

a
=

dN(B)
b

= −dN(C)
c

= −dN(D)

d
. (327)

Substituting Eq. (327) into Eq. (320) we obtain an expression for the change in internal energy at constant
entropy S and volume V,

dE

)
S,V

= ∑
j

µjdN(j) = dN(A)∑
j

µjνj, (328)

where νj = cj/a.
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The minimum energy principle establishes that

dE

)
S,V

≥ 0, (329)

for all arbitrary changes dN(A) in a system that was initially at equilibrium. Therefore, according to Eqs.
(328) and (329),

∑
j

βµjνj = 0. (330)

Substituting Eq. (325) into Eq. (330), we obtain

∑
j

ln

([
qint ∗ (2πmjkT)3/2

h3

)νj[
V

N(j)

]νj)
= 0, (331)

and

ln ∏
j

[
qint ∗ (2 ∗ π ∗mj ∗ k ∗ T)3/2

h3

)νj[
V

N(j)

]νj

= 0. (332)

Therefore,

K(T) ≡∏
j

(
qint ∗ (2 ∗ π ∗mj ∗ k ∗ T)3/2

h3

)−νj

= ∏
j

(
V

N(j)

)νj

, (333)

which is the law of mass action. Such law establishes that the concentrations of the constituent molecules
in chemical equilibrium define an equilibrium constant K(T) that depends only on the temperature of the
system and on the nature of the chemical species. The first equality, in Eq. (333), provides a molecu-
lar expression of such equilibrium constant in terms of the canonical partition functions of the molecular
constituents and T.

29.1 Minimum Energy Principle

The minimum energy principle, introduced by Eq. (329), is a consequence of the maximum entropy prin-
ciple. This can be shown by considering the system at thermal equilibrium described by the following
diagram:

(1) (2)

S(E(1), X)

N1

S(E(2), X)

N2

6

Thermal (Heat) Conductor

Consider a small displacement of heat δE from compartment (2) to compartment (1). Since the system
was originally at equilibrium, such a contraint in the distribution of thermal energy produces a constrained
system whose entropy is smaller than the entropy of the system at equilibrium. Mathematically,

S(E(1) + δE, X) + S(E(2) − δE, X) < S(E(1), X) + S(E(2), X). (334)
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Now consider the system at equilibrium (i.e., without any constraints) with entropy S(E, X) such that

S(E, X) = S(E(1) + δE, X) + S(E(2) − δE, X). (335)

Since, according to Eqs. (335) and (334),

S(E, X) < S(E(1), X) + S(E(2), X), (336)

and according to Eq. (51),
∂S
∂E

)
V,N

=
1
T

> 0, (337)

then
E < E(1) + E(2). (338)

Eq. (335) thus establishes that by imposing internal constraints at constant entropy the system that was
initially at equilibrium with entropy S(E, X) moves away from such equilibrium and its internal energy
increases from E to E(1) + E(2). Mathematically,

dE

)
S,V

≥ 0, (339)

which is the minimum energy principle.

30 Exam 2

Exam 2 CHEM 430b/530b
Statistical Methods and Thermodynamics

Exercise 1
(20 points) Item (1.1):Consider an ideal gas of bosons with µ = 0 at temperature T = 1/(βk). Show that

δnk δnj = δkj
∂nk

∂(−βεk)

)
V,T

, (340)

where δnk = nk − nk and nk is the average occupation of the one-boson energy level k.
(20 points) Item (1.2): Explain the minimum energy principle and show that such principle is a consequence
of the maximum entropy principle.
(20 points) Item (1.3): Explain the classical limit of the quantum statistical distributions.

Exercise 2
Consider an ideal gas of O2 molecules adsorbed on a surface of area S in thermal equilibrium at temperature
T = 1/(kβ). Assume that each O2 molecule in the gas can freely translate, vibrate and rotate but only on
the 2-dimensional surface. Assume that the rotational motion of O2 molecules can be described by a rigid
rotor model where the rotational eigenstates have degeneracy g(J) = 2 for all values of J except for J=0 for

which g(J)=1. Assume that the rotational states have eigenvalues EJ =
h̄2 J2

2I0
, with J=0, 1, 2, ..., where I0 is

the moment of inertia of the O2 molecule.
(10 points) Item (2.1): Compute the rotational canonical partition function of an O2 molecule as a function
of its moment of inertia I0 and β.
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(10 points) Item (2.2): Compute the vibrational canonical partition function of an O2 molecule as a function
of its vibrational frequency ω0 and β.
(10 points) Item (2.3): Compute the translational canonical partition function of an O2 molecule as a func-
tion of its total mass m, β and the surface area S.
(10 points) Item (2.4): Compute the average internal energy E of the O2 gas as a function of β, the O2 mass
m , the area of the surface S, the O2 moment of inertia I0 and the total number N of O2 molecules on the
surface.

Solution:
Exercise 1:
Item (1.1): Since δnk = nk − nk,

δnk δnj = nknj − nk nj, (341)

where
nj =

1
eβεj − 1

, (342)

because µ = 0. Therefore,

nknj =
1
Ξ

∂2 ∑∞
n1=0 ∑∞

n2=0 ...e−β(ε1n1+ε2n2+...)

∂(βεj)∂(βεk)
, (343)

or

nknj =
1
Ξ

∂2

∂(βεk)∂(βεj)
∏

j

1
1− e−βεj

. (344)

Computing the first partial derivative we obtain

nknj =
1
Ξ

∂

∂(−βεj)

e−βεk

(1− e−βεk)2 ∏
l 6=k

1
1− e−βεl

, (345)

and computing the second partial derivative we obtain

nknj = 1
Ξ [∏l 6=k

1
1−e−βεl

δkj
[(1−e−βεk )2e−βεk+e−βεk 2(1−e−βεk )e−βεk ]

(1−e−βεk )4

+ e−βεk

(1−e−βεk )2
e−βεj

(1−e−βεj )2
∏l 6=j,l 6=k

1
1−e−βεl

],
(346)

where,

Ξ = ∏
j

1
1− e−βεj

. (347)

Therefore,

nknj = δkj
e−βεk

(1− e−βεk)2 +
e−βεk

(1− e−βεk)

e−βεj

(1− e−βεj)
, (348)

and

δnk δnj = δkj
e−βεk

(1− e−βεk)2 = δkj
∂

∂(−βεk)

1
eβεk − 1

, (349)
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which, according to Eq (264), gives

δnk δnj = δkj
∂nk

∂(−βεk)
. (350)

Item (1.2): See topic “Minimum Energy Principle” on page 55 of the lecture notes.
Item (1.3): See topic “Classical limit of Quantum Statistical Distributions” on page 36 of the lecture notes.

Exercise 2:
Item (2.1): The rotational canonical partition function of an O2 molecule is

qrot =
∞

∑
J=0

g(J)e−βεJ . (351)

Taking the continuous limit we obtain,

qrot ≈ lim
ε→0

∫ ∞

ε
dJg(J)e−βεJ =

√
π2I0

βh̄2 . (352)

Item (2.2): The vibrational canonical partition function of an O2 molecule is

qvib =
∞

∑
ν=0

e−βεν =
e−βh̄ω0/2

1− e−βh̄ω0
. (353)

Item (2.3): The translational canonical partition function of an O2 molecule is

qtransl =
S

π2 ∑
kx

∑
ky

e−β
(k2

x+k2
y)h̄

2

2m ≈ S
π2

∫
dkxe

−βk2
x h̄2

2m

∫
dkye

−βk2
y h̄2

2m . (354)

Therefore,

qtransl ≈
Sπ2m

βh2 , (355)

where S = Lx × Ly, with Lx and Ly the lengths of the surface along the x and y directions, respectively.
Item (2.4): The total canonical partition function of the system is

Q =
1

N!

N

∏
j=1

qrotqvibqtransl. (356)

Substituting the expressions for qrot, qvib and qtransl computed in items (2.1)—(2.3) we obtain,

Q =
1

N!

N

∏
j=1

S
2πm
βh2 (eβh̄ω0/2 − e−βh̄ω0/2)−1

√
2π I0

βh̄2 =
1

N!

N

∏
j=1

πx
β3/2(eβy − e−βy)

. (357)

Therefore, the average internal energy of the O2 gas is

E =
∑N

j=1 ∂lnQ
∂β

=
N
Q

∂Q
∂(−β)

= +
β3/2(eβy − e−βy)N

x
x(3/2β1/2(eβy − e−βy) + β3/2y(eβy + e−βy))

β3/2(eβy − e−βy)2 ,

(358)
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which gives

E =
N

∑
j=1

3/2(eβy − e−βy) + βy(eβy + e−βy)

β(eβy − e−βy)
= (

3
2β

+
3y
2
(eβy + e−βy)

(eβy − e−βy)
) ∗ N, (359)

where x = S2mπ
h2

√
2π I0

h̄2 and y = h̄ω0
2 .

31 Quiz 2

Quiz 2 CHEM 430b/530b
Statistical Methods and Thermodynamics

(30 points) Exercise 1: Derive the Fermi-Dirac distribution.
(30 points) Exercise 2: Derive the Bose-Einstein distribution.
(40 points) Exercise 3: Derive an expression for the average density of electrons N/V in a metal at T = 0
K, as a function of the Fermi energy µ and the electron mass m.

Solution:
Exercise 1: See topic “Bose-Einstein and Fermi-Dirac distributions” on pages 34 and 35 of the lecture notes.
Exercise 2: See topic “Bose-Einstein and Fermi-Dirac distributions” on pages 34 and 35 of the lecture notes.
Exercise 3: According to Eq. (285),

N = 8π
∫ K f

0
dKK2

(
L

2π

)3

= 8π

(
L

2π

)3 K3
f

3
=

2V
(2π)3

4
3

πK3
f , (360)

where K f is the Fermi momentum defined as follows

h̄2K2
f

2m
= µ. (361)

Therefore,

N
V

=
2

(2π)3
4
3

π

(
2mµ

h̄2

)(3/2)

. (362)
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32 Ising Model

The goal of this section is to introduce the Ising model which is a simple model of systems with interparticle
interactions. We compute its canonical partition function according to both the macroscopic approximation
and the rigorous transfer matrix technique.

Figure 3: Chemistry Gate, Yale University. The central panel represents the Ising Lattice, a tribute to Nobel-
prize winning Yale chemist Lars Onsager, who provided a proof of the Ising model for phase change.

The 1-dimensional Ising model is described by a system of N spins arranged in a ring as represented in
the following diagram:

e e e e e
ee e e e e

6
?

6 6

?

6

6

?
?

6
6

SN−1
SN S1 S2

S3

S4

SN−2

S7 S6
S5

bN−1 bN b1 b2
b3

b4b5b6
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The Hamiltonian of the system is
H = −µ̄B ∑

j
Sj − J ∑

jk
SjSk, (363)

where µ̄ is the magnetic dipole moment, B is an external magnetic field and J is the coupling constant
between spins. The sum of products SjSk defines the interaction between spins, including only nearest
neighbors.
In the absence of an external magnetic field, the canonical partition function of the system is

Z =
1

∑
S1=−1

1

∑
S2=−1

...
1

∑
SN=−1

eβJS1S2 eβJS2S3 ...eβJSNS1 , (364)

The partition function, introduced by Eq. (364), is approximately equal to

Z ≈ ∑
b1=±1

... ∑
bN=±1

eβJ ∑N
j=1 bj = [2cosh(βJ)]N , (365)

where we have replaced the products of interaction SkSj by bonds bj = ±1 and we have assumed that
all bonds are linearly independent. Note, however, that such approximation consist in assuming that N is
sufficiently large (i.e., N >> 1) as to neglect the energy of one bond relative to the total energy of the
system, since only N-1 bonds are actually linearly independent.
To perform a rigorous calculation of the canonical partition function introduced by Eq. (364), we define the
transfer function in the absence of an external magnetic field as follows,

T(Si, Si+1) ≡ exp(βJSiSi+1). (366)

Substituting Eq. (366) into Eq. (364) we obtain

Z =
1

∑
S1=−1

1

∑
S2=−1

...
1

∑
SN=−1

T(S1, S2)T(S2, S3)...T(SN , S1). (367)

This expression corresponds to the trace of a product of N identical 2 × 2 matrices. To show this we
introduce the transfer matrix,

T ≡
(

T(1, 1) T(1,−1)
T(−1, 1) T(−1,−1)

)
. (368)

Note that the element (j,k) of T2 is

T2(j, k) =
1

∑
S2=−1

T(j, S2)T(S2, k), (369)

and therefore

Z =
1

∑
S1=−1

TN(S1, S1) = Tr{TN}. (370)

Thus the calculation of the canonical partition function for the 1-dimensional Ising model has been reduced
to that of computing the trace of the Nth power of the transfer matrix.

We note that T = ΓTdΓ†, with Td the diagonal matrix of eigenvalues of T, and Γ the matrix of
eigenvectors of T with ΓΓ† = I, so TN = ΓTN

d Γ†. Furthermore, the Tr{TN} = Tr{ΓTN
d Γ†} =

Tr{Γ†ΓTN
d } = Tr{TN

d } since the trace is invariant under cyclic permutations (i.e., Tr(ABC)=Tr(CAB)
since ∑j,k(AB)jkCkj = ∑j,k Ckj(AB)jk ).
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Now, the trace of a matrix is the sum of its eigenvalues and the eigenvalues of TN are λN
± , where λ± are

the eigenvalues of T determined by the equation∣∣∣∣∣eβJ − λ e−βJ

e−βJ eβJ − λ

∣∣∣∣∣ = 0, (371)

with solutions
λ± = eβJ ± e−βJ . (372)

Hence, the partition function is simply,

Z = λN
+ + λN

− = 2N(coshN(βJ) + sinhN(βJ)). (373)

Note that when N is sufficiently large, sinhN(βJ) << coshN(βJ) and Eq. (373) coincides with Eq. (365).
In the presence of a magnetic field, however,

Z =
1

∑
S1=−1

1

∑
S2=−1

...
1

∑
SN=−1

eβJS1S2+βµB(S1+S2)/2eβJS2S3+βµB(S2+S3)/2...eβJSNS1+βµB(SN+S1)/2, (374)

Exercise: 1-dimensional Ising Model
Compute the canonical partition function introduced by Eq. (374) by implementing the transfer matrix
approach.

33 Lattice Gas

The goal of this section is to show that with a simple change of variables, the Ising model can be mapped
into the lattice gas which is a simple model of density fluctuations and liquid-gas transformations. The
1-dimensional lattice gas model is described by the following diagram:

cN−1 cN c1 c2 c3

c4c5c6

The lattice divides space into cells c1, c2, ..., cN . Each cell has an occupation number nj = 0, 1. The
interaction between particles occupying the cells is modeled by assuming that the energy associated with a
pair of occupied nearest neighbor cells is −εnjnk and the total energy of the system is

E = −µ ∑
j

nj − ε ∑
j

∑
k

njnk, (375)
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where j is the index of the cell and µ is the chemical potential of a particle. The partition function of the
lattice model is

Ξ =
1

∑
n1=0

1

∑
n2=0

...
1

∑
nN=0

eβµ ∑N
j=1 nj+βε ∑j ∑k njnk . (376)

To show the correspondence between the lattice gas and the Ising model, we make the variable transforma-
tion nj ≡ (Sj + 1)/2 and we obtain

Ξ =
1

∑
S1=−1

1

∑
S2=−1

...
1

∑
SN=−1

eβ
µ
2 ∑j(Sj+1)+β ε

4 ∑j ∑k(Sj+1)(Sk+1), (377)

Therefore the lattice model is isomorphic with the Ising model: “Spin up” in the Ising model corresponds
to an occupied cell in the lattice model, “spin down” corresponds to an empty cell, the magnetic field in
the Ising model corresponds (within constants) to the chemical potential in the lattice gas and the coupling
constant in the Ising model is ε/4 in the lattice gas.
The Ising model can also be mapped into many other problems in Chemistry and beyond, ranging from
models of population dynamics to models of the brain.

34 Mean Field Theory

The goal of this section is to introduce the so-called mean field theory (also known as self consistent field
theory) and to illustrate the theory by applying it to the description of the Ising model.
The main idea of the mean field theory is to focus on one particle and assume that the most important
contribution to the interactions of such particle with its neighboring particles is determined by the mean
field due to the neighboring particles.
In the 1-dimensional Ising model, for instance, the average force Fk exerted on spin Sk is

Fk ≡ −
∂H
∂Sk

= µ̄B + J ∑
j

Sj, (378)

where the index j includes all the nearest neighbors of spin Sk. Therefore, the average magnetic field B
acting on spin Sk is

B ≡ Fk

µ̄
= B + ∆B, (379)

where
∆B = J2Sk/µ̄, (380)

is the contribution to the mean field due to the nearest neighbors. Note that Sk = Sj when all spins are
identical.

Eq. (379) defines the self consistent aspect of the theory, since according to such equation the mean field
B acting on spin Sk is determined by its own mean value Sk.
The assumption that the interactions of a spin with its neighboring spins can be approximately described
by the mean field, introduced by Eq. (380), introduces an enormous simplification. Such mean field ap-
proximation simplifies the many body statistical mechanics problem to a one-body problem (i.e., Eq. (379)
transforms the problem of N interacting spins influenced by an external magnetic field B to a problem of N
non-interacting spins influenced by the mean field B).
The partition function, under the mean field approximation, is

Z ≈∑
S1

∑
S2

... ∑
SN

eβ ∑j Sj(B+∆B)µ̄ = 2NcoshN(βµ̄B), (381)
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and the average value of Sk is

Sk =
1
N ∑

j
pj(∑

l
Sl(j)) =

1
N

Z−1 ∑
S1

∑
S2

... ∑
SN

(∑
l

Sl)eβ ∑j Sj(B+∆B)µ̄, (382)

where pj is the probability of state j. The average value of spin is

Sk =
1
N

∂lnZ
∂(βµ̄B)

= tanh(βµ̄(B + 2JSk/µ̄)). (383)

Note that Eq. (383) involves a transcendental equation. Its solution corresponds to the value of Sk = m for
which the function on the left hand side of Eq. (383) (i.e., Sk) equals the function on the right hand side of
Eq. (383) (i.e., tanh(βµ̄(B + 2JSk/µ̄)).
In the absence of an external magnetic field (i.e., when B = 0), Eq. (383) always has the trivial solution
Sk = 0 and a non-trivial solution Sk = m only when β2J > 1. Such solution is represented by the following
diagram:

-

6

?�
�
�
�
�
�
�
�
�
�
�
�
�
��

SjSj = m

Sj

tanh(β2JSj)

The diagram shows that the mean field theory predicts spontaneous magnetization (i.e., magnetization in the
absence of an external magnetic field) for the 1-dimensional Ising model at any temperature T < 2J/k, since
there is a non-trivial solution Sk = m for which Eq. (383) is satisfied. Unfortunately, however, this result
is erroneous! The 1-dimensional Ising model does not undergo spontaneous magnetization at any finite
temperature, since each spin has only two nearest neighbors and the stabilization energy due to two nearest
neighbors is not enough to overcome the randomization process due to thermal fluctuations. This simple
example, however, illustrates the theory including the fact that it is sometimes inaccurate near critical points.
The theory works better in higher dimensionality, e.g., in the 2-dimensional Ising model where the theory
predicts spontaneous magnetization at a critical temperature Tc = 4J/K that is close to the experimental
value 2.3 J/K.
Exercise: Show that there is no spontaneous magnetization in the 1-dimensional Ising model at finite tem-
perature by computing the average magnetization M = µ̄ ∑j Sj from the exact canonical partition function.
Hint: Compute the average magnetization in the presence of an external magnetic field and show that in the
limit when B→ 0 such magnetization becomes negligible.
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34.1 Variational Mean Field Theory

The goal of this section is to introduce a variational approach for computing the optimum mean field deter-
mined by the Gibbs-Bogoliubov-Feynman equation and to illustrate such variational method by applying it
to the description of the 1-dimensional Ising model.
Consider the task of computing the canonical partition function Z of the one-dimensional Ising model,

Z(K, N) = ∑
S1

∑
S2

... ∑
SN

e−βE(S1,S2,S2,S3,...SN), (384)

where
E(S1, S2, S2, S3, ...SN) = −µ̄B ∑

j
Sj − J ∑

jk
SjSk. (385)

The mean field approximation, introduced by Eq. (381), is

ZMF(K, N) = ∑
S1

∑
S2

... ∑
SN

e−βEMF(S1,S2,S2,S3,...SN) = 2NcoshN(βµ̄(B + ∆B)), (386)

with
EMF(S1, S2, S2, S3, ...SN) = −µ̄(B + ∆B)∑

j
Sj, (387)

where ∆B = J2Sk/µ̄. Note that the mean field partition function ZMF, introduced by Eq. (386) is an
approximation to the actual partition function Z(K, N), introduced by Eq. (384). The goal of the variational
treatment is, therefore, to optimize the expression of the mean field ∆B in order for ZMF to be as similar as
possible to Z(K, N).
To obtain a variational expression that involves both ZMF(K, N) and Z(K, N) (i.e., the Gibbs-Bogoliubov-
Feynman equation) we note that, according to Eqs. (384) and (386),

Z(K, N) = ZMF(K, N)
∑S1 ∑S2

... ∑SN
e−β∆Ee−βEMF

∑S1 ∑S2
... ∑SN

e−βEMF
= ZMF〈e−β∆E〉, (388)

where ∆E = E− EMF, and 〈〉 indicates a mean field ensemble average. Furthermore, we note that

〈e−β∆E〉 = 〈e−β〈∆E〉e−β(∆E−〈∆E〉)〉 ≥ e−β〈∆E〉, (389)

since 〈e−β〈∆E〉〉 = e−β〈∆E〉 and ex ≥ 1 + x. Therefore,

Z(K, N) ≥ ZMF(K, N)e−β〈∆E〉, (390)

which is the Gibbs-Bogoliubov-Feynman equation.
Eq. (390) allows us to find the optimum mean field by maximizing the right hand side (r.h.s.) of Eq. (390)
with respect to ∆B.
Note that according to Eqs. (386) and (383),

∂ZMF

∂∆B
= ZMF Nβµ̄〈sk〉. (391)

and according to Eq. (385) and (387),

〈∆E〉 = −J
N

∑
j=1

∑
k
〈sjsk〉+ ∆Bµ̄ ∑

j
〈sj〉 = −J

N
2

2〈sj〉2 + ∆Bµ̄N〈sj〉. (392)
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Therefore, computing the derivative of the r.h.s. of Eq. (390) with respect to ∆B and making such derivative
equal to zero we obtain, according to Eqs. (391) and (392),

ZMF Nβµ̄〈sk〉e−β〈∆E〉 + ZMFe−β〈∆E〉(−β)(−J
N
2

2
∂〈sj〉
∂∆B

2〈sj〉+ µ̄N〈sj〉) + ∆Bµ̄N
∂〈sj〉
∂∆B

) = 0. (393)

Therefore, solving for ∆B in Eq. (393) we obtain

∆B = 2J〈sj〉/µ̄, (394)

which is identical to the mean field introduced by Eq. (380). This means that the mean field introduced by
Eq. (380) is the optimum field as determined by the Gibbs-Bogoliubov-Feynman equation (i.e., the mean
field that maximizes the r.h.s. of Eq. (390)).

35 Renormalization Group Theory

The goal of this section is to introduce several concepts of Renormalization Group Theory and to illustrate
such concepts with the 1-dimensional Ising model.
Consider the task of computing the canonical partition function Z of the one-dimensional Ising model in the
absence of an external magnetic field. According to Eq. (364),

Z(K, N) = ∑
S1

∑
S2

... ∑
SN

eK(S1S2+S2S3+...+SNS1), (395)

where coupling parameter K ≡ βJ and N is the total number of spins. Note that according to Eq. (395),

lim
K→0

Z(K, N) =
N

∏
j=1

1

∑
Sj=−1

1 = 2N . (396)

The renormalization group strategy for the 1-dimensional Ising model can be described as follows.
Step (1). Sum over the even numbered spins in Eq. (395). Note that summing, e.g., over S2 we obtain

Z(K, N) = ∑
S1,S3,S4,S5,S6,S7...

[eK(S1+S3) + e−K(S1+S3)]eKS3S4 eKS4S5 eKS5S6 eKS6S7 ..., (397)

summing over S2 and S4 we obtain,

Z(K, N) = ∑
S1,S3,S5,S6,S7...

[eK(S1+S3) + e−K(S1+S3)][eK(S3+S5) + e−K(S3+S5)]eKS5S6 eKS6S7 ..., (398)

and summing over all even numbered spins we obtain

Z(K, N) = ∑
S1,S3,S5,S7...

[eK(S1+S3) + e−K(S1+S3)][eK(S3+S5) + e−K(S3+S5)][eK(S5+S7) + e−K(S5+S7)].... (399)

Step (2). Rewrite the remaining sum (i.e., the sum over odd numbered spins introduced by Eq. (399) by
implementing the Kadanoff transformation

eK(S+S′) + e−K(S+S′) = f (K)eK′SS′ , (400)

where both f (K) and K′ are functions of K. Substituting Eq. (400) into Eq. (399) we obtain

Z(K, N) = f (K)N/2 ∑
S1,S3,S5,S7...

eK′S1S3 eK′S3S5 eK′S5S7 .... = f (K)N/2Z(K′, N/2). (401)
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Note that such transformation allows us to rewrite the partition function Z(K, N) in terms of a renormalized
partition function Z(K′, N/2) (i.e., a partition function with new parameters that describes an Ising model
with half the number of spins and a different coupling parameter K′). To determine the renormalization
group equations (i.e., K′ and f (K) as a function of K) and show that K′ < K, we note that when S = S′ =
±1, Eq. (400) gives

e2K + e−2K = f (K)eK′ , (402)

and when S = −S′ = ±1, Eq. (400) gives

2 = f (K)e−K′ . (403)

Therefore, solving for f (K) in Eq. (403) and substituting into Eq. (402) we obtain

K′ =
1
2

ln(cosh(2K)), (404)

and substituting Eq. (404) into Eq. (403) we obtain

f (K) = 2cosh
1
2 (2K). (405)

Eqs. (404) and (405) are called renormalization group equations since they provide the renormalization
scheme.
Step (3). Go to (1), replacing Z(K, N) by Z(K′, N/2).
Step (3) is repeated each time on the subsequent (renormalized) partition function (i.e., Z(K′′, N/4),
Z(K′′′, N/8), Z(K IV , N/16), Z(KV , N/32), ... etc.) until the renormalized parameters become approxi-
mately constant (i.e., until the renormalized parameters reach a fixed point and become invariant under the
Kadanoff transformation). Note that, according to Eq. (404), K > K′ > K′′ > K′′′, etc., so after a few
iterations the coupling parameter becomes negligibly small and the partition function can be approximated
by using Eq. (396) as follows:

lnZ(K, N) ≈ N
2 ln[2cosh1/2(2K)] + N

4 ln[2cosh1/2(2K′)] + N
8 ln[2cosh1/2(2K′′)]+

N
16 ln[2cosh1/2(2K′′′)] + N

32 ln[2cosh1/2(2K IV)] + N
64 ln[2cosh1/2(2KV)] + N

26 ln2.
(406)

The renormalization group strategy thus involves computing the total sum, introduced by Eq. (395), step
by step. The success of the approach relies on the fact that the sum converges to an expression that can be
easily computed, after a few iterations.
Sometimes the partition function is known for a specific value of the coupling parameter (e.g., for K′ ≈ 0
in the 1-dimensional Ising model). The renormalization group theory can then be implemented to compute
the partition function of the system for a different value K of the coupling constant. This is accomplished
by inverting Eq. (404) as follows:

K =
1
2

cosh−1[exp(2K′)]. (407)

and computing Z(K, N) from Z(K′, N/2) according to Eq. (401).
One could also define the function g(K) as follows

Ng(K) ≡ lnZ(K, N), (408)

and substituting Eq. (407) into Eq. (401) we obtain

Ng(K) =
N
2

ln2 +
N
2

ln(cosh
1
2 (2K)) +

N
2

g(K′). (409)
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Therefore, given the partition function Z(K′, N) for a system with coupling constant K′, one can com-
pute g(K′) and K according to Eqs. (408) and (407), respectively. The partition function Z(K, N) =
exp(Ng(K)) is then obtained by substituting the values of g(K′) and K in Eq. (408).
Note that according to this procedure, K > K′ and the subsequent iterations give larger and larger values
of K. This indicates that the flow of K has only two fixed points at K= 0 (e.g., at infinite temperature) and
K= ∞ (e.g., at 0 K). Systems with phase transitions, however, have nontrivial fixed points at intermediate
values of K. For instance, following a similar procedure, as the one described in this section, it is possible
to show that the 2-dimensional Ising model has an additional fixed point Kc and that the heat capacity
C = d2

dk2 g(k) divergers at Kc. Thus, Kc determines the critical temperature where the system undergoes a
phase transition and spontaneosly magnetizes.
Hint for Exercise 5.17: From Eq. (c) solve for K to obtain Eq. (c’): K = 1

4 cosh−1(e8K′/3). Then,
substitute K defined according to (c’) into (b) to obtain: g(K′) = 2g(K) − ln{2[cosh(x/2)]1/2eK′/3},
with x = cosh−1(e8K′/3). Next, note that (cosh(x/2))2 = (ex + e−x + 2)/4 = (cosh(x) + 1)/2, so
[cosh(x/2)]1/2 = (cosh(x) + 1)1/4/21/4 = 2−1/4(e8K′/3 + 1)1/4 = eK′/32−1/4(e4K′/3 + e−4K′/3)1/4 =
eK′/3cosh1/4(4K′/3). Therefore, g(K′) = 2g(K)− ln{2e2K′/3cosh1/4(4K′/3)}, giving Eq. (b’): g(K) =
1
2 g(K′) + 1

2 ln{2e2K′/3cosh1/4(4K′/3)}.

36 Metropolis Monte Carlo Method

The goal of this section is to introduce the Metropolis Monte Carlo Method (J. Chem. Phys. 21, 1087, 1953)
and to illustrate the algorithm as applied to the computation of canonical ensemble averages for the Ising
model.
The Metropolis Monte Carlo method is a computational approach (i.e., an algorithm) for generating a set of
N configurations of the system ξ1, ξ2, ξ3, ..., ξN such that

lim
N→∞

Nξ

N
= P(ξ), (410)

where P(ξ) is a given probability distribution (e.g., the Boltzmann distribution P(ξ) = Z−1 exp[-β E(ξ)])
and Nξ is the number of configurations ξ (e.g., the number of configurations generated with a particular
arrangement of spins S1(ξ), S2(ξ), ..., SN(ξ) in the Ising model).

The Metropolis Monte Carlo algorithm can be described as follows:
Step (1): Pick a configuration ξn (the initial configuration can be any configuration of the system, e.g., any
arrangement of spins in the Ising model).
Step (2): Pick a trial configuration ξt (usually a configuration similar to ξn) and compute the probability
ratio R = P(ξt)

P(ξn)
. Pick a random number p with value between 0 and 1. Make ξn+1 = ξt if p ≤ R.

Otherwise, make ξn+1 = ξn.
Step (3): Go to (2) replacing ξn by ξn+1.
Step (3) is repeated N times, where N is a sufficiently large number. Note that, according to step (2), the
probability of accepting a trial configuration ξt by making ξn+1 = ξt from a configuration ξn is

Pξn,ξt =

{
R = P(ξt)

P(ξn)
, when P(ξt) < P(ξn),

1, otherwise.
(411)
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The goal of the remaining of this section is to prove that such an algorithm indeed produces an ensemble of
configurations that satisfies Eq. (410).
Consider an ensemble of N configurations with N(ξ) members of the ensemble in state ξ. Apply the
Metropolis Monte Carlo algorithm to each member of the ensemble by setting ξn = ξ and ξt = ξ ′ in
step (2), where ξ and ξ ′ are any two possible states. Note that by applying the algorithm the we generate
more configurations and we therefore evolve the initial distribution. To show that the algorithm produces an
ensemble of configurations that satisfies Eq. (410) we need to show that the any initial distribution N(ξ)/N
evolves towards the distribution P(ξ) = and once such a distribution is reached it remains at equilibrium.
According to step (2), for any pair of states ξ and ξ ′, the number of configurations generated in state ξ ′ by
applying the algorithm to the N(ξ) configurations in state ξ is N(ξ)Pξ,ξ ′ , where Pξ,ξ ′ is the probability of
accepting the trial configuration ξ ′ when ξn = ξ. In addition, the number of configurations generated in
state ξ ′ by applying the algorithm to the N(ξ ′) configurations in state ξ ′ is (1-Pξ ′,ξ) N(ξ ′). Therefore, the
total number N(ξ ′) of configurations generated in state ξ ′ due to any other state ξ is

N(ξ ′) = N(ξ ′) + ∆N(ξ ′), (412)

where
∆N(ξ ′) = N(ξ)Pξ,ξ ′ − N(ξ ′)Pξ ′,ξ , (413)

is the net change in the number of configurations in state ξ ′, relative to N(ξ ′).
According to Eqs. (411) and (413),

∆N(ξ ′) = N(ξ)− N(ξ ′)
P(ξ)
P(ξ ′)

, (414)

when P(ξ ′) > P(ξ) and

∆N(ξ ′) = N(ξ)
P(ξ ′)
P(ξ)

− N(ξ ′), (415)

when P(ξ ′) < P(ξ). Therefore, according to Eqs. (414) and (415), ∆N(ξ ′) = 0 when N(ξ)/N = P(ξ)
and N(ξ ′)/N = P(ξ ′), i.e., the algorithm does not alter the relative population of the states when the
ensemble distribution is equal to the equilibrium distribution. In addition, Eqs. (414) and (415) indicate
that ∆N(ξ ′) > 0 when N(ξ ′)/N < P(ξ ′) (and ∆N(ξ ′) < 0 when N(ξ ′)/N > P(ξ ′)), i.e., the algorithm
evolves any arbitrary distribution towards the equilibrium distribution where Nξ

N = P(ξ).
Note: The most important aspect of the method is that the algorithm is able generate an ensemble of con-
figurations with the probability distribution P(ξ) = Z−1 exp[-β E(ξ)], simply by computing the probability
ratios P(ξ ′)/P(ξ). Therefore, the method avoids the need of computing the canonical partition function
of the system Z, a computational task that would be computationally intractable for most real applications.
This numerical technique is thus extremely useful since it allows one to compute any canonical ensembles
without having to compute the canonical partition function of the system as follows,

〈A〉 ≈ Ā =
1
N ∑

ξ

Nξ A(ξ), (416)

where A(ξ) is the value of the observable A for state ξ and Ā is the Monte Carlo estimator of 〈A〉 associated
with the finite number of configurations N.

Exercise:
Implement the Metropolis Monte Carlo Algorithm to generate an ensemble of configurations for a 2-
dimensional Ising model with (20 × 20 spins) in the absence of an external field. Compute the average
value of the magnetization at various different temperatures and show that the system exhibits spontaneous
magnetization when T < 2.3J/k, where J is the coupling constant between spins.
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37 Variance Reducing Techniques

The goal of this section is to introduce a few techniques commonly used for reducing the statistical error in
Monte Carlo computations of ensemble averages.
According to the previous section, the Monte Carlo computation of the ensemble average

〈A〉 = Z−1
∫

dξ A(ξ)e−βE(ξ), (417)

entails sampling an ensemble of random configurations ξ with probability distribution P(ξ) = Z−1exp[−βE(ξ)],
computing A(ξ) for each configuration and finally averaging all of these values to obtained the unbiased
estimator Ā introduced by Eq. (416). The convergence rate of such computation is determined by the cen-
tral limit theorem (CLT) (see, e.g., K.L. Chung A course in Probability Theory, Academic Press, New York,
1974).
The CLT states that given a sequence of random variables A(ξ1), A(ξ2), A(ξ3), ...A(ξN) with expectation
〈A〉 and variance

σ2 =
1
N ∑

ξ

N(ξ)(A(ξ)− 〈A〉)2, (418)

then the distribution of averages Ā obtained with different sequences of random variables tends to be a
Gaussian distribution

G(Ā) =
1√
2πε

e−
(Ā−〈A〉)2

2ε2 , (419)

where
ε = σ/

√
N, (420)

regardless of the dimensionality of the integral introduced by Eq. (417) and the nature of the probability
function used to generate the sequences of random variables A(ξ1), A(ξ2), A(ξ3), ...A(ξN). The standard
deviation ε of the distribution of the average is the standard error of the Monte Carlo computation. There-
fore, results are reported as follows

〈A〉 = Ā± ε. (421)

Note that according to the definitions of the variance and the standard error, introduced by Eqs. (418) and
(420), respectively, the standard error is large whenever the random variables A(ξ j) spread over a wide
range of values. This is one of the main problems in calculations of high dimensional integrals, since the
integrand A(ξ) usually spreads over a very large range of values and the variance σ2 is thus formidably
large. In addition, depending on the observable of interest, the Boltzmann distribution might not sample
the configurations of the system that contribute with the most to the ensemble average. These difficulties
are sometimes overcome by implementing variance reduction techniques such as importance sampling,
correlated sampling, stratified sampling, adaptive sampling, control variates and umbrella sampling. J.M.
Hammersley and D.C. Handscomb Monte Carlo Methods, Chapter 5, John Wiley & Sons Inc., London,
(1964) and J.S. Liu Monte Carlo Strategies in Scientific Computing, Chapter 2, Springer New York (2001)
are recommended references for these methods. Here we limit our presentation to a concise description of
some of them.

37.1 Importance Sampling

The importance sampling technique concentrates the distribution of sampled configurations in the parts of
the integration range that are of most importance. Instead of computing the ensemble average

〈A〉 =
∫

dξP(ξ)A(ξ), (422)

83



according to the estimator Ā introduced by Eq. (416), after sampling configurations ξ according to the
probability distribution P(ξ), configurations are sampled according to a different probability distribution
P̃(ξ) and the ensemble average is computed according to the estimator

〈A〉 ≈ g
P̃
≡ 1

N ∑
ξ

N(ξ)
g(ξ)
P̃(ξ)

, (423)

where g(ξ) ≡ P(ξ)A(ξ) and P̃(ξ) is assumed to be normalized.
The variance of the estimator introduced by Eq. (423) is

σ2 =
1
N ∑

ξ

N(ξ)

(
g(ξ)
P̃(ξ)

− < A >

)2

, (424)

or

σ2 =
1
N ∑

ξ

N(ξ)
g(ξ)2

P̃(ξ)2
−
(

1
N ∑

ξ

N(ξ)
g(ξ)
P̃(ξ)

)2

. (425)

Note that according to Eq. (425), σ2 = 0, when P̃(ξ) = g(ξ). Therefore, the variance can be reduced
by choosing P̃(ξ) similar to |g(ξ)|. Such choice of P̃(ξ) concentrates the distribution of sampled config-
urations in the parts of the integration range that are of most importance. According to such distribution,
the random variables g(ξ)/P̃(ξ) spread over a modest range of values close to 1 and therefore the standard
error of the Monte Carlo calculation is reduced.

The umbrella sampling technique is a particular form of importance sampling, specially designed to
investigate rare events. Configurations are sampled according to the non-Boltzmann distribution P(ξ) ∝
exp[-β (E(ξ)+W(ξ))], where W(ξ) is zero for the interesting class of configurations that defined the rare
event and very large for all others.

37.2 Correlated Sampling

Consider the task of computing the integral

∆I = I1 − I2, (426)

with
I1 =

∫
dxg1(x) f1(x), (427)

and
I2 =

∫
dxg2(x) f2(x). (428)

The procedure for correlated sampling can be described as follows:
Step (1). Sample random configurations x1, ..., xN by using the sampling function f1(x) and evaluate the
function g1 for each of these configurations to obtain g1(x1), g1(x2), g1(x3) ... g1(xN). In addition, sample
random configurations y1, ..., yN by using the sampling function f2(y) and evaluate the function g2 for each
of these configurations to obtain g2(y1), g2(y2), g2(y3) ... g2(yN).
Step (2) Estimate ∆I according to

∆I =
1
N

N

∑
j=1

g1(xj)− g2(yj). (429)
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The variance of ∆I is

σ2 =
1
N

N

∑
j=1

(
g1(xj)− g2(yj)− (I1 − I2)

)2

, (430)

or

σ2 =
1
N

N

∑
j=1

(
g1(xj)− I1

)2

+
1
N

N

∑
j=1

(
g2(yj)− I1

)2

− 2
1
N

N

∑
j=1

(
g1(xj)− I1

)(
g2(yj)− I2

)
, (431)

where the first two terms on the r.h.s. of Eq. (431) are the variances σ2
1 and σ2

2 of the random variables g1
and g2, respectively, and the third term is the covariance cov(g1, g2) of the two random variables. Note that
when xj and yj are statistically independent, the cov(g1, g2) = 0 and

σ2 = σ2
1 + σ2

2 . (432)

However, if the random variables are positively correlated then the cov(g1, g2) > 0 and the variance σ2 is
reduced. The key to reduce the variance is thus to ensure positive correlation between g1 and g2. This could
be achieved by using the same sequence of random numbers for sampling both sets of random configurations
xj and yj.

37.3 Control Variates

Consider the Monte Carlo computation of a multidimensional integral (e.g., an ensemble average),

〈A〉 =
∫

dξg(ξ), (433)

and assume that the integral ∫
dξ g̃(ξ) = A0, (434)

can be analytically computed for an approximate expression of the integrand g̃(ξ) ≈ g(ξ). The function
g̃(ξ) is called the control variate for g(ξ).
The control variates method is an approach that exploits the information provided by Eq. (434) to reduce
the variance of the Monte Carlo computation. The integral, introduced by Eq. (433), is written in two parts,

〈A〉 = A0 +
∫

dξ(g(ξ)− g̃(ξ)), (435)

where the first term on the r.h.s. of Eq. (435) is analytically computed and the second term is computed by
correlated sampling Monte Carlo integration. Note that since g̃(ξ) mimcs g(ξ) and usually absorbs most of
its variation, the error in the Monte Carlo computation of the second term in the r.h.s. of Eq. (435) is usually
appreciably smaller than those of a Monte Carlo evaluation of the integral introduced by Eq. (433).

37.4 Stratified Sampling

Consider the task of computing the multidimensional integral (e.g., an ensemble average),

〈A〉 =
∫

dξ f (ξ). (436)
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The stratified sampling technique breaks the integration range into the union of k disjoint subregions D1, D2, ..., Dk,
so that within each subregion the integrand is relatively constant. Then, we can sample mj random configu-
rations ξ j(1), ξ j(2), ..., ξ j(mj) in the subregion Dj and approximate each subregional integral by∫

Dj

dξ f (ξ) ≈ Aj =
1

mj
[ f (ξ j(1)) + f (ξ j(2)) + ... + f (ξ j(mj))]. (437)

The overall integral is computed as

〈A〉 ≈ Ā = A1 + A2 + ... + Ak, (438)

whose variance is

σ2 =
σ2

1
m1

+
σ2

2
m2

+ ... +
σ2

k
mk

, (439)

where σ2
j indicates the variation of the integrand in the subregion Dj. Note that only when the integrand

is relatively constant within each subregion the variance introduced by Eq. (439) will be smaller than the
variance of the estimator obtained by using a single region for the whole integration range, σ̃2/m where
m = m1 + m2 + ... + mk and σ̃ is the overall variation of the integrand in the whole integration range.
If we look carefully we can see that the stratified sampling technique described in this section is a particular
version of the importance sampling method.

37.5 Simulated Annealing

Consider the task of computing a thermodynamic ensemble average for a system with many degrees of
freedom at low temperature (e.g., a large cluster, a polymer, or a protein). The challenge presented by these
many-body systems is that in addition to their global minumum energy configuration they usually have
many local energy minima separated by high energy barriers. A Metropolis Monte Carlo computation at
low temperature that starts from a configuration that is far from the minimum energy geometry usually leads
to erroneous results. The reason for this is that the configurations that make the most important contributions
to an ensemble average are those that are close to the minimum energy configuration and the algorithm is
inefficient at sampling configurations that are beyond high potential energy barriers. Reliable Monte Carlo
calculations thus require obtaining first the minimum energy configuration of the system.
The simulated annealing algorithm (by S. Kirkpatrick, C.D. Gelatt and M.P. Vecchi Science 220 671-680,
1983) is an efficient technique to find the minimum energy configuration of the system. The algorithm can
be described as follows:
Step (1): Initialize an arbitrary configuration ξ0 for the system at temperature T0, where T0 is reasonably
large.
Step (2): Starting from the configuration ξ0, sample N configurations ξ1, ξ2, ..., ξN by implementing the
Metropolis Monte Carlo method with P(ξ) = Z−1exp(−E(ξ)/(kT0)).
Step (3): Go to (2), replacing ξ0 by ξN and T0 by a lower temperature.
Step (3) is repeated each time on the subsequent configuration ξN until the temperature of the system is
equal to 0.
It can be shown that the configuration that corresponds to the global minimum of E(ξ) can be reached
according to such algorithm whenever the temperature decreases at a logarithmic rate (e.g., see S. Geman
and D. Geman IEEE Transactions on Pattern Analysis and Machine Intelligence 6:721-741, 1984). In
practice, however, a linear or even exponential temperature decrease schedule can often be implemented.
Exercise:
This computational assignment has been designed and organized by Dr. Jose A. Gascon.
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1. Write a program for implementing the simulated annealing procedure and find the minimum energy
geometry of a “cluster” of two atoms interacting according to the 12-6 Lennard-Jones potential

U(r) = 4ε

[(σ

r

)12
−
(σ

r

)6
]

, (440)

where ε = 0.0104 ev and σ = 3.4 Å. You can write you own code or modify the Fortran program
mclj.for attached to the www page for the lecture notes of this course.

Notes:

(a) If you decide to use the mclj.for program, you will have to edit the code and write a few lines
as specified in the mclj.for file. The missing lines should specify the Metropolis Monte Carlo
procedure.

(b) When running the mclj.for program you will be asked for the initial and final temperature. A
reasonable value for the initial temperature is 10 K (just type 10). Since we are trying to find the
global minimum the final temperature must be zero.

(c) When asked "Is the initial geometry random (yes/no)?", type "yes" to have the program select
an initial guess of the geometry. You can eventually put your own initial guess in which case
type "no". To create an initial geometry you must create a file called initial.xyz in the standard
xyz format, where the first line is the number of atoms, the second line is left blank or with any
coment, and the following lines have the atom type and coordinates as shown below for a cluster
of N argon atoms.

N
comment
Ar x1 y1 z1

Ar x2 y2 z2

...
Ar xN yN zN

(d) The mclj.for program reports on the screen the numbers of steps, the average interatomic dis-

tance, the energy at that step and the ratio of accepted trials out of 100.

(e) The final geometry is recorded in the output file final.xyz.

2. Visualize the final geometry using a molecular viewer program such as Rasmol or Molden. The file
movie.xyz contains snapshots of the accepted geometries along the simulation. The movie with the
sequence of accepted geometries can be visualized by using Molden. Compare the minimum energy
geometry (i.e., the minimum energy distance between the two Ar atoms) found by the simulated
annealing algorithm with the exact value computed from the expression of the 12-6 Lennard-Jones
potential.

3. To appreciate the power of the simulated annealing method, find the minimum energy geometry of
clusers with 3 and 13 argon atoms and report the values of the minimum energy. For the cluster with
13 atoms run the program with three different initial temperatures, 10 K, 20 K and 30 K. Compare the
final results. Do the final energy and geometry depend on the initial temperature? Why, or why not?
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4. How would you compute a thermodynamic average at a constant temperature using the program for
simulating annealing ?

The link (http://ursula.chem.yale.edu/∼batista/classes/vaa/LJ.m) provides a Matlab solution to the com-
putational assignment.
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38 Kinetic Monte Carlo

This section introduces Monte Carlo simulations of dynamical processes. We consider the stochastic simula-
tion of a complex dynamical phenomenon that involves N independent processes. As an example, consider
the problem of modeling the time-dependent evolution of a 2-dimensional Ising model with N spins, where
spins are flipped in time due to the influence of thermal fluctuations. For simplicity, consider that the time-
evolution of a spin j is described by the first order differential equation ∂sj(t)

∂t = −k(1)j (sj(t) + s(0)), with

sj(t) = sj(0)(2exp(−k(1)j t) − 1). We assume that the rate constants k(1)j can take different values k(1)j ,
depending on the number of nearest neighbors (1–4) of j that have the same spin as j.

Accurate MC simulations should sample event j with probability pj =
k(1)j

k where k = ∑N
j=1 k(1)j is the

total rate. This can be accomplished according to the so-called kinetic Monte Carlo method as follows:

1. Set the simulation time to zero, t = 0.

2. Pick a random number r1 between 0 and k.

3. Select the process labeled by index that satisfies the condition,

α−1

∑
j=1

k(1)j ≤ r1 ≤
α

∑
j=1

k(1)j . (441)

4. Carry out event α.

5. Assign the time tα = − 1
k ln(r2) to the selected event, where r2 is a random number between 0 and 1,

and advance the simulation time t = t + tα.

6. Update the values of k(1)j that have changed due to event α.

7. Recompute k.

8. Goto (2).

Selecting the event α, according to Eq. (441), can be pictured as throwing a dart to a ruler of length k,
subdivided by segments of length k(1)1 , k(1)2 , k(1)3 , ..., k(1)N , as depicted in Fig. 1. The process α corresponds to
the segment targeted by the dart ( α= 7, in Fig. ??).
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Figure 4: Dart and ruler scheme described in the text.

Unfortunately, finding out which segment was hit by the dart requires O(N) operations when the search
is based on a naive linear search procedure, since it is necessary to evaluate Eq. ( 441) with α = 1, then
with α = 2, · · · , etc., until finding the value of α that satisfies Eq. ( 441). Such a procedure is prohibitively
expensive for most realistic applications. It is, therefore, necessary to implement an algorithm based on a
binary tree where α can be selected in O(log2N) steps, as described later in this section [J.L. Blue; I. Beichl,
Phys. Rev. E (1995) 51, R867-R868].

Binary tree method: To explain the binary tree method, consider a system with only 8 possible events,
where rate constants k(1)1 , · · · , k(1)8 define the roots of the tree depicted in Fig. ( ??). The next layer of nodes

in the tree, k(2)1 , · · · , k(2)4 , is defined by computing the partial sums of pairs of rate constants, as follows:

k(2)1 = k(1)1 + k(1)2 , k2(2) = k(1)3 + k(1)4 , · · · , k(2)4 = k(1)7 + k(1)8 . The third layer of nodes, k(3)1 , · · · , k(3)2

is defined analogously, as follows:: k(3)1 = k(2)1 + k(2)2 , k(3)2 = k(2)3 + k(2)4 . Finally, the top of the tree is

k(4)1 = k(3)1 + k(3)2 = k.

To select the dynamical process α, we start from the top of the tree, where k(4)1 = k(n)j , with j = 1 and
n = 4, and we proceed as follows:

1. Generate a random number r1.

2. If r1 ≤ k(n−1)
2j−1 = k(3)1 , make j = 2j− 1. Otherwise, substract from r1 and make j = 2j.

3. If n = 1, then α = j. Otherwise, make n = n− 1 and go to (1).

Updating the binary tree, after carrying out the selected event, can also be done recursively from n = 1 to
the top of the tree, by propagating the effects of the new rate constants.
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Figure 5: Binary tree explained in the text.
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39 Exam 3

Exam 3 CHEM 430b/530b
Statistical Methods and Thermodynamics

Exercise 1
(10 points) Item (1.1): Explain the underlying approximation of Mean Field theory and illustrate it with a
specific Hamiltonian.
(20 points) Item (1.2): Show that Mean Field theory predicts spontaneous magnetization for the 2-dimensional
Ising model when T < 4J/k, where J is the coupling constant between spins.
(20 points) Item (1.3): Derive the Gibbs-Bogoliubov-Feynman inequality.
(20 points) Item (1.4): Derive the renormalization group equations for the 1-dimensional Ising model.
Exercise 2
(30 points) Compute the grand canonical partition function of a 1-dimensional lattice gas by implementing
the transfer matrix approach.
Hint: Assume that the total energy for a given set of occupation numbers {nj} is

E = −µ
N

∑
j=1

nj − ε
N

∑
j=1

∑
k

njnk, (442)

where µ is the chemical potential of the particles, the occupation numbers nj = 0, 1. The indices k, in Eq.
(442) label the cells that are next to cell j and N is the total number of cells.

Solution
Item (1.1):
The underlying approximation of Mean Field theory is to assume that the most important contribution to the
interaction between each particle and its neighboring particles is determined by the mean field due to the
neighboring particles. Section Mean Field Theory on page 65 of your lecture notes illustrates this concept
as applied to the description of the 1-dimensional Ising model.
Item (1.2):
In the 2-dimensional Ising model, the average force Fk exerted on spin Sk is

Fk ≡ −
∂H
∂Sk

= µ̄B + J ∑
j

Sj, (443)

where the index j includes all the nearest neighbors of spin Sk. Therefore, the average magnetic field B
acting on spin Sk is

B ≡ Fk

µ̄
= B + ∆B, (444)

where
∆B = J4Sk/µ̄, (445)

is the contribution to the mean field due to the nearest neighbors. Note that Sk = Sj when all spins are
identical.
The partition function, under the mean field approximation, is

Z ≈∑
S1

∑
S2

... ∑
SN

eβ ∑j Sj(B+∆B)µ̄ = 2NcoshN(βµ̄B), (446)
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and the average value of Sk is

Sk =
1
N

∂lnZ
∂(βµ̄B)

= tanh(βµ̄(B + 4JSk/µ̄)). (447)

Note that Eq. (447) involves a transcendental equation. Its solution corresponds to the value of Sk = m for
which the function on the left hand side of Eq. (447) (i.e., Sk) equals the function on the right hand side of
Eq. (447) (i.e., tanh(βµ̄(B + 4JSk/µ̄)).
In the absence of an external magnetic field (i.e., when B = 0), Eq. (447) always has the trivial solution
Sk = 0 and a non-trivial solution Sk = m only when β4J > 1.
Item (1.3):
See derivation of Eq. (390) on page 69 of your lecture notes.
Item (1.4):
See derivation of Eqs. (404) and (405) on your lecture notes.
Exercise 2:
The Hamiltonian of the system is

H = −µ ∑
j

nj − ε ∑
jk

njnk, (448)

where the sum of products njnk defines the interaction between cells that are nearest neighbors.
The grand canonical partition function of the system is

Ξ = ∑
n1=0,1

∑
n2=0,1

... ∑
nN=0,1

eβ(µ(n1+n2)/2+εn1n2)eβ(µ(n3+n2)/2+εn2n3)...eβ(µ(nN+n1)/2+εnNn1). (449)

To perform a rigorous calculation of the grand canonical partition function introduced by Eq.(370), we
define the transfer function as follows,

T(ni, ni+1) ≡ exp(β(µ(ni + ni+1)/2 + εnini+1)). (450)

Substituting Eq.(371) into Eq.(370) we obtain

Ξ = ∑
n1=0,1

∑
n2=0,1

... ∑
nN=0,1

T(n1, n2)T(n2, n3)...T(nN , n1). (451)

This expression corresponds to the trace of a product of N identical 2× 2 matrices. Thus the calculation
of the grand canonical partition function is reduced to that of computing the trace of the Nth power of the
transfer matrix. Now, the trace of a matrix is the sum of its eigenvalues and the eigenvalues of TN are λN

± ,
where λ± are the eigenvalues of T determined by the equation∣∣∣∣∣eβ(µ+ε) − λ eβµ/2

eβµ/2 1− λ

∣∣∣∣∣ = 0, (452)

with solutions
λ± =

1
2
[eβ(µ+ε) + 1]±

√
[eβ(µ+ε) − 1]2/4 + eβµ. (453)

Hence, the partition function is simply,
Z = λN

+ + λN
− , (454)

where λ± are defined by Eq. (453).

93



40 Classical Fluids

To perform statistical mechanical calculations for classical fluids, we must be able to compute phase space
averages,

〈A〉 = ∑
ξ

A(ξ)
e−βE(ξ)

Z
, (455)

where A(ξ) is the observable of interest evaluated in state ξ.
In a classical system of particles, the index ξ labels the microscopic phase point

ξ = (r1, r2, ..., rn, p1, p2, ..., pn) = (rN , pn), (456)

i.e., the list of coordinates and momenta (rN , pn). Therefore, the ensemble average is

〈A〉 =
∫

drN
∫

dpN f (rN , pN)A(rN , pN), (457)

where

f (rN , pN) =
e−βE(rN ,pN)∫

drN
∫

dpNe−βE(rN ,pN)
, (458)

is the probability density at phase-point (rN , pN), where the system has total energy

E(rN , pN) = V(rN) + K(pN), (459)

with total kinetic energy

K(pN) =
N

∑
j=1

p2
j

2mj
, (460)

and total potential energy of interaction between particles V(rN).
The factorization of the total energy into kinetic and potential energy terms, allows one to factorize the
probability distribution function as follows,

f (rN , ρN) = Φ(rN)P(ρN), (461)

where
P(pN) = exp(−βK(pN))/

∫
dpNexp(−βK(pN)), (462)

and
Φ(rN) = exp(−βV(rN))/

∫
drNexp(−βV(rN)). (463)

Further factorization of the momentum distribution is possible, since the total kinetic energy of the system
K(pN) is the sum of the kinetic energy of individual particles

Φ(pN) =
N

∏
j=1

φ(pj), where φ(pj) =
e−βp2

j /2mj∫
dpje

−βp2
j /2mj

. (464)

Eqs. (463) and (464) thus define the probability distribution functions that are necessary to sample an
ensemble of configurations of the fluid at thermal equilibrium.
Contrary to clusters of atoms or molecules, fluids with bulk properties usually involve an enormous number
of particles (i.e.,∼ O(1023) particles where the fraction of particles near the walls of the container is
negligibly small. However, computer memory and disk space requirements usually limit the capabilities of
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computer simulations to model sytems with less than 106–107 particles. Contrary to macroscopic systems,
these model systems have a significant fraction of particles near the walls of the container. Therefore,
to simulate systems with bulk properties, it is necessary to implement a trick called periodic boundary
conditions (p.b.c.) that minimizes surface effects.
Periodic Boundary Conditions: The implementation of p.b.c. for a one-dimensional "box" of length L
converts the segment L into a circle of radius r, where 2πr = L. The distance between any two particles is
measured along the arc of such circle and hence the maximum separation between any two particles is L/2.
One simple way of implementing p.b.c. for particles in a 1-dimensional box of length L is to add(subtract) L
to the coordinate of any particle that crosses the left(right) boundary of the box after being slightly displaced
to a new position. This can be implemented with an if-statement as follows:

if(x > L)
x = x− L

else if(x < 0)
x = x + L

end if

(465)

To compute the minimum distance dx between particles p1 and p2 at x1 and x2, respectively, we can write

dx = x1− x2
if(dx > 0.5 ∗ L)

dx = dx− L
else if(dx < −0.5 ∗ L)

dx = dx + L
end if

(466)

Note that when programing Eqs. (465) and (466) you will need to implement the logic characters and the
punctuation marks required by the specific programing language of choice. The generalization of Eqs. (465)
and (466) to the implementation of p.b.c. in two and three dimensions is straightforward.

40.1 Radial Distribution Function

The goal of this section is to introduce the radial distribution function g(r) (also known as pair correlation
function), a central quantity in studies of fluids since it determines the average density of particles at a
coordinate r relative to any particle in the fluid.
The radial distribution function is defined as follows

g(r) = ρ2/N(0, r)/ρ2, (467)

where ρ = N/V is the density of a fluid of N particles in a container of volume V and ρ2/N(0, r) is the
probability that a particle is at r when there is another particle at the origen of coordinates.
The probability P2/N(R1, R2) that particle 1 is found at R1 when particle 2 is at R2, in an N particle system,
is

P2/N(R1, R2) =

∫
drNδ(r1 − R1)δ(r2 − R2)e−βV(rN)∫

drNeV(rN)
=

∫
drN−2e−βV(R1,R2,r3,...rN)∫

drNeV(rN)
, (468)

and the probability ρ2/N(R1, R2) that a particle (i.e., any particle) is found at R1 when another one (i.e.,
any other one) is at R2 is

ρ2/N(R1, R2) =
N!

(N − 2)!
P2/N(R1, R2) = N(N − 1)P2/N(R1, R2). (469)
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In particular, in a fluid where the interaction between particles can be neglected,

P2/N(R1, R2) =
1

V2 , (470)

or

ρ2/N(R1, R2) =
N(N − 1)

V2 ≈ ρ2, (471)

and g(r) = 1.
In an atomic fluid (e.g., liquid argon), g(r1, r2) = g(r), where r =| r1 − r2 |, since the fluid is uniform and
isotropic. The presence of an atom at the origen of coordinates excludes other particles from all distances
smaller than the radius of the first coordination shell where g(r) has a maximum (see figure). The presence
of the first coordination shell tends to exclude particles that are closer than the radius of the second coordi-
nation shell, where g(r) has another maximum. This oscillatory form for g(r) persists until r is larger than
the range of correlations between the particles. At distances larger than the correlation length g(r) = 1,
since ρ2/N(0, r) ≈ ρ2 for uncorrelated particles. Therefore, h(r) = g(r)− 1 describes the deviation from
the asymptotic limit of uncorrelated particles (i.e., an ideal gas) and the product ρg(r) describes the average
density of particles at a distance r from any particle in the fluid.
Note that ρg(r)4πr2dr is the average number of particles at a distance between r and r+dr from any particle
in the fluid. Therefore, the calculation of g(r) involves averaging the number of particles at a distance r
from any particle in the system and dividing that number by the element of volume 4πr2dr.
Exercise:
Compute the radial distribution function g(r) for a fluid of argon atoms at constant T,N,V using the program
developed in the assignment of simulating annealing.

41 Reversible Work Theorem

The theorem states that the radial distribution function g(r) determines the reversible work w(r) associated
with the process by which two particles in a fluid are moved from an infinite separation to a separation r, as
follows:

g(r) = exp(−βw(r)). (472)

Note that since the process is reversible at constant T, N and V, w(r) = ∆A, where A is the Helmholtz free
energy.

Proof:
Consider the mean force between particles 1 and 2, averaged over the equilibrium distribution of all other
particles,

− <
dV(rN)

dr1
>r1r2=

−
∫ dV

dr1
e−βV(rN)dr3...drN∫

e−βV(rN)dr3...drN
, (473)

which gives

− <
dV(rN)

dr1
>r1r2=

1
β

d
dr1

ln
∫

e−βV(rN)dr3...drN , (474)

or

− <
dV(rN)

dr1
>r1r2= +

1
β

d
dr1

ln
N(N − 1)

ρ2Z
+

1
β

d
dr1

ln
∫

e−βV(rN)dr3...drN , (475)
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since both the density ρ, the number of particles N in the system and the partition function Z are constants,
independent of r1.
Eq. (475) can be simplified according to Eqs. (467) and (468) as follows,

− <
dV(rN)

dr1
>r1r2=

1
β

d
dr1

lng(r1). (476)

Integration of the expression for the average force, introduced by Eq. (476), gives the reversible work,

w(r12) =
∫ ∞

r12

dr1(− <
dV(rN)

dr1
>) = kT

∫ ∞

r12

dr1
d

dr1
lng(r1), (477)

Therefore, the reversible work w(r12) associated with the process by which particles 1 and 2 are moved
from infinite separation to a relative separation r12 is

w(r12) = kTlng(∞)− kTlng(r12) = −kTlng(r12), (478)

since g(∞) = 1.
Finally, note that

w(r) = kTln
Z(r12 = ∞)

Z(r12 = r)
= −(A(r12 = ∞)− A(r12 = r)), (479)

where Z(r12 = r) and A(r12 = r) are the canonical partition function and the Helmholtz free energy of the
system, subject to the constraint of fixed relative distance r12 = r between particles 1 and 2.

42 Thermodynamic Properties of Fluids

The goal of this section is to show that the thermodynamic properties of fluids (e.g., the internal energy,
the virial coefficient, etc.) can be computed in terms of the corresponding properties of an ideal gas plus
a correction term that is determined by the radial distribution function of the fluid. This is illustrated by
computing the internal energy of a classical fluid.
The ensemble average of the internal energy E is

〈E〉 = 〈K(pN)〉+ 〈V(rN)〉, (480)

where K(pN) is the total kinetic energy. The simplest model for the potential energy V(rN) is the pairwise
additive potential

V(rN) = ∑
i

∑
j<i

u(|ri − rj|), (481)

where u(r) is, for example, a Lennard-Jones potential

u(r) = 4ε

[(σ

r

)12
−
(σ

r

)6
]

, (482)

represented by the following diagram:
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-

6

r

u(r)

−ε

21/6σ
0

.......................

.................

According to Eq. (481),

〈E〉 = N〈 p2

2m
〉+

N

∑
j=1

∑
k 6=j

1
2
〈u(|rj − rk|)〉, (483)

therefore,

〈E〉 = N
3
2

kT +
∫

dr1

∫
dr2u(|r1 − r2|)

N(N − 1)
2

∫
drN−2e−βV(rN)∫
drNe−βV(rN)

. (484)

Eq. (484) can be simplified, according to Eqs. (467) and (468), as follows:

〈E〉 = 3
2

NkT +
1
2

∫
dr1

∫
dr2u(|r1 − r2|)ρ2/N(r1, r2), (485)

or

〈E〉 = 3
2

NkT +
Vρ2

2

∫
dru(r)g(r). (486)

Therefore, the ensemble average internal energy per particle

〈E〉
N

=
3
2

kT +
ρ

2

∫
dru(r)g(r), (487)

is the sum of the internal energy per particle in an ideal gas (i.e., 3/2 k T) plus a correction term that can be
obtained in terms of the radial distribution function g(r).

43 Solvation Free Energy: Thermodynamic Integration

The goal of this section is to show how to compute the free energy of solvation of structureless solute
particles A dissolved in a solvent S. The solvation free energy is computed according to the coupling
parameter method in terms of the pair correlation function g(rA, rS), where rA and rS are the coordinates
of the solute and solvent molecules, respectively.
Consider a solute-solvent mixture where solute particles with no internal structure interact with solvent
molecules according to a pairwise additive potential VAS. Assume that the solute concentration is so low
that the interactions between solute particles can be neglected. The canonical partition function of the system
is

Zλ =
Z(id)

A Z(id)
S

VNA+NS

∫
drNA

∫
drNS e−βVS(rNS )−βVSA(rNS ,rNA )λ, (488)

98



where the coupling parameter λ = 1 and where

Z(id) =
1

h3N N!

∫
dr3N

∫
dp3Ne−β

p2
2m =

VN

N!h3N

∫
dp3Ne−β P2

2m . (489)

In the absence of solute-solvent interactions (i.e., λ = 0), the energy of the system becomes factoriz-
able into the solute and the solvent contributions to the total energy and the free energy of the system is
A(id)(NS, NA, V, T) = −β−1lnZλ=0. The change in free energy due to a differential change in λ is

− kT
dlnZλ

dλ
= −kT

∫
drNA

∫
drNS(−βVSA(rNS , rNA))e−βVS(rNS )−βVSA(rNS ,rNA )λ∫

drNA
∫

drNS e−βVS(rNS )−βVSA(rNS ,rNA )λ
. (490)

and assuming that

VSA(rNS , rNA) =
NA

∑
j=1

NS

∑
k=1

uAS(|rj − rk|), (491)

we obtain

− kT
dlnZλ

dλ
= NANS

∫
dr(A1)

∫
dr(S1)uA1S1(|rA1 − rS1 |)

∫
drNA−1

∫
drNS−1e−βVS−βVSA∫

drNA
∫

drNS e−βVS−βVSA
. (492)

Introducing the pair correlation function gAS = ρAS/ρAρB, where ρAS is the joint probability of finding a
solute particle at rA1 and a solvent molecule at rS1 ,

ρAS = NANS

∫
drNA−1

∫
drNS−1 e−βVS−βVSA∫

drNA
∫

drNS e−βVS−βVSA
, (493)

we obtain

− kT
dlnZλ

dλ
=
∫

drA1

∫
drS1 u(|rA1 − rS1 |)ρAρSgAS, (494)

or

− kT
dlnZλ

dλ
= ρAρSV

∫
druAS(r)gAS(r). (495)

Therefore, the change in free energy due to a differential change in the coupling parameter λ is

− kT
dlnZλ

dλ
= NA

∫
druAS(r)ρSgAS(r), (496)

and the total free energy of the system is

A(NS, NA, V, T) = A(id)(NS, NA, V, T) + (∆A)solv, (497)

where the free energy of solvation (∆A)solv is,

(∆A)solv = NA

∫ 1

0
dλ
∫

druAS(r)ρSg(λ)AS (r). (498)

The approach implemented in this section, where a coupling parameter is introduced to investigate the
contributions of specific interactions to an ensemble average, is called coupling parameter method.
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43.1 Zwanzig Equation

The goal of this subsection is to show that the free energy change due to a change in the coupling parameter λ
can be computed according to the equation that Zwanzig derived here at Yale, J. Chem. Phys. 22 1420-1426
(1954), as follows:

A(λ2)− A(λ1) = −β−1ln〈e−β[E(λ2)−E(λ1)]〉β, (499)

where 〈· · · 〉β indicates the ensemble average at temperature T = β−1/k.
Considering that

A(λ, β) = −β−1lnZ(λ, β), (500)

where Z(λ, β) = ∑j exp(−βEj(λ)), we obtain:

Z(λ2, β2)

Z(λ1, β1)
=

1
Z(λ1, β1)

∑
j

e−[β2Ej(λ2)−β1Ej(λ1)]e−β1Ej(λ1),

= 〈e−[β2E(λ2)−β1E(λ1)]〉β1 .

(501)

From (501), we obtain:

− [β2A(λ2, β2)− β1A(λ1, β1)] = ln〈e−[β2E(λ2)−β1E(λ1)]〉β1 (502)

When β1 = β2 = β, Eq. (502) is identical to Eq. (499).
In addition, when λ1 = λ2, we obtain that the change in free energy per unit temperature due to a change

in temperature from T1 = β−1
1 /k to T2 = β−1

2 /k is

β2A(λ, β2)− β1A(λ, β1) = −ln〈e−[β2E(λ)−β1E(λ)]〉β1 (503)

which is computed as the ensemble average of e−[β2−β1]E at the temperature defined by β1, as indicated in
Problem 6.6 of the textbook.

Other properties could also be computed by thermodynamic integration, analogously, as implemented
above for free energy calculations. As an example, consider the ensemble average of property N̂:

〈N(λ1, β1)〉 =
∑j Nje−β1E(λ1)

∑j e−β1E(λ1)

=
∑j e−β2E(λ2)

∑j e−β1E(λ1)

∑j Nje−β1E(λ1)+β2E(λ2)e−β2E(λ2)

∑j e−β2E(λ2)

(504)

where

∑j e−β1E(λ1)

∑j e−β2E(λ2)
=

∑j e−β1E(λ1)+β2E(λ2)e−β2E(λ2)

∑j e−β2E(λ2)
(505)

Therefore,

〈N(λ1, β1)〉 =
∑j pj(λ2, β2)Nje−β1E(λ1)+β2E(λ2)

∑j pj(λ2, β2)e−β1E(λ1)+β2E(λ2)
(506)
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44 Quiz 3

Quiz 3 CHEM 430b/530b
Statistical Methods and Thermodynamics

Metropolis Monte Carlo
(25 points) Item 1a: Describe the implementation of a Metropolis Monte Carlo algorithm to generate an
ensemble of configurations with probability distribution P(ξ).
(25 points) Item 1b: Prove that the Metropolis Monte Carlo algorithm described in item (1a) evolves any
arbitrary distribution of configurations toward the equilibrium distribution P(ξ).
Classical Fluids
(25 points) Item 2a: Explain how to compute the radial distribution function g(r) of liquid Ar, after having
generated an ensemble of configurations of the system at thermal equilibrium.
(25 points) Item 2b: Derive an expression for the internal energy of liquid argon in terms of the radial
distribution function g(r).

Solution:
Item 1a:
Read the description of the Metropolis Monte Carlo algorithm on page 74 of the lecture notes.
Item 1b:
Read the proof of the Metropolis Monte Carlo algorithm described on pages 75 and 76 of the lecture notes.
Item 2a:
The number of particles at a distance between r and r+dr from any particle in the fluid is

N(r) = ρg(r)4πr2dr. (507)

Therefore, the calculation of g(r) involves averaging the number of particles at a distance between r and
r + dr from any particle in the system and dividing that number by the element of volume 4πr2dr.
Item 2b:
See derivation of Eq. (487) of the lecture notes.

45 Lars Onsager’s Regression Hypothesis

The goal of this section is to introduce Lars Onsager’s regression hypothesis, a consequence of the fluctuation-
dissipation theorem proved by Callen and Welton in 1951. Here, we derive the regression hypothesis from
the principles of statistical mechanics.
The regression hypothesis states that the regression of microscopic thermal fluctuations at equilibrium fol-
lows the macroscopic law of relaxation of small non-equilibrium disturbances (L. Onsager, Phys. Rev. 37,
405 (1931); 38, 2265 (1931)).
To understand this hypothesis, consider an observable A for a system at thermal equilibrium. Such property
fluctuates in time with spontaneous microscopic fluctuations

δA(t) = A(t)− 〈A〉. (508)
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Here, A(t) is the instantaneous value of the observable and 〈A〉 is the equilibrium ensemble average

〈A〉 = Tr{A(t)e−βH0}
Tr{e−βH0}

. (509)

The average correlation between δA(t) and an instantaneous fluctuation at time zero δA(0) is described by
the correlation function

C(t) = 〈δA(t)δA(0)〉 = 〈A(t)A(0)〉 − 〈A〉2, (510)

where 〈〉 represents the equilibrium ensemble average. Note that at small times, instantaneous fluctuations
are correlated and therefore,

lim
t→0

C(t) = 〈(δA(0))2〉, (511)

has a finite value. However, at large times C(t) vanishes, i.e.,

lim
t→∞

C(t) = 0, (512)

since δA(t) becomes uncorrelated to δA(0). This decay of correlations is the regression of microscopic
thermal fluctuations referred to in Onsager’s hypothesis. Therefore, Onsager’s regression hypothesis can be
formulated as follows

A(t)− 〈A〉
A(0)− 〈A〉

=
〈δA(t)δA(0)〉
〈(δA(0))2〉 , (513)

where A(t) describes the macroscopic relaxation of the observable towards its equilibrium value 〈A〉, while
the system evolves from an initial state that is not far from equilibrium to its final state in equilibrium with
a thermal reservoir.
To derive Eq.(513) from the ensemble postulates of statistical mechanics, consider preparing the system in a
state that is not far from equilibrium by applying to the system a weak perturbational field f (e.g., an electric
field) that couples to the dynamical variable A(t) (e.g., the instantaneous total dipole moment). The external
field is assumed to be so weak that the perturbation Hamiltonian ∆H, written as an expansion in powers of
f , can be approximated to be first order in the field as follows,

∆H = − f A(0). (514)

Assume that such perturbational field was applied until the system equilibrated according to the total Hamil-
tonian

H = H0 + ∆H, (515)

The macroscopic relaxation of the system is analyzed by switching off the external perturbational field and
computing the evolution of the non-equilibrium ensemble average

A(t) =
Tr{A(t)e−β(H0+∆H)}

Tr{e−β(H0+∆H)}
, (516)

as the system evolves towards equilibrium. Since the perturbation ∆H is small, we can introduce the ap-
proximation

e−β(H0+∆H) ≈ e−βH0(1− β∆H). (517)

Substituting Eq. (517) into Eq. (516), we obtain

A(t) ≈ Tr{e−βH0(1− β∆H + ...)A(t)}
Tr{e−βH0(1− β∆H + ...)}

=
Tr{e−βH0 A(t)} − βTr{e−βH0 ∆HA(t)}

Tr{e−βH0} − βTr{e−βH0 ∆H}
, (518)
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or

A(t) ≈ Tr{e−βH0 A(t)}
Tr{e−βH0}(1− β Tr{e−βH0 ∆H}

Tr{e−βH0} )
− β

Tr{e−βH0 ∆HA(t)}
Tr{e−βH0}(1− β〈∆H〉)

, (519)

which gives

A(t) ≈ 〈A(t)〉
1− β〈∆H〉 − β

〈∆HA(t)〉
1− β〈∆H〉 . (520)

Introducing the approximation
1/(1− x) ≈ 1 + x, (521)

for small x, in Eq. (520), we obtain

A(t) ≈ 〈A〉 − β〈∆HA(t)〉+ β〈∆H〉(〈A〉 − β〈∆HA(t)〉). (522)

Therefore, according to Eq. (522),

A(t) ≈ 〈A〉 − β(〈∆HA(t)〉 − 〈∆H〉〈A〉) + O((∆H)2). (523)

Substituting Eq. (514) into Eq. (523) and keeping only the terms that are first order in ∆H we obtain,

A(0)− 〈A〉 ≈ f β(〈A(0)2〉 − 〈A(0)〉2), (524)

and
A(t)− 〈A〉 ≈ f β(〈A(0)A(t)〉 − 〈A(0)〉〈A(t)〉). (525)

Finally, Eqs. (524) and (525) complete the derivation of Eq. (512) in terms of the ensemble average postu-
lates of statistical mechanics, since according to Eq. (508),

〈δA(t)δA(0)〉 = 〈A(t)A(0)〉 − 〈A〉2. (526)

45.1 Response Function: Generalized Susceptibility

The goal of this section is to introduce the concept of response function χ(t, t′), or generalized susceptibility,
for the description of non-equilibrium disturbances.
According to Eqs. (525) and (526), the response to a perturbation ∆H in the linear regime (i.e., a perturbation
that is linear in the field f ) is

∆A(t, f ) ≈ f β〈δA(t)δA(0)〉, (527)

where ∆A(t, f ) = A(t)− 〈A〉. Therefore,

∆A(t, λ f ) = λ∆A(t, f ). (528)

The most general expression for a macroscopic response that is consistent with Eq. (528) is

∆A(t, f ) =
∫ ∞

−∞
dt′χ(t, t′) f (t′) = ∑

j
χ(t, tj) f (tj)dtj, (529)

where dtj = (tj+1 − tj) is the time increment, f (t) is the external perturbational field and χ(t, t′) is the
response function. Note that the name response function is due to the fact that χ(t, t0) is equal to the
response at time t when the perturbational field is an impulse at time t0 (i.e., χ(t, t0) = ∆A(t, δ(t− t0))).
In addition, any other perturbational field can always be written as a linear superposition of impulses since
any function can be expanded as a linear combination of delta functions.

103



Another important observation is that according to Eq. (529),

χ(t, tj) =
∂∆Ā(t)
∂ f (tj)

, (530)

Therefore, χ(t, tj) defines the first nonvanishing term in an expansion of ∆A(t, f ) in powers of f (t). The
response function χ(t, t′) is thus also called generalized susceptibility, since the electric susceptibility χe
defines the first nonvanishing term in an expansion of the polarization ~P (i.e., the total electric dipole moment
per unit volume) in powers of the electric field ~E as follows,

~P = χe~E. (531)

In analogy to the electric susceptibility χe, that is a property of the unperturbed system, the response function
χ(t, tj) is a function of the unperturbed system at equilibrium. To show this important aspect of the response
function, consider the perturbational field represented by the following diagram:

-

6

t

f

f (t)

which is defined as follows:

f (t) =

{
f , when t ≤ 0,
0, otherwise.

(532)

The response at time t > 0 is

∆A(t) = f
∫ 0

−∞
dt′χ(t− t′) = − f

∫ t

∞
dt′′χ(t′′), (533)

where t′′ = t− t′, dt′′ = −dt′ and we have assumed that χ(t, t′) = χ(t− t′). Therefore,

d∆A(t)
dt

= − f χ(t), (534)

since, according to the second fundamental theorem of calculus,

χ(t) =
d
dt

∫ t

a
dt′χ(t′), (535)

where a is an arbitrary constant value. Substituting Eq. (527) into Eq. (534), we obtain

χ(t) = −β
d
dt

< δA(0)δA(t) >, (536)

where t > 0.
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45.2 Linear Spectroscopy

The goal of this section is to show that the linear absorption spectrum σ(ω) of a system is determined by
the regression of spontaneous polarization fluctuations at equilibrium as follows:

σ(ω) = 2ω f 2
0 ε̄2

∫ ∞

0
χ(t′)sin(ωt′)dt′,

= β2ω2 f 2
0 ε̄2

∫ ∞

0
< δA(0)δA(t′) > cos(ωt′)dt′,

(537)

where A(t) is the time-dependent polarization

A(t) = ∑
j

pj〈φj(t) | Â | φj(t)〉, (538)

where the functions φj(t) evolve according to the unperturbed system Hamiltonian H0, as follows:

ih̄
∂

∂t
φj(t) = Ĥ0φj(t). (539)

To derive Eq. (537), consider that the system is perturbed by a monochromatic electric field,

f (t) = f0 ε̄(e−iωt + eiωt), (540)

where f0 is the amplitude of the field and ε̄ is the unit vector along the spatially uniform electric field. In the
linear regime, the interaction between the system and the field is

∆Ĥ(t) = − f (t)Â. (541)

The total energy of the system is

E(t) = ∑
j

pj〈φj(t) | Ĥ0 + ∆Ĥ(t) | φj(t)〉, (542)

and the differential change of energy per unit time is

Ė(t) = ∑
j

pj〈φj(t) |
∂∆Ĥ(t)

∂t
| φj(t)〉 = − ˙f (t)A(t), (543)

since,

〈
∂φj(t)

∂t
| Ĥ0 + ∆Ĥ(t) | φj(t)〉 = −〈φj(t) | Ĥ0 + ∆Ĥ(t) |

∂φj(t)
∂t
〉. (544)

Equation (544) can be proved by considering that ih̄|φ̇j〉 = Ĥ0|φj〉 and, therefore, ih̄〈φj|Ĥ|φ̇j〉 = 〈φj|ĤĤ0|φj〉,
and conjugating both sides of this equality gives −ih̄〈φ̇j|Ĥ|φj〉 = 〈φj|ĤĤ0|φj〉 and therefore 〈φ̇j|Ĥ|φj〉 =
−〈φj|Ĥ|φ̇j〉.
Therefore, the total energy change σ due to the interaction with the external field for time T is

σ =
1
T

∫ T

0
dt(− ḟ (t))A(t), (545)

where, according to Eq. (540),
ḟ (t) = −i f0 ε̄ω[e−iωt − e+iωt]. (546)
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Substituting Eq. (546) into Eq. (545) we obtain,

σ = − iω
T

∫ T

0
f0 ε̄[e+iωt − e−iωt]

(
< A > +

∫ ∞

−∞
χ(t− t′) f (t′)dt′

)
. (547)

Note that ∫ ∞

−∞
χ(t− t′) f (t′)dt′ =

∫ ∞

−∞
χ(−t′) f (t′ − t)dt′ =

∫ ∞

−∞
χ(t′) f (−t′ − t)dt′, (548)

thus Eq. (547) becomes

σ = − iω
T

∫ T

0
dt f0 ε̄[e+iωt − e−iωt]

(
< A > +

∫ ∞

−∞
χ(t′) f (−t′ − t)dt′

)
. (549)

To simplify Eq. (549), we note that

lim
T→∞

1
T

∫ T

0
eint′dt′ =

{
1, when n=0
0, otherwise.

(550)

Therefore, Eq. (549) becomes

σ = − iω
T

∫ T

0
dt f0 ε̄[e+iωt − e−iωt]

∫ ∞

−∞
χ(t′) f0 ε̄[e+iω(t+t′) + e−iω(t+t′)]dt′, (551)

or
σ = −iω f 2

0 ε̄2
∫ ∞

−∞
χ(t′)[e+iωt′ − e−iωt′ ]dt′. (552)

Therefore,

σ = 2ω f 2
0 ε̄2

∫ ∞

−∞
χ(t′)sin(ωt′)dt′. (553)

Substituting Eq. (536) into Eq. (553) we obtain

σ = −β2ω f 2
0 ε̄2

∫ ∞

0

d
dt

< δA(0)δA(t′) > sin(ωt′)dt′. (554)

Finally, integrating Eq. (554) by parts we obtain Eq. (537), since Eq. (554) can be written as
∫

dt′u(t′)dv/dt′ =
u(t′)v(t′)−

∫
dt′v(t′)du/dt′, with u(t′) = sin(ωt′) and v(t′) =< δA(0)δA(t′) >.

46 Langevin Equation

In previous sections we have shown how to implement the regression hypothesis to describe the dissipation
of macroscopic disturbances in terms of the regression of spontaneous fluctuations. As an example, we
have analyzed the relaxation of a polarization disturbance A(t)-〈A〉, in the linear regime, in terms of the
regression of spontaneous polarization fluctuations 〈δ(t)δA(0)〉. The goal of this section is to describe
another application of this general theoretical approach to relate the fluctuations of a physical quantity with
the dissipation of a macroscopic disturbance.
Consider the motion of a particle through a medium after being initially prepared in a certain state of motion
(e.g., after being pushed by an external force). As a result of friction with the medium, the particle will be
slowed down (i.e., its initial kinetic energy will be dissipated by heating up the medium). The motion of
such particle is described by the generalized Langevin equation, which is derived in this section as follows.
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Consider the Hamiltonian that describes a particle with coordinates x(t), linearly coupled to the bath coor-
dinates yj(t),

H =
mẋ2

2
+ V(x) + Hb −∑

j
cjyj(t)x(t), (555)

where cj are the coupling constants that linearly couple x(t) and yj(t). The terms V(x) and Hb, introduced
by Eq. (555), describe the interactions among system coordinates and among bath coordinates, respectively.
The total force acting on the particle is

F(t) = −∂V
∂x

+ f (t), (556)

where the fluctuating force f (t) can be readily identified from Eq. (555),

f (t) = ∑
j

cjyj(t). (557)

Note that the motion of yj(t) depends on x(t) since, according to Eq. (555), the force acting on yj(t) is
f j = −∂H/∂yj = −∂Hb/∂yj + cjx(t). Therefore, f (t) is also a function of x(t). Assuming that f (t) is
linear in x(t),

f (t) = fb(t) +
∫ ∞

−∞
dt′χb(t− t′)x(t′), (558)

where, according to Eq. (536),

χb(t− t′) =

{
−β dCb(t−t′)

d(t−t′) , when t > t′,

0, otherwise,
(559)

with
Cb(t) =< δ f (0)δ f (t) > . (560)

Therefore, the equation of motion for the particle is

mẍ = −dV
dx

+ fb(t) +
∫ t

−∞
dt′(−β)

dCb(t− t′)
d(t− t′)

x(t′). (561)

Changing the integration variable t′ to t′′ = t− t′, in Eq. (561), we obtain

mẍ = −dV
dx

+ fb(t)−
∫ 0

t
dt′′(−β)

dCb(t′′)
dt′′

x(t− t′′), (562)

where the lower integration limit includes only values of x(t− t′′) with (t− t′′) > 0. Integrating Eq. (562)
by parts, we obtain

mẍ = −dV
dx

+ fb(t)− [x(t− t′′)βCb(t′′)|t
′′=0

t′′=t +
∫ 0

t
dt′′(−β)Cb(t′′)

∂x(t− t′′)
∂t′′

]. (563)

Changing the integration variable t′′ to t′ = t− t′′, in Eq. (563), we obtain

mẍ = −dV
dx

+ fb(t) + [x(0)βCb(t)− x(t)βCb(0)]−
∫ t

0
βCb(t− t′)ẋ(t′)dt′. (564)

Eq. (564) is the Generalized Langevin Equation, which can be written in terms of the potential of mean
force

V(x) ≡ V(x) +
1
2

x2βCb(0), (565)
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and the fluctuating force
F(t) ≡ fb(t) + χ(0)βCb(t), (566)

as follows,

mẍ = −∂V
∂x

+ F(t)−
∫ t

0
βCb(t− t′)ẋ(t′)dt′, (567)

where the third term on the r.h.s. of Eq. (567) is the generalized frictional force, a force that is linear in
the velocity. The connection between the frictional force and the regression of thermal fluctuations of f (t),
introduced by Eq. (567), is known as the second fluctuation-dissipation theorem.
Note (Laplace transform method): Equation (567) can be used to obtain the equation of motion for the
correlation function c(t) = 〈x(t)x(0)〉 when V(x) = 1

2 mω2x2. Multiplying Eq. (567) by x(0) and
computing the ensemble average to obtain:

m
d2

dt2 c(t) = −mω̄2c(t)−
∫ t

0
dt′βCb(t− t′)ċ(t′), (568)

where ω̄2 = ω2 + βCb(0)/m, since 〈F̄(t)x(0)〉 = 0.
To solve Eq. (568) and find c(t), we implement the Laplace transform method, as follows. We compute

the Laplace transform of both sides of Eq. (568) to obtain,

m
∫ ∞

0
dte−st d2

dt2 c(t) = −mω̄2
∫ ∞

0
dte−stc(t)−

∫ ∞

0
dte−st

∫ t

0
dt′βCb(t− t′)

d
dt′

c(t′). (569)

Integrating by parts, we obtain:∫ ∞

0
dte−st ċ(t) = c(t)e−st|∞0 + s

∫ ∞

0
dte−stc(t),

= −〈x(0)2〉+ sc̃(s),
(570)

with c̃(s) =
∫ ∞

0 dte−stc(t) since c(0) = 〈x(0)2〉. In addition,

∫ ∞

0
dte−st d2

dt2 〈x(0)x(t)〉 = 〈x(0)ẋ(t)〉e−st|∞0 + s
∫ ∞

0
dte−st ċ(t),

= s(−〈x(0)2〉+ sc̃(s)),
(571)

since 〈x(0)ẋ(0)〉 = 0.
Substituting into Eq. (569), we obtain:

ms(−〈x(0)2〉+ sc̃(s)) = −mω̄2c̃(s)− β
∫ ∞

0
dte−st

∫ t

0
dt′Cb(t− t′)ċ(t′),

= −mω̄2c̃(s)− β
∫ ∞

0
dt′ ċ(t′)

∫ ∞

t′
dte−stCb(t− t′),

= −mω̄2c̃(s)− β
∫ ∞

0
dt′e−st′ ċ(t′)

∫ ∞

0
dt′′e−st′′Cb(t′′),

= −mω̄2c̃(s)− β(−〈x(0)2〉+ sc̃(s))C̃b(s).

(572)

Distributing and solving for c̃(s), we obtain:

−ms〈x(0)2〉+ ms2c̃(s) = −(mω̄2 + βsC̃b(s))c̃(s) + β〈x(0)2〉C̃b(s), (573)
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and

c̃(s) = 〈x2〉 s + βC̃b(s)/m
s2 + ω̄2 + βsC̃b(s)/m

, (574)

giving c(t) according to the inverse Laplace transform c(t) =
∫ ∞

0 dsest c̃(s).

Markovian Approximation
Changing the interation variable t′, in Eq. (567), to t′′ = t− t′ and considering a time t much larger than
the relaxation time scale for the correlation function Cb (so that Cb(t) = 0 and ∂x(t− t′′)/∂(t− t′′) ≈
∂x(t)/∂t), we obtain

mẍ = −∂V
∂x

+ fb(t)− β
∫ ∞

0
Cb(t′′)ẋ(t)dt′′. (575)

Note that Eq. (575) becomes the traditional Langevin Equation,

mẍ = fb(t)− γẋ(t), (576)

when −∂V/∂x = 0. The friction coefficient γ is, therefore, determined by the regression of spontaneous
thermal fluctuations as follows

γ = β
∫ ∞

0
Cb(t′′)dt′′. (577)

The approximation implemented to obtain Eq. (575) involves considering that the relaxation time for fluc-
tuating forces in the bath is much shorter than the time over which one observes the particle. Such approx-
imation removes the “memory effects” from the equation of motion (note that Eq. (575) does not involve
the nonlocality in time introduced by the time integral in Eq. (567)). This approximation is thus called
Markovian approximation since it makes the instantaneous force independent of the state of the particle at
any previous time.
Note that, according to Eq. (576),

m〈v̇〉 = −γ〈v(t)〉, (578)

where v = ẋ, since 〈 f (t)〉 = 0. The solution to Eq. (578) is,

〈v(t)〉 = 〈v(0)〉exp(−γt/m). (579)

Eq. (579) indicates that the average initial momentum of the particle is dissipated into the bath at an expo-
nential rate (i.e., the average velocity vanishes at an exponential rate). However, it is important to note that
the condition 〈v(t)〉 = 0 at t >> m/γ (e.g., at equilibrium) does not imply that the particle is at rest! At
equilibrium, the fluctuating force fb(t) keeps buffeting the particle and the distribution of velocities is given
by the Boltzmann distribution (see Eq. (462)). The average squared velocity for the particle is

〈v2〉 =
∫ ∞
−∞ dvx

∫ ∞
−∞ dvy

∫ ∞
−∞ dvz(v2

x + v2
y + v2

z)exp(−βm(v2
x + v2

y + v2
z)/2)∫ ∞

−∞ dvx
∫ ∞
−∞ dvy

∫ ∞
−∞ dvzexp(−βm(v2

x + v2
y + v2

z)/2)
=

3kT
m

, (580)

and the velocity autocorrelation function is

〈v(t)v(0)〉 = 〈v(0)v(0)〉exp(−γt/m) =
3kT
m

exp(−γt/m), (581)

since Eq. (578) is valid not only for the dynamical variable v(t) but also for v(t)v(0).
The motion of the particle is called Brownian Motion, in honor to the botanist Robert Brown who observed it for the
first time in his studies of pollen. In 1828 he wrote “the pollen become dispersed in water in a great number of small
particles which were perceived to have an irregular swarming motion”. The theory of such motion, however, was
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derived by A. Einstein in 1905 when he wrote: “In this paper it will be shown that ... bodies of microscopically visible
size suspended in a liquid perform movements of such magnitude that they can be easily observed in a microscope on
account of the molecular motions of heat ...”
To compute the average mean squared displacement 〈x̄2〉 of the particle we substitute the variable x(t) in
Eq. (576) by x̄ = x(t)− x(0), we multiply both sides of Eq. (576) by such variable and we average over
the ensemble distribution as follows,

m〈x̄ ∂ ˙̄x
∂t
〉 = −γ〈x̄ ˙̄x〉, (582)

since 〈x̄ f (t)〉 = 〈x̄〉〈 f (t)〉 = 0. Eq. (582) is equivalent to

m〈∂x̄ ˙̄x
∂t
〉 = −γ〈x̄ ˙̄x〉+ m〈 ˙̄x2〉, (583)

which, according to Eq. (580), gives

m
∂〈x̄ ˙̄x〉

∂t
= −γ〈x̄ ˙̄x〉+ 3kT. (584)

The solution to Eq. (584) is

〈x̄ ˙̄x〉 = 1
2

∂

∂t
〈x̄2〉 = −3kT

γ
(exp(−γt/m)− 1). (585)

Therefore, the mean squared displacement is

〈x̄2〉 = −6kT
γ

(
− m

γ
(exp(−γt/m)− 1)− t

)
. (586)

At short times (i.e., when exp(−γt/m)− 1 ≈ −γt/m + t2/2 ∗ γ2/m2),

〈x̄2〉 = 3kT
m

t2, (587)

i.e., the mean squared displacement at short times is quadratic in time. This is the so-called ballistic regime,
since it corresponds to ballistic motion (motion without collisions) for a particle with velocity equal to√

3kT/m.
At long times (i.e., when m/γ(exp(−γt/m)− 1) << t),

〈x̄2〉 = 6kT
γ

t = 6Dt, (588)

where the constant

D =
kT
γ

, (589)

is the diffusion coefficient. Therefore, at long times the mean squared displacement is linear in time. This
long time limit is the so-called diffusional regime.
The remaining of this section shows that the diffusion coefficient can be computed in terms of the velocity
autocorrelation function 〈v(0)v(t)〉 as follows:

D =
1
3

∫ t

0
dt′〈v(0)v(t′)〉. (590)
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Note that Eq. (589) can be readily obtained by substituting Eq. (581) into Eq. (590).
To prove Eq. (590), consider the particle displacement at time t,

x̄(t) =
∫ t

0
dt′v(t′), (591)

and compute the time derivative of the squared displacement as follows

∂

∂t
x̄2 =

∂

∂t
(
∫ t

0
dt′v(t′))2, (592)

which according to Eq. (535) gives,

∂

∂t
〈x̄2〉 = 2

∫ t

0
dt′〈v(t)v(t′)〉. (593)

Changing integration variables from t′ to t′′ = t− t′ we obtain

∂

∂t
〈x̄2〉 = 2

∫ t

0
dt′′〈v(t)v(t− t′′)〉 = 2

∫ t

0
dt′′〈v(0)v(−t′′)〉, (594)

since C(t′+ t− t) = 〈v(t)v(t′+ t)〉 is equal to C(t′− 0) = 〈v(0)v(t′)〉. Finally, since C(t′′) = C(−t′′)
we obtain

∂

∂t
〈x̄2〉 = 2

∫ t

0
dt′′〈v(0)v(t′′)〉, (595)

Eq. (590) is obtained by substituting Eq. (588) into the l.h.s. of Eq. (595).

47 Velocity Verlet Algorithm

The goal of this section is to introduce the velocity Verlet algorithm for molecular dynamics (MD) simula-
tions and to show how to implement it to compute time-correlation functions (e.g., 〈v(t)v(0)〉) and transport
coefficients (e.g., the diffusion coefficient D).
Consider the task of computing the diffusion coefficient according to Eq. (590). The quantity of interest is,
therefore, the equilibrium ensemble average of the velocity autocorrelation function

〈v(0)v(t)〉 = Tr{ρ (v(0)v(t))}. (596)

The computation of 〈v(0)v(t)〉 thus requires sampling initial conditions according to the ensemble distri-
bution described by ρ and for each initial condition compute the value of the particle velocity v(t) at time
t.
The velocity Verlet algorithm (W. C. Swope, H. C. Andersen, P. H. Berens, and K. R. Wilson, J. Chem.
Phys. 76, 637 (1982)) computes the particle velocity v(t + τ) and position x(t + τ) at time t+τ as follows:

x(t + τ) = x(t) + v(t)τ + 1
2 τ2 f (t)

m ,
v(t + τ) = v(t) + f (t)+ f (t+τ)

2m τ,
(597)

where τ is a small time increment, m is the particle mass and f (t) is the total force acting on the particle
at time t. Given the initial conditions x(0) and v(0) one can compute v(t) and x(t) simply by applying
Eqs. (597) successively n times, with n = t/τ. Note that by implementing the algorithm one generates
a phase space trajectory (i.e., a sequence of “snapshots” for the particle coordinates and velocities at all
intermediate times tj = j ∗ τ (with j=1,2,...,n)).
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We note that the evolution is time reversible since the velocities are evolved with a force that is symmetric
in time (i.e., same force evolves velocities from t to t + τ than from t + τ to t). Time reversibility can be
shown more formally by showing that the velocity Verlet algorithm is essentially the Trotter decomposition
of the propagator, as shown by Tuckerman and Berne.
Molecular dynamics simulations thus provide the sequence of microscopic configurations through which
the model system passes in time. Such detailed microscopic information allows one to compute the result
of a measurement of an observable (i.e., an ensemble average) according to the time average introduced by
Eq. (??) (i.e., simply by averaging the value of the observable throught the whole manifold of microscopic
configurations generated during the time of the measurement). Therefore, another way of computing the
ensemble average introduced by Eq. (596) is

〈v(0)v(t)〉 = 1
T

∫ T

0
dt′v(t′)v(t′ + t), (598)

where T is the time of the measurement of the diffusion constant D, a time that is much larger than the
relaxation time of the velocity autocorrelation function.
Exercise:
Compute the velocity autocorrelation function for a fluid of argon atoms using the program developed for
computing the radial distribution function. (Hint: substitute the Metropolis Monte Carlo algorithm by the
velocity Verlet algorithm).

48 Thermal Correlation Functions

Equation 595 shows how to obtain transport coefficients, such as the diffusion coefficient by integration
of the thermal correlation function corresponding to the velocity-velocity autocorrelation. Classical calcu-
lations can be performed by propagating Hamilton’s equations according to the Velocity-Verlet algorithm.
Coordinates and momenta q(t) and p(t) are propagated for a sufficiently long trajectory and classical cor-
relation functions are obtained as follows:

C(t) = 〈A(0)B(t)〉 = 1
τ

∫ τ

0
dt′A(q(t′), p(t′))B(q(t′ + t), p(t′ + t)), (599)

where A(0) and B(t) represent the quantities of interest at time 0 and t, respectively. 2

The goal of this section is to show how to compute thermal correlation functions C(t) = 〈A(0)B(t)〉
for systems where quantum mechanical effects are important. The quantum mechanical expression of C(t)
is,

C(t) = Tr[ρ̂ÂB̂(t)], (600)

where ρ̂ = Z−1exp(−βĤ) is the density operator and the operators Â and B̂(t) are defined so that A(0) =
〈Ψ0|Â|Ψ0〉 is the expectation value of A at t = 0. In addition,

B(t) = 〈Ψ0|B̂(t)|Ψ0〉 = 〈Ψ0|e(i/h̄)ĤtB̂e−(i/h̄)Ĥt|Ψ0〉, (601)

is the expectation value of B̂ at time t when the system is initially prepared in state |Ψ0〉 and evolves
according to the Hamiltonian,

Ĥ = p̂2/(2m) + V̂, (602)

as follows: |Ψt〉 = e−(i/h̄)Ĥt|Ψ0〉. Note that B̂(t) = e(i/h̄)ĤtB̂e−(i/h̄)Ĥt is the Heisenberg operator associ-
ated with quantity B.

2Note that calculations of C(t) provide a description of any equilibrium property, 〈A〉, when B̂ = 1, or dynamical ensemble
average 〈B(t)〉, when Â = 1, respectively.
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Thermal correlation functions can therefore be expressed as,

C(t) = Z−1Tr[e−βĤ Âe(i/h̄)ĤtB̂e−(i/h̄)Ĥt], (603)

an expression that can be re-written in coordinate representation as follows:

C(t) = Z−1
∫

dx
∫

dx′
∫

dx′′
∫

dx′′′
∫

dx′′′′〈x|e−βĤ |x′〉〈x′|Â|x′′〉〈x′′|e(i/h̄)Ĥt|x′′′〉
〈x′′′|B̂|x′′′′〉〈x′′′′|e−(i/h̄)Ĥt|x〉.

(604)

Note that to compute C(t) it is necessary to obtain expressions for the Boltzmann operator matrix el-
ements 〈x|e−βĤ |x′〉 as well as for the forward and backward time-evolution operator matrix elements
〈x|e−(i/h̄)Ĥt|x′〉 and 〈x|e(i/h̄)Ĥt|x′〉, respectively.

48.1 Boltzmann Operator Matrix elements

To obtain the matrix elements of the Boltzmann operator at finite temperature T = (kBβ)−1, we write the
exponential operator as a product of a large number n of exponential operators,

〈x0|e−βĤ |xn〉 = 〈x0|e−εĤe−εĤ...e−εĤ |xn〉, (605)

where ε ≡ β/n << 1. Inserting the closure relation in between exponential operators we obtain,

〈x0|e−βĤ |xn〉 =
∫

dx1...
∫

dxn−1〈x0|e−εĤ |x1〉...〈xn−1|e−εĤ |xn〉. (606)

The high-temperature Boltzmann operator e−εĤ can be written in the form of the Trotter expansion,

e−εĤ ≈ e−εV̂/2e−ε p̂2/(2m)e−εV̂/2, (607)

to second order accuracy. Therefore, matrix elements of the Boltzmann operator at high-temperature can be
obtained as follows:

〈x0|e−εĤ |x1〉 =
∫

dx
∫

dp
∫

dx′
∫

dp′〈x0|e−εV̂/2|x′〉〈x′|p′〉〈p′|e−ε p̂2/(2m)|p〉〈p|x〉〈x|e−εV̂/2|x1〉,
(608)

where
〈x|p〉 = 1√

2πh̄
e

i
h̄ xp, (609)

since

− ih̄
∂

∂x
〈x|p〉 = p〈x|p〉. (610)

Furthermore,
〈x|e−εV̂/2|x′〉 = e−εV(x)/2δ(x− x′). (611)

Therefore,

〈x0|e−εĤ |x1〉 = 1
2πh̄

∫
dx
∫

dp
∫

dx′
∫

dp′e−εV(x′)/2δ(x′ − x0)e
i
h̄ x′p′e−εp2/(2m)δ(p− p′)

e−
i
h̄ xpδ(x− x1)e−εV(x1)/2,

(612)

which gives,

〈x0|e−εĤ |x1〉 =
1

2πh̄
e−

ε
2 [V(x0)+V(x1)]

∫
dpe−εp2/(2m)+ i

h̄ (x0−x1)p, (613)
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or,

〈x0|e−εĤ |x1〉 = e−
ε
2 (V(x0)+V(x1))

√
m

2πεh̄2 e−
1
2 m
[
(x1−x0)

h̄ε

]2
ε,

≈ e−εV(x1)

√
m

2πεh̄2 e−
1
2 m
[
(x1−x0)

h̄ε

]2
ε,

(614)

Matrix elements of the Boltzmann operator at finite-temperature can be obtained by substituting Eq. (614)
into Eq. (606):

〈x0|e−βĤ |xn〉 =
∫

dx1...
∫

dxn−1

(
m

2πεh̄2

)n/2

e−ε ∑n
j=1 V(xj)+

1
2 mω2(xj−xj−1)

2
, (615)

where ω = 1/(h̄ε). Note that the r.h.s of Eq. (615) corresponds to the partition function of a chain of
n-harmonic oscillators with cordinates xj under the influence of an external potential V(xj). Each chain of
harmonic oscillators describes a path from x0 to xn.

The multidimentional integral, introduced by Eq. (615), can be computed by importance sampling Monte
Carlo by sampling sets of coordinates x1, ..., xn−1 with sampling functions defined by the Gaussians associ-
ated with the linked harmonic oscillators. Such a computational approach for obtaining thermal equilibrium
density matrices is called Path Integral Monte Carlo.

48.2 The Bloch Equation: SOFT Integration

The Boltzmann-operator matrix-elements are the solution of the Bloch equation,

{ ∂

∂β
− h̄2

2m
∇2

x + V0(x)}ρ(x, x′; β) = 0, (616)

with ρ(x, x′; β) ≡ 〈x|e−βĤ0 |x′〉 and Ĥ0 = − h̄2

2m∇2
x + V0(x). The Bloch equation, introduced by Eq.

(616), is obtained by simply computing the derivative of 〈x|e−βĤ0 |x′〉 with respect to β and can be formally
integrated, as follows:

ρ(x, x′; β) =
∫

dx′′ρ(x, x′′; β− ε)ρ(x′′, x′; ε), (617)

with initial condition ρ(x′′, x′; ε) defined according to the high-temperature approximation, introduced by
Eq. (614):

ρ(x, x′; ε) =
( m

2πε

)1/2
e−

ε
2 [V0(x)+V0(x′)]e−

m
2ε (x−x′)2

. (618)

Note: We note that the Bloch equation, introduced by Eq. (616), is the imaginary-time version of the
time-dependent Schrödinger equation since introducing the change of variables β ≡ it/h̄ and ρ(x, x′; β) =
ψx′(x; β), we obtain:

{−ih̄
∂

∂t
− h̄2

2m
∇2

x + V0(x)}ψx′(x; t) = 0. (619)

Therefore, the same numerical methods developed for integration of the time-dependent Schrödinger equa-
tion can be used for integration of the Bloch equation by simply changing the variable t by −ih̄β. One of
those methods is the Split-Operator Fourier Transform (SOFT) method introduced in the next section.
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48.3 SOFT Method

In this section we introduce the SOFT for integration of the Schrödinger equation, as necessary for wavepacket
propagation. Next, we show that it can be analogously applied to obtain ρx′;β(x) from ρx′;ε(x) by imaginary
time propagation.

Integration of the Schrödinger equation: The SOFT method is a numerical approach for solving the
time-dependent Schrödinger equation by using a grid-based representation of the time-evolving states and
operators.

The essence of the method is to discretize the propagation time on a grid tk = (k− 1)τ, with k = 1, ..., n
and time-resolution τ = t/(n− 1), and obtain the wave-packet at the intermediate times tk by recursively
applying the evolution operator, as follows:

Ψtk+1(x) =
∫

dx′〈x|e−iĤτ|x′〉〈x′|Ψtk〉. (620)

If τ is a sufficiently small time-increment (i.e., n is large), the time-evolution operator can be approximated
according to the Trotter expansion to second order accuracy,

e−iĤτ = e−iV(x̂)τ/2e−i p̂2τ/(2m)e−iV(x̂)τ/2 + O(τ3), (621)

which separates the propagator into a product of three operators, each of them depending either on x̂, or p̂.
Substituting Eq. (621) into Eq. (620) and inserting the closure relation 1̂ =

∫
dp|p〉〈p| gives,

Ψtk+1(x) =
∫

dp
∫

dx′e−iV(x̂)τ/2〈x|p〉e−ip2τ/(2m)〈p|x′〉e−iV(x′)τ/2Ψtk(x′). (622)

By substituting 〈p|x′〉 and 〈x|p〉 as plane-waves, we obtain:

Ψtk+1(x) = e−iV(x̂)τ/2 1√
2π

∫
dpeixpe−ip2τ/(2m) 1√

2π

∫
dx′e−ipx′e−iV(x′)τ/2Ψtk(x′). (623)

According to Eq. (623), then, the computational task necessary to propagate Ψt(x) for a time-increment τ
involves the following steps:

1. Represent Ψtk(x′) and e−iV(x′)τ/2 as arrays of numbers Ψtk(xj) and e−iV(xj)τ/2 associated with a grid
of equally spaced coordinates xj = xmin + (j− 1)∆, with finite resolution ∆ = (xmax − xmin)/(n−
1).

2. Apply the potential energy part of the Trotter expansion e−iV(x′)τ/2 to Ψtk(x′) by simple multiplica-
tion of array elements:

Ψ̃tk(xj) = e−iV(xj)τ/2Ψtk(xj).

3. Fourier transform Ψ̃tk(xj) to obtain Ψ̃tk(pj), and represent the kinetic energy part of the Trotter expan-

sion e−ip2τ/(2m) as an array of numbers e−ip2
j τ/(2m) associated with a grid of equally spaced momenta

pj = j/(xmax − xmin).

4. Apply the kinetic energy part of the Trotter expansion e−ip2τ/(2m) to the Fourier transform Ψ̃tk(p) by
simple multiplication of array elements:

Ψ̃tk(pj) = e−ip2
j τ/(2m)Ψ̃tk(pj).

5. Inverse Fourier transform Ψ̃tk(pj) to obtain Ψ̃tk(xj) on the grid of equally spaced coordinates xj.

6. Apply the potential energy part of the Trotter expansion e−iV(x′)τ/2 to Ψ̃tk(x′) by simple multiplica-
tion of array elements,

Ψtk+1(xj) = e−iV(xj)τ/2Ψ̃tk(xj).

115



48.4 Imaginary time propagation

Note that with the variable substitution τ → −it, with real t, the time evolution operator becomes a decaying
exponential e−Ĥt/h̄ that reduces the amplitude of the initial wavepacket Ψ0(x) = ∑j cjφj(x), as follows:

Ψt(x) = e−iĤτ/h̄Ψ0(x) = ∑
j

cje−Ejtφj(x), (624)

where Ĥφj(x) = Ejφj(x). Terms with higher Ej are reduced more than those with smaller Ej. After
renormalizing the resulting wavefunction Ψt(x) (by dividing it by the square root of its norm), we get a
state enriched with low energy components. The imaginary time propagation and renormalization procedure
can be repeated several times until the function stops changing since it composed solely by the ground state
φ0(x), after removal of all other components (of higher energies) at a faster rate.

Having found φ0, we can proceed to find φ1 as done for φ0 but including orthogonalization relative to
φ0, Ψt(x) → Ψt(x) − 〈φ0|Ψt〉φ0(x), after each propagation step, right before renormalization. Higher
energy states are found analogously, by orthogonalization of the propagated state relative to all previously
found eigenstates.

48.5 Ehrenfest Dynamics

The goal of this section is to show that the expectation values 〈x̂〉 = 〈ψ|x̂|ψ〉 and 〈 p̂〉 = 〈ψ| p̂|ψ〉 are con-
jugate variables in the sense that they evolve according to the classical equations of motion (i.e., Hamilton’s
equaitons):

d
dt
〈x̂〉 = 〈∂Ĥ

∂ p̂
〉

=
〈 p̂〉
m

,

d
dt
〈p〉 = −〈∂Ĥ

∂x̂
〉

= −〈V ′〉,

(625)

where Ĥ = p̂2/2m + V(x̂). This remarkable result, introduced by Eq. (625), is known as Ehrenfest’s
theorem and can be demonstrated, as follows.

First, we show that since ψ evolves according to the Schrödinger equation:

ih̄
∂ψ

∂t
= Ĥψ, (626)

then

〈 p̂〉 = m
d
dt
〈x̂〉. (627)
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Using integration by parts, we obtain:

〈 p̂〉 = −ih̄〈ψ| ∂

∂x
|ψ〉,

= − ih̄
2
〈ψ| ∂

∂x
+

∂

∂x
|ψ〉,

= − ih̄
2

∫
dx
[

ψ∗
∂ψ

∂x
+ ψ∗

∂ψ

∂x

]
,

= − ih̄
2

∫
dx
[

ψ∗
∂ψ

∂x
− ψ

∂ψ∗

∂x

]
,

= m
∫

j dx,

= −m
∫

x
∂j
∂x

dx,

(628)

where the current j = − ih̄
2m

[
ψ∗ ∂ψ

∂x − ψ
∂ψ∗

∂x

]
satisfies the continuity equation,

d
dt

ψ∗ψ +
∂j
∂x

= 0. (629)

Therefore,

〈 p̂〉 = m
∫

x
d
dt

ψ∗ψ dx,

= m
d
dt

∫
ψ∗xψ dx,

= m
d
dt
〈x̂〉.

(630)

Next, we show that

d
dt
〈 p̂〉 = −〈V ′〉, (631)

by substituting Eq. (626) into Eq. (628) and integrating by parts, as follows:

d
dt
〈 p̂〉 = m

d
dt

∫ ∞

−∞
dx j,

= − ih̄
2

∫ ∞

−∞
dx
[

dψ∗

dt
∂ψ

∂x
+ ψ∗

∂

∂x
dψ

dt
− dψ

dt
∂ψ∗

∂x
− ψ

∂

∂x
dψ∗

dt

]
= ih̄

∫ ∞

−∞
dx
[

dψ

dt
∂ψ∗

∂x
+

dψ∗

dt
∂ψ

∂x

]
=
∫ ∞

−∞
dx

[
− h̄2

2m
∂2ψ

∂x2
∂ψ∗

∂x
+ Vψ

∂ψ∗

∂x
+ c.c.

]

=
∫ ∞

−∞
dx

[
− h̄2

2m
∂

∂x

(
∂ψ

∂x
∂ψ∗

∂x

)
+ V

(
ψ

∂ψ∗

∂x
+ ψ∗

∂ψ

∂x

)]
,

=
∫ ∞

−∞
dxV

(
ψ

∂ψ∗

∂x
+ ψ∗

∂ψ

∂x

)
,

(632)
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since ∂ψ
∂x

∂ψ∗

∂x = 0 when evaluated at x = ±∞. Therefore,

d
dt
〈 p̂〉 =

∫ ∞

−∞
dx

∂ψ∗ψ

∂x
V,

= −
∫ ∞

−∞
dxψ∗

∂V
∂x

ψ.
(633)

Optional Exercise: Real and Imaginary Time Evolution
1. Write a Matlab code to simulate the evolution of a wavepacket bouncing back and forth on a

harmonic well, described by the Hamiltonian H = p2/(2 ∗ m) + V(x), with V(x) = 0.5 ∗ x2 af-
ter initializing the state according to the ground state displaced from its equilibrium position, as follows:
ψ(x, 0) = exp(−(x− 1)2/2)/ 4

√
π.

2. Compute the expectation values of position and momentum as a function of time x(t) and p(t) and
compare them to the corresponding classical values obtained by integrating Hamilton’s equation with the
Velocity-Verlet algorithm:

pj+1 = pj + (F(xj) + F(xj+1))τ/2,

xj+1 = xj + pjτ/m + F(xj)τ
2/(2m),

(634)

with x0 = 1 and p0 = 0 the initial position and momentum of the harmonic oscillator and xj and pj the
position and momentum at time t = j ∗ τ, while F(xj) = −V ′(xj) = −xj.

3. Compute the expectation values of position and momentum as a function of time x(t) and p(t) and
compare them to the Ehrenfest trajectory obtained by integrating Hamilton’s equation, using mean force:

〈p〉j+1 = 〈p〉j + (〈F(x)〉j + 〈F(x)〉j+1)τ/2,

〈x〉j+1 = 〈x〉j + 〈p〉jτ/m + 〈F(x)〉jτ2/(2m),
(635)

with 〈x〉0 = 1 and 〈p〉0 = 0 the initial position and momentum of the harmonic oscillator and 〈x〉j and 〈p〉j
the mean position and momentum at time t = j ∗ τ, while 〈F(x)〉j = −〈V ′(x)〉j = −〈x〉j.

4. Find the ground state of the harmonic well by propagating the wavepacket in imaginary time (i.e.,
using the propagation time increment τ = −it, with real t) and renormalizing the wave function after each
propagation step.

5. Find the first excited state of the harmonic well by propagating the wavepacket in imaginary time
(i.e., using the propagation time increment τ = −it, with real t), projecting out the ground state component
and renormalizing the wave function after each propagation step.

6. Find the first 9 excited states, iteratively, by imaginary time propagation as in item 4, projecting out
lower energy states and renormalizing after each propagation step.

7. Change the potential to that of a Morse oscillator V(x) = De(1− exp(−a(x− xe)))2, with xe = 0,
De = 8, and a =

√
k/(2De), where k = mω2. Recompute the wave-packet propagation with x0 =

−0.5 and p0 = 0 for 100 steps with τ = 0.1 a.u. Compare the expectation values x(t) and p(t) to the
corresponding classical and Ehrenfest trajectories obtained according to the Velocity-Verlet algorithm.

Solution:The link (http://ursula.chem.yale.edu/∼batista/classes/vvv/HO570.tar) provides a Matlab imple-
mentation of the SOFT method as applied to the simulation of evolution of a wavepacket in a harmonic well
in real time. In addition, the Matlab code implements the SOFT propagation method to find the lowest 10
eigenstates of the harmonic oscillator by ‘evolution’ in imaginary time.

Integration of the Bloch equation: The SOFT method can also be applied to integrate the Bloch equa-
tion, as implementation for the integration of the Schrödinger equation. Starting with the initial state
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ρ(x′′, x′; ε), defined according to the high-temperature approximation introduced by Eq. (614) we can
obtain ρ(x′′, x′; 2ε), as follows:

ρ(x′′, x′; ε̃ + ε) =
∫

dx〈x′′|e−ε̃Ĥ0 |x〉ρ(x, x′; ε). (636)

Substituting 〈x′′|e−ε̃Ĥ0 |x〉 by its Trotter expansion and following the same steps as before we obtain:

ρ(x′′, x′; ε̃ + ε)) = e−iV(x̂)τ/2 1√
2π

∫
dpeix′′pe−ip2τ/(2m) 1√

2π

∫
dxe−ipxe−iV(x)τ/2ρ(x, x′; ε). (637)

Therefore, according to Eq. (637), ρ(x′′, x′; ε̃ + ε)) can be obtained for each x′ by first representing
ρ(x, x′; ε) on a grid of x, then (i) multiply it by the function e−iV(x)τ/2; (ii) compute the Fourier transform
of the resulting product; (iii) multiply it by e−ip2τ/(2m); (iv) inverse Fourier transform; and (v) multiply it
by e−iV(x̂)τ/2. Repeating the sequence of steps (i)–(v) n times generates ρ(x′′, x′; β) when ε̃ = (β− ε)/n.

Optional Exercise: Implement the SOFT method to obtain ρ(x′′, x′; β) for a Morse oscillator at β =
1. Compute the partition function Z = Tr[ρ̂] =

∫
dxρ(x, x; β) and the ensemble average energy E =

Z−1Tr[ρ̂Ĥ] = Z−1
∫

dxdx′ρ(x, x′; β)〈x′|Ĥ|x〉 as a function of β. Then, compute the heat capacity as a
function of temperature. Compare your results with the corresponding classical calculations.

48.6 Path Integral Monte Carlo and Ring Polymer Implementation

An alternative expression for the matrix elements of the Boltzmann operator can be obtained by introducing
into Eq. (615) the following substitution:(

m
2πεh̄2

)1/2

= (2πh̄)−1
∫

dpje−ε
p2

j
2m , (638)

as follows:

〈x0|e−βĤ |xn〉 = (2πh̄)−n
∫

dp1...
∫

dpne−ε ∑n
j=1

p2
j

2m

×
∫

dx1...
∫

dxn−1e−ε ∑n
j=1 V(xj)+

1
2 mω2(xj−xj−1)

2
,

(639)

to obtain
〈x0|e−βĤ |xn〉 = (2πh̄)−n

∫
dx1...

∫
dxn−1

∫
dp1...

∫
dpn e−εHn(x0;xn,pn), (640)

where Hn is the n-bead polymer Hamiltonian

Hn(x0; xn, pn) =
n

∑
j=1

p2
j

2m
+ V(xj) +

1
2

mω2(xj − xj−1)
2, (641)

and

Z =
∫

dx0

∫
dxnδ(x0 − xn)〈x0|e−βĤ |xn〉

= (2πh̄)−n
∫

dxn
∫

dpn δ(x0 − xn)e−εHn(x0;xn,pn).
(642)
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48.7 Optional Exercise

Compute 〈x0|e−βĤ |xn〉 for the Harmonic oscillator defined by the Hamiltonian

Ĥ =
p̂2

2m
+

1
2

mω2
0 x̂2, (643)

by using the Path Integral Monte Carlo method, with n = 2, 4, 6, 8 and 10 and show that for larger values of
n the calculation converges to the analytic expression:

〈x|e−βĤ |x′〉 =
√

mω

2πh̄sinh(βh̄ω)
exp

(
− mω

2h̄sinh(ωβh̄)
[
(x2 + x′2)cosh(ωβ)− 2xx′

])
, (644)

which in the free particle limit (ω → 0) becomes

〈x|e−βĤ |x′〉 =
√

m
2πβh̄2 exp

(
− m

2βh̄2

[
(x− x′)2]) , (645)

since sinh(βh̄ω)→ βh̄ω and cosh(βh̄ω)→ 1.

Matrix elements of the time-evolution operator e−
i
h̄ Ĥt can be obtained by following the same methodol-

ogy implemented for the Boltzmann matrix e−βĤτ. We first introduce the variable substitution ε ≡ iτ/h̄ in
Eq. (614) and then we obtain the short-time propagator as follows:

〈x|e− i
h̄ Ĥτ|x′〉 =

√
m

2πh̄iτ
e

i
h̄

(
1
2 m
[
(x−x′)

τ

]2
− 1

2 [V(x)+V(x′)]
)

τ
. (646)

Then, we concatenate the short-time propagators introduced by Eq. (646) and we obtain the finite-time
propagator,

〈x0|e−
i
h̄ Ĥt|xn〉 =

∫
dx1...

∫
dxn−1

( m
2πh̄iτ

)n/2
e

i
h̄

(
∑n

j=1
1
2 m
[
(xj−xj−1)

τ

]2

− 1
2 [V(xj)+V(xj−1)]

)
τ

, (647)

which in the limit when τ → 0 and n→ ∞ with t = nτ becomes,

〈x0|e−
i
h̄ Ĥt|xn〉 =

∫
D[x(t)]e

i
h̄ Sc(t), (648)

where Sc(t) is the classical action associated with the arbitrary trajectory x(t),

Sc(t′) ≡
∫ t′

0
dt

[
1
2

m
(

∂

∂t
x(t)

)2

−V(x(t))

]
, (649)

and D[x(t)] is defined as follows,∫
D[x(t)] f (x(t)) ≡

∫
dx1...

∫
dxn−1

( m
2πh̄iτ

)n/2
f (x(t)), (650)

representing the integral over all paths x(t) from x0 to xn, with intermediate coordinates x1, x2, ..., xn−1 at
times τ, 2τ, ..., (n− 1)τ, respectively.
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49 Path Integral Molecular Dynamics and RPMD

The discrete path integral approach [D. Chandler and P. G. Wolynes J. Chem. Phys. 74, 4078 (1981)] im-
plements Feynman’s imaginary time path integral for computation of partition functions as discretized in
coordinate space by time-slicing the Boltzmann operator and replacing the short-(imaginary)time propaga-
tors according to the Trotter approximation, as described in Sec. 48, to obtain the partition function of a
’ring polymer’ with harmonically coupled beads:

Zn =

(
βk
2π

)n/2 ∫
dx1 · · · dxne

−β ∑n
j=1[ 1

2 k(xj−xj+1)
2+ 1

n V(xk)]xn+1=x1 , (651)

where k = mω2 with ω =
√

n/(βh̄) is the ’force constant’ that harmonically couples the beads.
The path integral molecular dynamics (PIMD) simulation method [M. Parrinello and A. Rahman, J.

Chem. Phys. 80, 860 (1984); R. W. Hall and B. J. Berne, J. Chem. Phys. 81, 3641 (1984)], replaced the
prefactor by Gaussians integrals over momentum, as follows:

Zn =
∫

dx1 · · · dxndp1 · · · dpne−βHn(x,p), (652)

where Hn(x, p) is the Hamiltonian of the ’ring polymer’:

Hn(x, p) =
n

∑
j=1

[
p2

j

2m′
+

1
2

mω2(xj − xj+1)
2 +

1
n

V(xk)

]
xn+1=x1

, (653)

PIMD samples configurations of the beads by using the primitive equation of motion for xj and pj:

ẋj =
pj

m′
, ṗj = −mω2(2xj − xj+1 − xj−1)−

1
n

∂V
∂xj

+ heat bath. (654)

The coupling to the heat bath makes it effectively a path integral Monte Carlo (PIMC) method. In PIMD/PIMC,
m′ is an arbitrary parameter, often called the ’fictitious mass’ which could be defined in terms of m to im-
prove convergence [M. E. Tuckerman, G. J. Martyna, M. L. Klein and B. J. Berne J. Chem. Phys. 99, 2796
(1993)] after transforming the primitive variables xj to the ’staging modes’ that diagonalize the harmonic
coupling.

The ‘path centroid’ is the coordinate of the ring center-of-mass:

xc(t) =
1
n

n

∑
j=1

xj(t), (655)

which experiences a force given by the ’potential of mean force’ [Feynman and Kleinert Phys. Rev. A 34,
5080 (1986)]:

W(xc) = −β−1ln
[∫

dx1 · · · dxndp1 · · · dpne−βHn(x,p)
]

. (656)

The centroid molecular dynamics (CMD) method [J. Cao and G. A. Voth J. Chem. Phys. 99, 10070
(1993); ibid 100, 5106 (1994); ibid 101, 6168 (1994)], expresses the partition function as the path integral
molecular dynamics of the centroid, as follows:

Zn =

(
βk
2π

)n/2 ∫
dxce−βW(xc), (657)
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and samples configurations of the centroid by using the approximate dynamics defined by the potential of
mean force, as follows:

ẋc =
pc

m
, ṗc = −

∂W
∂xc

+ heat bath. (658)

The ring polymer molecular dynamics method [I. R. Craig and D. E. Manolopoulos J. Chem. Phys. 121,
3368 (2004)] is essentially the PIMD method, typically carried out at n times the actual temperature (ı.e.,
βn = β/n), using a scaled Hamiltonian nHn(x, p) and m′ = mn. Originally, the heat bath was not applied.

Correlation functions are evaluated in terms of the Kubo transformed thermal correlation function,

KAB(t) = Z−1tr[Âβ
Kubo eiĤtB̂e−iĤt], (659)

where

Âβ
Kubo =

1
β

∫ β

0
dλe−βĤeλĤ Âe−λĤ, (660)

approximated by PIMD/RPMD as,

KAB(t) ≈ Z−1
n

∫
dpdxAn(0)Bn(t)e−βHn(x,p), (661)

where

An(0) =
1
n

n

∑
j=1

Aj(0), and Bn(t) =
1
n

n

∑
j=1

Bj(t), (662)

or in terms of its centroid approximation, as follows:

KAB(t) ≈ Z−1
n

∫
dpcdxc A(xc(0))B(xc(t))e

−β

(
p2

c
2m+W(xc)

)
. (663)

which requires computing W by PIMD. The derivation of the path integral expression of KAB, introduced
by Eq. (661), is provided in Sec. 49.1.

Standard quantum correlation functions,

CAB(t) = Z−1tr[e−βĤ ÂeiĤtB̂e−iĤt], (664)

are then obtained from the Fourier transform of the Kubo correlation function K̃AB(ω) which is related to
the Fourier transform of the standard correlation function C̃AB(ω), as follows:

C̃AB(ω) =

[
βω

1− e−βω

]
K̃AB(ω), (665)

as shown in the following section (Sec. 49.2).
Obtaining CAB(t) from KAB(t) is convenient since KAB(t) is purely real and invariant under time re-

versal, just like the classical time correlation functions, which are the natural output of both CMD and
PIMD/RPMD calculations. In the linear regime, the response of the system is directly linked to such func-
tions via the Kubo relations [R. Kubo, M. Toda, and N. Hashitsume. Statistical Physics II: Nonequilibrium
Statistical Mechanics. Springer, New York, (1985)]. Furthermore, the PIMD KAB(t) reduces to its classical
counterpart not only in the classical limit (i.e., β → 0) or when t → 0 but also in harmonic systems for
which they are exact. The CMD approximation to KAB(t) is also exact for t = 0 or for harmonic potentials.
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49.1 PIMD/RPMD Expression of Kubo Transform Correlation Function

(This section was contributed by Kenneth Jung.)
Beginning with

KAB(t) =
1

Zβ

∫ β

0
dλ Tr

[
e−(β−λ)Ĥ Âe−λĤeiĤt/h̄B̂e−iĤt/h̄

]
, (666)

where β = 1/(kBT) and Z is the partition function. The integral over lambda can be discretized as

K[N]
AB(t) =

1
ZN N

N

∑
k=1

Tr
[
e−βN(N−k)Ĥ Âe−βNkĤeiĤt/h̄B̂e−iĤt/h̄

]
=

1
ZN N

N

∑
k=1

Tr
[(

e−βN Ĥ
)N−k

Â
(

e−βN Ĥ
)k

eiĤt/h̄B̂e−iĤt/h̄
]

=
1

ZN N

N

∑
k=1

Tr
[(

e−βN Ĥ
)N−k−1

e−βN Ĥ Â
(

e−βN Ĥ
)k−1

e−βN ĤeiĤt/h̄B̂e−iĤt/h̄
]

, (667)

with βN = β/N. We will now insert N − 1 identities of the form

1̂t = eiĤt/h̄e−iĤt/h̄, (668)

in Eq. (667) to give:

K[N]
AB(t) =

1
ZN N

N

∑
k=1

Tr
[(

e−βN Ĥ1̂t

)
N−k−1e−βN Ĥ Â1̂t

(
e−βN Ĥ1̂t

)
k−1e−βN ĤeiĤt/h̄B̂e−iĤt/h̄

]
=

1
ZN N

N

∑
k=1

Tr
[ (

e−βN ĤeiĤt/h̄e−iĤt/h̄
)N−k−1

e−βN Ĥ ÂeiĤt/h̄e−iĤt/h̄

×
(

e−βN ĤeiĤt/h̄e−iĤt/h̄
)k−1

e−βN ĤeiĤt/h̄B̂e−iĤt/h̄
]

, (669)

The trace will then be expanded in the position basis

K[N]
AB(t) =

1
ZN N

N

∑
k=1

∫
dq′′N〈q′′N |

(
e−βN ĤeiĤt/h̄e−iĤt/h̄

)N−k−1
e−βN Ĥ ÂeiĤt/h̄e−iĤt/h̄

×
(

e−βN ĤeiĤt/h̄e−iĤt/h̄
)k−1

e−βN ĤeiĤt/h̄B̂e−iĤt/h̄|q′′N〉. (670)

Now consider the jth term in the sum of Eq. (670):∫
dq′′N〈q′′N |

(
e−βN ĤeiĤt/h̄e−iĤt/h̄

)N−j−1
e−βN Ĥ ÂeiĤt/h̄e−iĤt/h̄

×
(

e−βN ĤeiĤt/h̄e−iĤt/h̄
)j−1

e−βN ĤeiĤt/h̄B̂e−iĤt/h̄|q′′N〉

=
∫

dq′′N〈q′′N | e−βN ĤeiĤt/h̄e−iĤt/h̄ · · · e−βN ĤeiĤt/h̄e−iĤt/h̄︸ ︷︷ ︸
N − j− 1 terms

e−βN Ĥ ÂeiĤt/h̄e−iĤt/h̄

× e−βN ĤeiĤt/h̄e−iĤt/h̄ · · · e−βN ĤeiĤt/h̄e−iĤt/h̄︸ ︷︷ ︸
j− 1 terms

e−βN ĤeiĤt/h̄B̂e−iĤt/h̄|q′′N〉. (671)
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We will insert identities of the form
1̂q′l

=
∫

dq′l |q′l〉〈q′l |, (672)

after each e−βN Ĥ term,
1̂zl =

∫
dzl |zl〉〈zl |, (673)

after each eiĤt/h term and
1̂q′′l

=
∫

dq′′l |q′′l 〉〈q′′l |, (674)

after each e−iĤt/h term (except the one next to |q′′N〉 since the expansion of the trace takes care of this term)
to get

=
∫

dq′′N〈q′′N |e−βN Ĥ1̂q′1
eiĤt/h̄1̂z1 e−iĤt/h̄1̂q′′1

· · · e−βN Ĥ1̂q′N−j−1
eiĤt/h̄1̂zN−j−1 e−iĤt/h̄1̂q′′N−j−1

×e−βN Ĥ1̂q′N−j
ÂeiĤt/h̄1̂zN−j e

−iĤt/h̄1̂q′′N−j
e−βN Ĥ1̂q′N−j+1

eiĤt/h̄1̂zN−j+1 e−iĤt/h̄1̂q′′N−j+1

× · · · e−βN Ĥ1̂q′N−1
eiĤt/h̄1̂zN−1 e−iĤt/h̄1̂q′′N−1

e−βN Ĥ1̂q′N
eiĤt/h̄1̂zN B̂e−iĤt/h̄|q′′N〉

=
∫

dq′′
∫

dz
∫

dq′〈q′′N |e−βN Ĥ |q′1〉〈q′1|eiĤt/h̄|z1〉〈z1|e−iĤt/h̄|q′′1 〉 · · · 〈q′′N−j−2|e−βN Ĥ |q′N−j−1〉

×〈q′N−j−1|eiĤt/h̄|zN−j−1〉〈zN−j−1|e−iĤt/h̄|q′′N−j−1〉〈q′′N−j−1|e−βN Ĥ |q′N−j〉

×〈q′N−j|ÂeiĤt/h̄|zN−j〉〈zN−j|e−iĤt/h̄|q′′N−j〉〈q′′N−j|e−βN Ĥ |q′N−j+1〉〈q′N−j+1|eiĤt/h̄|zN−j+1〉

×〈zN−j+1|e−iĤt/h̄|q′′N−j+1〉 · · · 〈q′′N−2|e−βN Ĥ |q′N−1〉〈q′N−1|eiĤt/h̄|zN−1〉〈zN−1|e−iĤt/h̄|q′′N−1〉

×〈q′′N−1|e−βN Ĥ |q′N〉〈qN |eiĤt/h̄|zN〉〈zN |B̂e−iĤt/h̄|q′′N〉.

We assume that Â and B̂ are functions of the position operator

=
∫

dq′′
∫

dz
∫

dq′A(q′N−j)B(zN)〈q′′N |e−βN Ĥ |q′1〉〈q′1|eiĤt/h̄|z1〉〈z1|e−iĤt/h̄|q′′1 〉 · · · 〈q′′N−j−2|e−βN Ĥ |q′N−j−1〉

×〈q′N−j−1|eiĤt/h̄|zN−j−1〉〈zN−j−1|e−iĤt/h̄|q′′N−j−1〉〈q′′N−j−1|e−βN Ĥ |q′N−j〉

×〈q′N−j|eiĤt/h̄|zN−j〉〈zN−j|e−iĤt/h̄|q′′N−j〉〈q′′N−j|e−βN Ĥ |q′N−j+1〉〈q′N−j+1|eiĤt/h̄|zN−j+1〉

×〈zN−j+1|e−iĤt/h̄|q′′N−j+1〉 · · · 〈q′′N−2|e−βN Ĥ |q′N−1〉〈q′N−1|eiĤt/h̄|zN−1〉〈zN−1|e−iĤt/h̄|q′′N−1〉

×〈q′′N−1|e−βN Ĥ |q′N〉〈qN |eiĤt/h̄|zN〉〈zN |e−iĤt/h̄|q′′N〉.

=
∫

dq′′
∫

dz
∫

dq′A(q′N−j)B(zN)
N

∏
l=1
〈q′′l−1|e−βN Ĥ |q′l〉〈q′l |eiĤt/h̄|zl〉〈zl |e−iĤt/h̄|q′′l 〉. (675)

Where we have used the fact that x0 = xN , x = {q′, q′′, z} to arrive at Eq. (675) and the following notation
was introduced ∫

dx =
N

∏
k=1

∫
dxk. (676)

Now that we see how one term in the sum of Eq. (670) looks, it is easy to see that Eq. (670) can be rewritten
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using the result of Eq. (675) as

K[N]
AB(t) =

∫
dq′′

∫
dz
∫

dq′
N

∑
k=1

A(q′N−k)B(zN)
N

∏
l=1
〈q′′l−1|e−βN Ĥ |q′l〉〈q′l |eiĤt/h̄|zl〉〈zl |e−iĤt/h̄|q′′l 〉

=
∫

dq′′
∫

dz
∫

dq′
N

∑
k=1

A(q′k)B(zN)
N

∏
l=1
〈q′′l−1|e−βN Ĥ |q′l〉〈q′l |eiĤt/h̄|zl〉〈zl |e−iĤt/h̄|q′′l 〉

=
∫

dq′′
∫

dz
∫

dq′A(q′)B(zN)
N

∏
l=1
〈q′′l−1|e−βN Ĥ |q′l〉〈q′l |eiĤt/h̄|zl〉〈zl |e−iĤt/h̄|q′′l 〉. (677)

Since all the blocks are identical and can be permuted we can average the observable B(zN) over all the
blocks to get

K[N]
AB(t) =

∫
dq′′

∫
dz
∫

dq′A(q′)B(z)
N

∏
l=1
〈q′′l−1|e−βN Ĥ |q′l〉〈q′l |eiĤt/h̄|zl〉〈zl |e−iĤt/h̄|q′′l 〉, (678)

where

O(x) =
1
N

N

∑
k=1

O(xk), (679)

is the block-averaged observable.

49.2 Relation of Kubo Transforms to standard TCF’s

There is a general relationship between the Kubo correlation functions and the standard correlation functions
through Fourier space which can be found by working in the energy representation of the Kubo transform.

CAB(t) =
1
Z

tr
[
e−βĤ Â(0)B̂(t)

]
=

1
Z

tr
[
e−βĤ Â(0)eiĤt/h̄B̂(0)e−iĤt/h̄

]
=

1
Z ∑

n,m
〈n| e−βĤ Â(0) |m〉 〈m| eiĤt/h̄B̂(0)e−iĤt/h̄ |n〉 (680)

=
1
Z ∑

n,m
e−βEn AnmeiEmt/h̄Bmne−iEnt/h̄

=
1
Z ∑

n,m
e−βEn ei(Em−En)t/h̄ AnmBmn

where Anm = 〈n| Â |m〉 and Bmn = 〈m| B̂ |n〉. This provides a straightforward way to evaluate the
correlation function if the Hamiltonian can be efficiently diagonalized. Next we will Fourier transform the
correlation function to obtain
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C̃AB(ω) =
∫

dte−iωtCAB(t)

=
1
Z

∫
dte−iωt ∑

n,m
e−βEn ei(Em−En)t/h̄ AnmBmn

=
1
Z ∑

n,m
e−βEn AnmBmn

∫
dte−iωtei(Em−En)t/h̄ (681)

=
1
Z ∑

n,m
e−βEn AnmBmnδ [ω− (Em − En)]

Next we will evaluate the Kubo form in the eigen basis

KAB(t) =
1

Zβ

∫ β

0
dλtr

[
e−(β−λ)Ĥ Â(0)e−λĤ B̂(t)

]
=

1
Zβ

∫ β

0
dλtr

[
e−(β−λ)Ĥ Â(0)e−λĤeiĤt/h̄B̂(0)e−iĤt/h̄

]
=

1
Zβ

∫ β

0
dλ ∑

n.m
〈n| e−(β−λ)Ĥ Â(0) |m〉 〈m| e−λĤeiĤt/h̄B̂(0)e−iĤt/h̄ |n〉

=
1

Zβ

∫ β

0
dλ ∑

n.m
e−(β−λ)En Anme−λEm eiEmt/h̄Bmne−iEnt/h̄ (682)

=
1

Zβ ∑
n.m

∫ β

0
dλeλ(En−Em)e−βEn ei(Em−En)t/h̄ AnmBmn

=
1

Zβ ∑
n.m

eβ(En−Em) − 1
(En − Em)

e−βEn ei(Em−En)t/h̄ AnmBmn

=
1

Zβ ∑
n.m

1− e−β(Em−En)

(Em − En)
e−βEn ei(Em−En)t/h̄ AnmBmn

and again we Fourier transform to get

K̃AB(ω) =
∫

dte−iωtKAB(t)

=
1

Zβ ∑
n.m

1− e−β(Em−En)

(Em − En)
e−βEn AnmBmn

∫
dte−iωtei(Em−En)t/h̄

=
1

Zβ ∑
n.m

1− e−β(Em−En)

(Em − En)
e−βEn AnmBmnδ [ω− (Em − En)] (683)

If we compare this result with the Fourier transform of the normal TCF and rename (Em − En) as h̄ω we
see that the Kubo TCF and the normal TCF are related through their Fourier transforms as

C̃AB(ω) =
βh̄ω

1− e−βh̄ω
K̃AB(ω) (684)
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A Python and Colab

For this class, I recommend working in the Google Colab environment, so you can run your codes in
Google’s computers. In Colab, everything you need is already installed, or you can upload by mounting
your Google drive.

I also recommend strengthening your python knowledge with the excellent tutorial provided in this
section, adapted by Kevin Zakka for the Spring 2020 edition of cs231n, and available at Python_tt.ipynb.

Python is a great general-purpose programming language on its own, but with the help of a few popular
libraries (numpy, scipy, matplotlib) it becomes a powerful environment for scientific computing. I expect
that many of you will have some experience with Python and numpy; for the rest of you, this section will
serve as a quick crash course both on the Python programming language and on the use of Python for
scientific computing.

In this tutorial, we will cover:

• Basic Python: Basic data types (Containers, Lists, Dictionaries, Sets, Tuples), Functions, Classes
• Numpy: Arrays, Array indexing, Datatypes, Array math, Broadcasting
• Matplotlib: Plotting, Subplots, Images
• IPython: Creating notebooks, Typical workflows

A.1 A Brief Note on Python Versions

As of Janurary 1, 2020, Python has officially dropped support for python2. We’ll be using Python
3.7 for this iteration of the course. You can check your Python version at the command line by running
python --version. In Colab, we can enforce the Python version by clicking Runtime -> Change
Runtime Type and selecting python3. Note that as of April 2020, Colab uses Python 3.6.9 which
should run everything without any errors.

[6]: !python --version

Python 3.6.9

A.1.1 Basics of Python

Python is a high-level, dynamically typed multiparadigm programming language. Python code is often said
to be almost like pseudocode, since it allows you to express very powerful ideas in very few lines of code
while being very readable. As an example, here is an implementation of the classic quicksort algorithm in
Python:

[7]: def quicksort(arr):
if len(arr) <= 1:

return arr
pivot = arr[len(arr) // 2]
left = [x for x in arr if x < pivot]
middle = [x for x in arr if x == pivot]
right = [x for x in arr if x > pivot]
return quicksort(left) + middle + quicksort(right)

print(quicksort([3,6,8,10,1,2,1]))

[1, 1, 2, 3, 6, 8, 10]

127

https://www.youtube.com/watch?v=6Xt6L1I5jSc
https://keras.io/
https://cs231n.github.io/
http://ursula.chem.yale.edu/~batista/classes/CHEM584/Python_tt.ipynb
https://www.python.org/doc/sunset-python-2/


A.1.1.1 Basic data types

A.1.1.1.1 Numbers Integers and floats work as you would expect from other languages:
[8]: x = 3

print(x, type(x))

3 <class 'int'>

[9]: print(x + 1) # Addition
print(x - 1) # Subtraction
print(x * 2) # Multiplication
print(x ** 2) # Exponentiation

4
2
6
9

[10]: x += 1
print(x)
x *= 2
print(x)

4
8

[11]: y = 2.5
print(type(y))
print(y, y + 1, y * 2, y ** 2)

<class 'float'>
2.5 3.5 5.0 6.25

Note that unlike many languages, Python does not have unary increment (x++) or decrement (x–) oper-
ators.

Python also has built-in types for long integers and complex numbers; you can find all of the details in
the documentation.

A.1.1.1.2 Booleans Python implements all of the usual operators for Boolean logic, but uses English
words rather than symbols (&&, ||, etc.):

[12]: t, f = True, False
print(type(t))

<class 'bool'>

Now we let’s look at the operations:
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[13]: print(t and f) # Logical AND;
print(t or f) # Logical OR;
print(not t) # Logical NOT;
print(t != f) # Logical XOR;

False
True
False
True

A.1.1.1.3 Strings
[14]: hello = ’hello’ # String literals can use single quotes

world = "world" # or double quotes; it does not matter
print(hello, len(hello))

hello 5

[15]: hw = hello + ’ ’ + world # String concatenation
print(hw)

hello world

[16]: hw12 = ’{} {} {}’.format(hello, world, 12) # string formatting
print(hw12)

hello world 12

String objects have a bunch of useful methods; for example:
[17]: s = "hello"

print(s.capitalize()) # Capitalize a string
print(s.upper()) # Convert a string to uppercase; prints "HELLO"
print(s.rjust(7)) # Right-justify a string, padding with spaces
print(s.center(7)) # Center a string, padding with spaces
print(s.replace(’l’, ’(ell)’)) # Replace all instances of one

↪→substring with another

print(’ world ’.strip()) # Strip leading and trailing whitespace

Hello
HELLO

hello
hello
he(ell)(ell)o
world

You can find a list of all string methods in the documentation.
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A.1.1.2 Containers Python includes several built-in container types: lists, dictionaries, sets, and tu-
ples.

1. List item

2. List item

3. List item

4. List item

A.1.1.2.1 Lists A list is the Python equivalent of an array, but is resizeable and can contain elements
of different types:

[18]: xs = [3, 1, 2] # Create a list
print(xs, xs[2])
print(xs[-1]) # Negative indices count from the end of the list;

↪→prints "2"

[3, 1, 2] 2
2

Lists can be generated from arrays, as follows:
[20]: import numpy as np

int_list = [] # list initialization
int_list = [0,0,1,2,3] # list with commas
int_list.append(4) # add 4 to end of the list
int_list.pop(2) # remove element with index 2

int_list2 = list(range(5)) # make list [0,1,2,3,4]
int_array = np.array(int_list) # make array [] with no commas: [0 1 2

↪→3 4]

int_array2 = np.arange(5) # make array [] with no commas: [0 1 2 3 4]
int_list2 = int_array.tolist() # convert array to list

first = 0
last = 4
float_array = np.linspace(first,last,num=5)

print(’int_list=’,int_list)
print(’int_list2=’,int_list2)
print(’int_array=’,int_array)
print(’int_array2=’,int_array2)
print(’float_array=’,float_array)

int_list= [0, 0, 2, 3, 4]
int_list2= [0, 0, 2, 3, 4]
int_array= [0 0 2 3 4]
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int_array2= [0 1 2 3 4]
float_array= [0. 1. 2. 3. 4.]

[21]: xs[2] = ’foo’ # Lists can contain elements of different types
print(xs)

[3, 1, 'foo']

Lists have methods, including append, insert, remove, sort
[22]: xs.append(’bar’) # Add a new element to the end of the list

print(xs)

[3, 1, 'foo', 'bar']

[23]: x = xs.pop() # Remove and return the last element of the list
print(x, xs)

bar [3, 1, 'foo']

As usual, you can find all the gory details about lists in the documentation.

A.1.1.2.2 Slicing In addition to accessing list elements one at a time, Python provides concise syntax
to access sublists; this is known as slicing:

[24]: nums = list(range(5)) # range is a built-in function that creates
↪→a list of integers

print(nums) # Prints "[0, 1, 2, 3, 4]"
print(nums[2:4]) # Get a slice from index 2 to 4 (exclusive);

↪→prints "[2, 3]"

print(nums[2:]) # Get a slice from index 2 to the end; prints
↪→"[2, 3, 4]"

print(nums[:2]) # Get a slice from the start to index 2
↪→(exclusive); prints "[0, 1]"

print(nums[:]) # Get a slice of the whole list; prints ["0, 1,
↪→2, 3, 4]"

print(nums[:-1]) # Slice indices can be negative; prints ["0, 1,
↪→2, 3]"

nums[2:4] = [8, 9] # Assign a new sublist to a slice
print(nums) # Prints "[0, 1, 8, 9, 4]"

[0, 1, 2, 3, 4]
[2, 3]
[2, 3, 4]
[0, 1]
[0, 1, 2, 3, 4]
[0, 1, 2, 3]
[0, 1, 8, 9, 4]

A.1.1.2.3 Loops You can loop over the elements of a list like this:
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[25]: animals = [’cat’, ’dog’, ’monkey’]
for animal in animals:

print(animal)

cat
dog
monkey

If you want access to the index of each element within the body of a loop, use the built-in enumerate
function:

[26]: animals = [’cat’, ’dog’, ’monkey’]
for idx, animal in enumerate(animals):

print(’#{}: {}’.format(idx + 1, animal))

#1: cat
#2: dog
#3: monkey

A.1.1.2.4 List comprehensions: When programming, frequently we want to transform one type of
data into another. As a simple example, consider the following code that computes square numbers:

[27]: nums = [0, 1, 2, 3, 4]
squares = []
for x in nums:

squares.append(x ** 2)
print(squares)

[0, 1, 4, 9, 16]

You can make this code simpler using a list comprehension:
[28]: nums = [0, 1, 2, 3, 4]

squares = [x ** 2 for x in nums]
print(squares)

[0, 1, 4, 9, 16]

List comprehensions can also contain conditions:
[29]: nums = [0, 1, 2, 3, 4]

even_squares = [x ** 2 for x in nums if x % 2 == 0]
print(even_squares)

[0, 4, 16]

A.1.1.2.5 Dictionaries A dictionary stores (key, value) pairs, similar to a Map in Java or an object
in Javascript. You can use it like this:
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[30]: d = {}
d = {’cat’: ’cute’, ’dog’: ’furry’} # Create a new dictionary with

↪→some data

print(d[’cat’]) # Get an entry from a dictionary; prints "cute"
print(’cat’ in d) # Check if a dictionary has a given key; prints

↪→"True"

cute
True

[31]: d[’fish’] = ’wet’ # Set an entry in a dictionary
print(d[’fish’]) # Prints "wet"

wet

[32]: print(d[’monkey’]) # KeyError: ’monkey’ not a key of d

↪→---------------------------------------------------------------------------

KeyError Traceback (most
↪→recent call last)

[33]: print(d.get(’monkey’, ’N/A’)) # Get an element with a default;
↪→prints "N/A"

print(d.get(’fish’, ’N/A’)) # Get an element with a default;
↪→prints "wet"

N/A
wet

[34]: del d[’fish’] # Remove an element from a dictionary
print(d.get(’fish’, ’N/A’)) # "fish" is no longer a key; prints "N/A"

N/A

You can find all you need to know about dictionaries in the documentation.
It is easy to iterate over the keys in a dictionary:

[35]: d = {’person’: 2, ’cat’: 4, ’spider’: 8}
for animal, legs in d.items():

print(’A {} has {} legs’.format(animal, legs))
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A person has 2 legs
A cat has 4 legs
A spider has 8 legs

Add pairs to the dictionary
[36]: d[’bird’]=2

List keys
[37]: d.keys()

[37]: dict_keys(['person', 'cat', 'spider', 'bird'])

List Values
[38]: d.values()

[38]: dict_values([2, 4, 8, 2])

Query values from keys
[39]: d[’bird’]

[39]: 2

Dictionary comprehensions: These are similar to list comprehensions, but allow you to easily construct
dictionaries. For example:

[40]: nums = [0, 1, 2, 3, 4]
even_num_to_square = {x: x ** 2 for x in nums if x % 2 == 0}
print(even_num_to_square)

{0: 0, 2: 4, 4: 16}

Convert array to list

A.1.1.2.6 Sets (like dictionaries but with no values, add & remove)
A set is an unordered collection of distinct elements. As a simple example, consider the following:

[41]: animals = {’cat’, ’dog’}
print(’cat’ in animals) # Check if an element is in a set; prints

↪→"True"

print(’fish’ in animals) # prints "False"

True
False

[42]: animals.add(’fish’) # Add an element to a set
print(’fish’ in animals)
print(len(animals)) # Number of elements in a set;

True
3
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[43]: animals.add(’cat’) # Adding an element that is already in the
↪→set does nothing

print(len(animals))
animals.remove(’cat’) # Remove an element from a set
print(len(animals))

3
2

Loops: Iterating over a set has the same syntax as iterating over a list; however since sets are unordered,
you cannot make assumptions about the order in which you visit the elements of the set:

[44]: animals = {’cat’, ’dog’, ’fish’}
for idx, animal in enumerate(animals):

print(’#{}: {}’.format(idx + 1, animal))

#1: fish
#2: dog
#3: cat

Set comprehensions: Like lists and dictionaries, we can easily construct sets using set comprehensions:
[45]: from math import sqrt

print({int(sqrt(x)) for x in range(30)})

{0, 1, 2, 3, 4, 5}

A.1.1.2.7 Tuples A tuple is an (immutable) ordered list of values. A tuple is in many ways similar to
a list; one of the most important differences is that tuples can be used as keys in dictionaries and as elements
of sets, while lists cannot. Here is a simple example:

[46]: d = {(x, x + 1): x for x in range(10)} # Create a dictionary with
↪→tuple keys

print(d)

tt = () # initialization of empty tuple
t1 = (66,) # initialization of tuple with a single value
t = (5, 6) # Create a tuple
tt = tt+t1+t
print("tt=",tt)
print("tt[2]=",tt[2])
print("tt[1:3]=",tt[1:3])
print("66 in tt", 66 in tt)

print(type(t))
print(d[t])
print(d[(1, 2)])
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{(0, 1): 0, (1, 2): 1, (2, 3): 2, (3, 4): 3, (4, 5): 4, (5, 6): 5, (6,
↪→7): 6,

(7, 8): 7, (8, 9): 8, (9, 10): 9}
tt= (66, 5, 6)
tt[2]= 6
tt[1:3]= (5, 6)
66 in tt True
<class 'tuple'>
5
1

[47]: t[0] = 1

↪→---------------------------------------------------------------------------

TypeError Traceback (most
↪→recent call last)

<ipython-input-47-c8aeb8cd20ae> in <module>()
----> 1 t[0] = 1

TypeError: 'tuple' object does not support item assignment

A.1.1.3 Functions Python functions are defined using the def keyword. For example:
[48]: def sign(x):

if x > 0:
return ’positive’

elif x < 0:
return ’negative’

else:
return ’zero’

for x in [-1, 0, 1]:
print(sign(x))

negative
zero
positive

We will often define functions to take optional keyword arguments, like this:
[49]: def hello(name, loud=False):

if loud:
print(’HELLO, {}’.format(name.upper()))
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else:
print(’Hello, {}!’.format(name))

hello(’Bob’)
hello(’Fred’, loud=True)

Hello, Bob!
HELLO, FRED

A.1.1.4 Classes A new class creates a new type of object, bounding data and functionality that allows
new instances of the type made. Each class instance can have attributes attached to it, so we can make class
instances as well as instances to variables and methods for maintaining the state of the class. Instances of the
method can have attributes and can modify the state of the class, as clearly described by the documentation.

The syntax for defining classes in Python is straightforward:
[50]: class Greeter:

""" My greeter class """
# Constructor (method of construction of class in a specific

↪→state)

v1 =’papa’ # class variable shared by all instances
def __init__(self, name_inp): # name_inp: argument given to

↪→Greeter for class instantiation

self.name = name_inp # Create an instance variable
↪→maintaining the state

# instance variables are unique to each
↪→instance

# Instance method
# note that the first argument of the function method is the

↪→instance object

def greet(self, loud=False):
if loud:

print(’HELLO, {}’.format(self.name.upper()))
self.name = ’Haote’

else:
print(’Hello, {}!’.format(self.name))
self.name = ’Victor’

# Class instantiation (returning a new instance of the class assigned
↪→to g):

# Constructs g of type Greeter & initialzes its state
# as defined by the class variables (does not execute methods)
g = Greeter(’Fred’)

# Call an instance method of the class in its current state:
# prints "Hello, Fred!" and updates state varible to ’Victor’ since

↪→loud=False
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g.greet() # equivalent to Greeter.greet(g) since the first arg of
↪→greet is g

# Call an instance method; prints "HELLO, VICTOR" and updates
↪→variable to ’Haote’

g.greet(loud=True) # equivalent to Greeter.greet(g,loud=True)
#since the first arg of greet is g

print(g.v1)
g.greet() # Call an instance method; prints "Hello, Haote!"

# A method object is created by packing
↪→(pointers to) the

# instance object g and the function object greet

g2 = Greeter(’Lea’) # Class instance reinitializes variable to ’Lea’

g2.greet() # Call an instance method; prints "Hello, Lea!"
g2.__doc__
g2.x=20 # Data attributes spring into existence upon

↪→assignment

print(g2.x)
del g2.x # Deletes attribute
g2.v1

Hello, Fred!
HELLO, VICTOR
papa
Hello, Haote!
Hello, Lea!
20

[50]: 'papa'

For loops (iterators). Behind the scenes, the for statement calls iter() on the container object.
[51]: for element in [1,2,3]: # elements of list

print(element)
for element in (1,2,3): # elements of tuple
print(element)

for key in {’first’:1, ’second’:2, ’third’:3}: # elements of
↪→dictionary

print(’key=’,key)
for char in ’1234’:
print(char)

#for line in open(’’myfile.txt)
# print(line,end=’’)

1
2
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3
1
2
3
key= first
key= second
key= third
1
2
3
4

A.1.1.5 Modules A module is a .py file containing Python definitions and statements that can be im-
ported into a Python script, as described in the Python documentation.

As an example, after mounting your Google drive as described by the Navigating_tutorial.ipynb Jupyter
notebook, use a text editor and write a module with the line:

[52]: greeting = "Good Morning!"

Save the document with the name mymod.py
Next, go the the folder where you saved that file and open a notebook with the lines:

[ ]: import mymod as my
print(my.greeting)

you will see that the notebook has imported the variable greetingfrom the module mymod.py and has
invoked the variable as an attribute of the module mymod that was imported as my when printing Good
Morning!!.

Modules are very convenient since they allow you to import variables, functions and classes that you
might have developed for previous projects, without having to copy them into each program. So, you can
build from previous projects, or split your work into several files for easier maintenance.

Within a module, the module’s name (as a string) is available as the value of the global variable
__name__.

A.1.2 Numpy

Numpy is the core library for scientific computing in Python. It provides a high-performance multidimen-
sional array object, and tools for working with these arrays. If you are already familiar with MATLAB, you
might find this tutorial useful to get started with Numpy.

To use Numpy, we first need to import the numpy package:
[54]: import numpy as np

A.1.2.1 Arrays A numpy array is a grid of values, all of the same type, and is indexed by a tuple of
nonnegative integers. The number of dimensions is the rank of the array; the shape of an array is a tuple of
integers giving the size of the array along each dimension.

We can initialize numpy arrays from nested Python lists, and access elements using square brackets:
[55]: a = np.array([1, 2, 3]) # Create a rank 1 array

print(type(a), a.shape, a[0], a[1], a[2])
a[0] = 5 # Change an element of the array
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print(a)

<class 'numpy.ndarray'> (3,) 1 2 3
[5 2 3]

[56]: b = np.array([[1,2,3],[4,5,6]]) # Create a rank 2 array
print(b)

[[1 2 3]
[4 5 6]]

[57]: print(b.shape)
print(b[0, 0], b[0, 1], b[1, 0])

(2, 3)
1 2 4

Numpy also provides many functions to create arrays:
[58]: a = np.zeros((2,2)) # Create an array of all zeros

print(a)

[[0. 0.]
[0. 0.]]

[59]: b = np.ones((1,2)) # Create an array of all ones
print(b)

[[1. 1.]]

[60]: c = np.full((2,2), 7) # Create a constant array
print(c)

[[7 7]
[7 7]]

[61]: d = np.eye(2) # Create a 2x2 identity matrix
print(d)

[[1. 0.]
[0. 1.]]

[62]: e = np.random.random((2,2)) # Create an array filled with random
↪→values

print(e)

[[0.32071297 0.96986179]
[0.32331846 0.50510489]]
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A.1.2.2 Array indexing Numpy offers several ways to index into arrays.
Slicing: Similar to Python lists, numpy arrays can be sliced. Since arrays may be multidimensional, you

must specify a slice for each dimension of the array:
[63]: import numpy as np

# Create the following rank 2 array with shape (3, 4)
# [[ 1 2 3 4]
# [ 5 6 7 8]
# [ 9 10 11 12]]
a = np.array([[1,2,3,4], [5,6,7,8], [9,10,11,12]])

# Use slicing to pull out the subarray consisting of the first 2 rows
# and columns 1 and 2; b is the following array of shape (2, 2):
# [[2 3]
# [6 7]]
b = a[:2, 1:3]
print(b)

[[2 3]
[6 7]]

A slice of an array is a view into the same data, so modifying it will modify the original array.
[64]: print(a[0, 1])

b[0, 0] = 77 # b[0, 0] is the same piece of data as a[0, 1]
print(a[0, 1])

2
77

You can also mix integer indexing with slice indexing. However, doing so will yield an array of lower
rank than the original array. Note that this is quite different from the way that MATLAB handles array
slicing:

[65]: # Create the following rank 2 array with shape (3, 4)
a = np.array([[1,2,3,4], [5,6,7,8], [9,10,11,12]])
print(a)

[[ 1 2 3 4]
[ 5 6 7 8]
[ 9 10 11 12]]

Two ways of accessing the data in the middle row of the array. Mixing integer indexing with slices
yields an array of lower rank, while using only slices yields an array of the same rank as the original array:

[66]: row_r1 = a[1, :] # Rank 1 view of the second row of a
row_r2 = a[1:2, :] # Rank 2 view of the second row of a
row_r3 = a[[1], :] # Rank 2 view of the second row of a
print(row_r1, row_r1.shape)
print(row_r2, row_r2.shape)
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print(row_r3, row_r3.shape)

[5 6 7 8] (4,)
[[5 6 7 8]] (1, 4)
[[5 6 7 8]] (1, 4)

[67]: # We can make the same distinction when accessing columns of an array:
col_r1 = a[:, 1]
col_r2 = a[:, 1:2]
print(col_r1, col_r1.shape)
print()
print(col_r2, col_r2.shape)

[ 2 6 10] (3,)

[[ 2]
[ 6]
[10]] (3, 1)

Integer array indexing: When you index into numpy arrays using slicing, the resulting array view will
always be a subarray of the original array. In contrast, integer array indexing allows you to construct arbitrary
arrays using the data from another array. Here is an example:

[68]: a = np.array([[1,2], [3, 4], [5, 6]])

# An example of integer array indexing.
# The returned array will have shape (3,) and
print(a[[0, 1, 2], [0, 1, 0]])

# The above example of integer array indexing is equivalent to this:
print(np.array([a[0, 0], a[1, 1], a[2, 0]]))

[1 4 5]
[1 4 5]

[69]: # When using integer array indexing, you can reuse the same
# element from the source array:
print(a[[0, 0], [1, 1]])

# Equivalent to the previous integer array indexing example
print(np.array([a[0, 1], a[0, 1]]))

[2 2]
[2 2]

One useful trick with integer array indexing is selecting or mutating one element from each row of a
matrix:
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[70]: # Create a new array from which we will select elements
a = np.array([[1,2,3], [4,5,6], [7,8,9], [10, 11, 12]])
print(a)

[[ 1 2 3]
[ 4 5 6]
[ 7 8 9]
[10 11 12]]

[71]: # Create an array of indices
b = np.array([0, 2, 0, 1])

# Select one element from each row of a using the indices in b
print(a[np.arange(4), b]) # Prints "[ 1 6 7 11]"

[ 1 6 7 11]

[72]: # Mutate one element from each row of a using the indices in b
a[np.arange(4), b] += 10
print(a)

[[11 2 3]
[ 4 5 16]
[17 8 9]
[10 21 12]]

Boolean array indexing: Boolean array indexing lets you pick out arbitrary elements of an array. Fre-
quently this type of indexing is used to select the elements of an array that satisfy some condition. Here is
an example:

[73]: import numpy as np

a = np.array([[1,2], [3, 4], [5, 6]])

bool_idx = (a > 2) # Find the elements of a that are bigger than 2;
# this returns a numpy array of Booleans of the

↪→same

# shape as a, where each slot of bool_idx tells
# whether that element of a is > 2.

print(bool_idx)

[[False False]
[ True True]
[ True True]]
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[74]: # We use boolean array indexing to construct a rank 1 array
# consisting of the elements of a corresponding to the True values
# of bool_idx
print(a[bool_idx])

# We can do all of the above in a single concise statement:
print(a[a > 2])

[3 4 5 6]
[3 4 5 6]

For brevity we have left out a lot of details about numpy array indexing; if you want to know more you
should read the documentation.

A.1.2.3 Datatypes Every numpy array is a grid of elements of the same type. Numpy provides a large
set of numeric datatypes that you can use to construct arrays. Numpy tries to guess a datatype when you
create an array, but functions that construct arrays usually also include an optional argument to explicitly
specify the datatype. Here is an example:

[75]: x = np.array([1, 2]) # Let numpy choose the datatype
y = np.array([1.0, 2.0]) # Let numpy choose the datatype
z = np.array([1, 2], dtype=np.int64) # Force a particular datatype

print(x.dtype, y.dtype, z.dtype)

int64 float64 int64

You can read all about numpy datatypes in the documentation.

A.1.2.4 Array math Basic mathematical functions operate elementwise on arrays, and are available
both as operator overloads and as functions in the numpy module:

[76]: x = np.array([[1,2],[3,4]], dtype=np.float64)
y = np.array([[5,6],[7,8]], dtype=np.float64)

# Elementwise sum; both produce the array
print(x + y)
print(np.add(x, y))

[[ 6. 8.]
[10. 12.]]
[[ 6. 8.]
[10. 12.]]

[77]: # Elementwise difference; both produce the array
print(x - y)
print(np.subtract(x, y))
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[[-4. -4.]
[-4. -4.]]
[[-4. -4.]
[-4. -4.]]

[78]: # Elementwise product; both produce the array
print(x * y)
print(np.multiply(x, y))

[[ 5. 12.]
[21. 32.]]
[[ 5. 12.]
[21. 32.]]

[79]: # Elementwise division; both produce the array
# [[ 0.2 0.33333333]
# [ 0.42857143 0.5 ]]
print(x / y)
print(np.divide(x, y))

[[0.2 0.33333333]
[0.42857143 0.5 ]]
[[0.2 0.33333333]
[0.42857143 0.5 ]]

[80]: # Elementwise square root; produces the array
# [[ 1. 1.41421356]
# [ 1.73205081 2. ]]
print(np.sqrt(x))

[[1. 1.41421356]
[1.73205081 2. ]]

Note that unlike MATLAB, * is elementwise multiplication, not matrix multiplication. We instead use
the dot function to compute inner products of vectors, to multiply a vector by a matrix, and to multiply
matrices. dot is available both as a function in the numpy module and as an instance method of array
objects:

[81]: x = np.array([[1,2],[3,4]])
y = np.array([[5,6],[7,8]])

v = np.array([9,10])
w = np.array([11, 12])

# Inner product of vectors; both produce 219
print(v.dot(w))
print(np.dot(v, w))
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219
219

You can also use the @ operator which is equivalent to numpy’s dot operator.
[82]: print(v @ w)

219

[83]: # Matrix / vector product; both produce the rank 1 array [29 67]
print(x.dot(v))
print(np.dot(x, v))
print(x @ v)

[29 67]
[29 67]
[29 67]

[84]: # Matrix / matrix product; both produce the rank 2 array
# [[19 22]
# [43 50]]
print(x.dot(y))
print(np.dot(x, y))
print(x @ y)

[[19 22]
[43 50]]
[[19 22]
[43 50]]
[[19 22]
[43 50]]

Numpy provides many useful functions for performing computations on arrays; one of the most useful
is sum:

[85]: x = np.array([[1,2],[3,4]])

print(np.sum(x)) # Compute sum of all elements; prints "10"
print(np.sum(x, axis=0)) # Compute sum of each column; prints "[4 6]"
print(np.sum(x, axis=1)) # Compute sum of each row; prints "[3 7]"

10
[4 6]
[3 7]

You can find the full list of mathematical functions provided by numpy in the documentation.
Apart from computing mathematical functions using arrays, we frequently need to reshape or other-

wise manipulate data in arrays. The simplest example of this type of operation is transposing a matrix; to
transpose a matrix, simply use the T attribute of an array object:
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[86]: print(x)
print("transpose\n", x.T)

[[1 2]
[3 4]]
transpose
[[1 3]
[2 4]]

[87]: v = np.array([[1,2,3]])
print(v )
print("transpose\n", v.T)

[[1 2 3]]
transpose
[[1]
[2]
[3]]

A.1.2.5 Broadcasting Broadcasting is a powerful mechanism that allows numpy to work with arrays of
different shapes when performing arithmetic operations. Frequently we have a smaller array and a larger
array, and we want to use the smaller array multiple times to perform some operation on the larger array.

For example, suppose that we want to add a constant vector to each row of a matrix. We could do it like
this:

[88]: # We will add the vector v to each row of the matrix x,
# storing the result in the matrix y
x = np.array([[1,2,3], [4,5,6], [7,8,9], [10, 11, 12]])
v = np.array([1, 0, 1])
y = np.empty_like(x) # Create an empty matrix with the same shape

↪→as x

# Add the vector v to each row of the matrix x with an explicit loop
for i in range(4):

y[i, :] = x[i, :] + v

print(y)

[[ 2 2 4]
[ 5 5 7]
[ 8 8 10]
[11 11 13]]

This works; however when the matrix x is very large, computing an explicit loop in Python could be
slow. Note that adding the vector v to each row of the matrix x is equivalent to forming a matrix vv by
stacking multiple copies of v vertically, then performing elementwise summation of x and vv. We could
implement this approach like this:
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[89]: vv = np.tile(v, (4, 1)) # Stack 4 copies of v on top of each other
print(vv) # Prints "[[1 0 1]

# [1 0 1]
# [1 0 1]
# [1 0 1]]"

[[1 0 1]
[1 0 1]
[1 0 1]
[1 0 1]]

[90]: y = x + vv # Add x and vv elementwise
print(y)

[[ 2 2 4]
[ 5 5 7]
[ 8 8 10]
[11 11 13]]

Numpy broadcasting allows us to perform this computation without actually creating multiple copies of
v. Consider this version, using broadcasting:

[91]: import numpy as np

# We will add the vector v to each row of the matrix x,
# storing the result in the matrix y
x = np.array([[1,2,3], [4,5,6], [7,8,9], [10, 11, 12]])
v = np.array([1, 0, 1])
y = x + v # Add v to each row of x using broadcasting
print(y)

[[ 2 2 4]
[ 5 5 7]
[ 8 8 10]
[11 11 13]]

The line y = x + v works even though x has shape (4, 3) and v has shape (3,) due to broad-
casting; this line works as if v actually had shape (4, 3), where each row was a copy of v, and the sum
was performed elementwise.

Broadcasting two arrays together follows these rules:

1. If the arrays do not have the same rank, prepend the shape of the lower rank array with 1s until both
shapes have the same length.

2. The two arrays are said to be compatible in a dimension if they have the same size in the dimension,
or if one of the arrays has size 1 in that dimension.

3. The arrays can be broadcast together if they are compatible in all dimensions.
4. After broadcasting, each array behaves as if it had shape equal to the elementwise maximum of shapes

of the two input arrays.
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5. In any dimension where one array had size 1 and the other array had size greater than 1, the first array
behaves as if it were copied along that dimension

If this explanation does not make sense, try reading the explanation from the documentation or this
explanation.

Functions that support broadcasting are known as universal functions. You can find the list of all univer-
sal functions in the documentation.

Here are some applications of broadcasting:
[92]: # Compute outer product of vectors

v = np.array([1,2,3]) # v has shape (3,)
w = np.array([4,5]) # w has shape (2,)
# To compute an outer product, we first reshape v to be a column
# vector of shape (3, 1); we can then broadcast it against w to yield
# an output of shape (3, 2), which is the outer product of v and w:

print(np.reshape(v, (3, 1)) * w)

[[ 4 5]
[ 8 10]
[12 15]]

[93]: # Add a vector to each row of a matrix
x = np.array([[1,2,3], [4,5,6]])
# x has shape (2, 3) and v has shape (3,) so they broadcast to (2, 3),
# giving the following matrix:

print(x + v)

[[2 4 6]
[5 7 9]]

[94]: # Add a vector to each column of a matrix
# x has shape (2, 3) and w has shape (2,).
# If we transpose x then it has shape (3, 2) and can be broadcast
# against w to yield a result of shape (3, 2); transposing this result
# yields the final result of shape (2, 3) which is the matrix x with
# the vector w added to each column. Gives the following matrix:

print((x.T + w).T)

[[ 5 6 7]
[ 9 10 11]]

[95]: # Another solution is to reshape w to be a row vector of shape (2, 1);
# we can then broadcast it directly against x to produce the same
# output.
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print(x + np.reshape(w, (2, 1)))

[[ 5 6 7]
[ 9 10 11]]

[96]: # Multiply a matrix by a constant:
# x has shape (2, 3). Numpy treats scalars as arrays of shape ();
# these can be broadcast together to shape (2, 3), producing the
# following array:
print(x * 2)

[[ 2 4 6]
[ 8 10 12]]

Broadcasting typically makes your code more concise and faster, so you should strive to use it where
possible.

This brief overview has touched on many of the important things that you need to know about numpy,
but is far from complete. Check out the numpy reference to find out much more about numpy.

A.1.3 Matplotlib

Matplotlib is a plotting library. In this section give a brief introduction to the matplotlib.pyplot
module, which provides a plotting system similar to that of MATLAB.

[97]: import matplotlib.pyplot as plt

By running this special iPython command, we will be displaying plots inline:
[98]: %matplotlib inline

A.1.3.1 Plotting The most important function in matplotlib is plot, which allows you to plot 2D
data. Here is a simple example:

[99]: # Compute the x and y coordinates for points on a sine curve
x = np.arange(0, 3 * np.pi, 0.1)
y = np.sin(x)

# Plot the points using matplotlib
plt.plot(x, y)

[99]: [<matplotlib.lines.Line2D at 0x7f78639a1748>]
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With just a little bit of extra work we can easily plot multiple lines at once, and add a title, legend, and
axis labels:

[100]: y_sin = np.sin(x)
y_cos = np.cos(x)

# Plot the points using matplotlib
plt.plot(x, y_sin)
plt.plot(x, y_cos)
plt.xlabel(’x axis label’)
plt.ylabel(’y axis label’)
plt.title(’Sine and Cosine’)
plt.legend([’Sine’, ’Cosine’])

[100]: <matplotlib.legend.Legend at 0x7f78634f2860>
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A.1.3.2 Subplots You can plot different things in the same figure using the subplot function. Here is an
example:

[101]: # Compute the x and y coordinates for points on sine and cosine curves
x = np.arange(0, 3 * np.pi, 0.1)
y_sin = np.sin(x)
y_cos = np.cos(x)

# Set up a subplot grid that has height 2 and width 1,
# and set the first such subplot as active.
plt.subplot(2, 1, 1)

# Make the first plot
plt.plot(x, y_sin)
plt.title(’Sine’)

# Set the second subplot as active, and make the second plot.
plt.subplot(2, 1, 2)
plt.plot(x, y_cos)
plt.title(’Cosine’)

# Show the figure.
plt.show()
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You can read much more about the subplot function in the documentation.

B Numerical Dynamics and Phase–Space Statistics: Harmonic Oscillator

This section describes the implementation of the Velocity-Verlet algorithm for simulating the dynamics of a
harmonic oscillator.

B.1 Model System

We consider a one–dimensional classical harmonic oscillator with Hamiltonian

H(q, p) =
p2

2m
+

1
2

kq2, (685)

where q is the position, p the momentum, m the mass, and k the spring constant. The equations of motion
follow from Hamilton’s equations,

q̇ =
p
m

, ṗ = −kq. (686)

This system is integrable and conserves the total energy exactly in continuous time. Numerically, how-
ever, the choice of integrator is critical for long–time stability.
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B.2 Velocity Verlet Integrator

To evolve the dynamics, the following code implements the velocity Verlet scheme, a second–order, sym-
plectic integrator widely used in molecular dynamics. Given (qn, pn) at time tn, the updates are

qn+1 = qn +
pn

m
∆t +

1
2

an∆t2, (687)

pn+1 = pn +
1
2
(an + an+1)m∆t, (688)

where the acceleration is

an = − k
m

qn. (689)

Because the method is symplectic, it does not introduce secular energy drift. Instead, the energy os-
cillates around the exact value with bounded error, even over very long trajectories. The code explicitly
monitors this by computing

∆E
E0

=
E(t)− E(0)

E(0)
. (690)

B.3 Time Series and Phase–Space Trajectory

The arrays q(t) and p(t) produced by the integrator are used to generate:

• Time series plots of q(t) and p(t), showing sinusoidal motion with frequency ω =
√

k/m.

• A phase–space trajectory (q(t), p(t)), which traces an ellipse corresponding to constant energy,

p2

2m
+

1
2

kq2 = E. (691)

These plots provide a direct visual diagnostic of both the physical dynamics and the numerical stability
of the integrator.

B.4 Empirical Phase–Space Probability Density

Although the trajectory is deterministic, long–time sampling along the orbit can be used to construct an em-
pirical phase–space probability density. After discarding the initial transient, the remaining points {(qi, pi)}
are binned into a two–dimensional histogram,

ρ(q, p) ≈ 1
N

N

∑
i=1

δ∆(q− qi) δ∆(p− pi), (692)

where δ∆ represents binning over finite widths in q and p.
In the code, this is implemented using a normalized 2D histogram (density=True), ensuring that∫

ρ(q, p) dq dp ≈ 1. (693)

B.5 Three–Dimensional Visualization

The resulting discrete density ρ(q, p) is plotted as a three–dimensional surface, with axes (q, p, ρ). For
a single harmonic oscillator trajectory at fixed energy, the density forms a ridge concentrated along the
constant–energy ellipse. This reflects Liouville’s theorem: phase–space volume is preserved, and the dy-
namics remain confined to the energy shell.
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B.6 Physical Interpretation

This construction illustrates the connection between deterministic Hamiltonian dynamics and statistical de-
scriptions. While the instantaneous state occupies a single point in phase space, long–time sampling gener-
ates a stationary distribution supported on the energy manifold. Extensions to ensembles of initial conditions
or weakly perturbed systems lead naturally to smooth phase–space densities and equilibrium statistical me-
chanics.

B.7 Running the Code in Google Colab.

The following Python script can be executed in Google Colab without local installation. First, navigate
to https://colab.research.google.com and create a new notebook. Upload the script using
File → Upload notebook or by dragging the .py file into the Colab workspace. Alternatively, the
code may be pasted directly into a notebook cell. Required dependencies (numpy and matplotlib) are
preinstalled in Colab. Once uploaded, run the notebook cells sequentially using Runtime → Run all.
The figures are rendered inline, and printed diagnostics (energy drift and time-averaged energies) appear in
the notebook output shown in Fig. 6.

import numpy as np
import matplotlib.pyplot as plt

def velocity_verlet(q0, p0, m, k, dt, nsteps):
q = np.empty(nsteps + 1)
p = np.empty(nsteps + 1)
t = np.linspace(0, nsteps * dt, nsteps + 1)

q[0] = q0
p[0] = p0

def force(q):
return -k * q

for i in range(nsteps):
a = force(q[i]) / m
q_next = q[i] + (p[i] / m) * dt + 0.5 * a * dt**2
a_next = force(q_next) / m
p_next = p[i] + 0.5 * (a + a_next) * m * dt

q[i + 1] = q_next
p[i + 1] = p_next

K = p**2 / (2 * m)
V = 0.5 * k * q**2
E = K + V
return q, p, t, E, K, V

# --- Parameters ---
m = 1.0
k = 1.0
q0 = 1.0
p0 = 0.0
dt = 0.05
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nsteps = 20000

q, p, t, E, K, V = velocity_verlet(q0, p0, m, k, dt, nsteps)

# --- Energy diagnostics ---
E0 = E[0]
print(f"Max |∆E/E0| ≈ {np.max(np.abs((E - E0) / E0)):.2e}")

# --- Time averages (second half of trajectory) ---
half = len(t) // 2
Tspan = t[-1] - t[half]

K_avg = np.trapezoid(K[half:], t[half:]) / Tspan
V_avg = np.trapezoid(V[half:], t[half:]) / Tspan
E_avg = np.trapezoid(E[half:], t[half:]) / Tspan

print(f"<K>_t ≈ {K_avg:.6f}")
print(f"<V>_t ≈ {V_avg:.6f}")
print(f"<E>_t ≈ {E_avg:.6f}")

# --- Phase-space density ---
q_s = q[half:]
p_s = p[half:]

bins = 200
H, q_edges, p_edges = np.histogram2d(q_s, p_s, bins=bins, density=True)

# =========================
# 2×2 plot layout
# =========================
fig, axs = plt.subplots(2, 2, figsize=(12, 10))

# (1) q(t) and p(t)
axs[0, 0].plot(t, q, label="q(t)")
axs[0, 0].plot(t, p, label="p(t)")
axs[0, 0].set_xlim(0, 100)
axs[0, 0].set_xlabel("t")
axs[0, 0].set_ylabel("value")
axs[0, 0].set_title("q and p vs time")
axs[0, 0].legend()

# (2) Phase-space trajectory
axs[0, 1].plot(q, p, lw=1)
axs[0, 1].set_xlabel("q")
axs[0, 1].set_ylabel("p")
axs[0, 1].set_title("Phase-space trajectory")

# (3) Energy vs time
axs[1, 0].plot(t, E)
axs[1, 0].set_xlabel("t")
axs[1, 0].set_ylabel("E(t)")
axs[1, 0].set_xlim(0, 100)
axs[1, 0].set_title("Total energy vs time")
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# (4) Phase-space probability density
im = axs[1, 1].imshow(

H.T,
origin="lower",
aspect="auto",
extent=[q_edges[0], q_edges[-1], p_edges[0], p_edges[-1]]

)
axs[1, 1].set_xlabel("q")
axs[1, 1].set_ylabel("p")
axs[1, 1].set_title(r"Phase-space density $\rho(q,p)$")
fig.colorbar(im, ax=axs[1, 1])

plt.tight_layout()
plt.show()

Figure 6: Classical dynamics of a one-dimensional harmonic oscillator. (Top left) Time evolution of the
position q(t) and momentum p(t), showing periodic motion with a phase shift. (Top right) Phase-space
trajectory (q, p), forming a closed ellipse corresponding to constant total energy. (Bottom left) Total energy
E(t) = K(t) + V(t) as a function of time, demonstrating excellent energy conservation of the velocity
Verlet integrator. (Bottom right) Empirical phase-space probability density ρ(q, p) obtained from long-time
sampling of the trajectory, concentrated along the constant-energy ellipse in accordance with Liouville’s
theorem.
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C Tutorial: Molecular Dynamics of Liquid Argon (Lennard–Jones) with
RDF and Diffusion

This section walks through a compact molecular dynamics (MD) code for liquid argon modeled as a
Lennard–Jones (LJ) fluid in reduced LJ units:

σ = 1, ε = 1, m = 1, kB = 1.

We simulate an N = 4n3
cells particle system under periodic boundary conditions (PBC) using velocity-Verlet

integration. From the production (NVE) trajectory we compute:

• the radial distribution function g(r), and

• the diffusion constant D from the mean-squared displacement (MSD) using the Einstein relation.

C.1 Imports

We only require numpy for numerics and matplotlib for plotting.

Listing 1: Imports used in the tutorial.
import numpy as np
import matplotlib.pyplot as plt

C.2 Initializing a dense liquid: FCC lattice

Random placement at liquid density can create particle overlaps (huge LJ forces and numerical instability).
A standard workaround is to start from a crystalline lattice (FCC here), then add small random displace-
ments. The function below constructs an FCC lattice by tiling an FCC basis over a cubic box.

Listing 2: FCC lattice initialization in a cubic periodic box.
def fcc_lattice(n_cells, box):

a = box / n_cells
basis = np.array([

[0, 0, 0],
[0, 0.5, 0.5],
[0.5, 0, 0.5],
[0.5, 0.5, 0]

])
pts = []
for i in range(n_cells):

for j in range(n_cells):
for k in range(n_cells):

cell = np.array([i, j, k], float)
pts.append((cell + basis) * a)

return np.vstack(pts) % box

C.2.0.1 What it does.

• Builds 4n3
cells positions using an FCC basis scaled by lattice constant a = box/ncells.

• Applies % box to ensure all coordinates lie in [0,box) for PBC.
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C.3 Core MD engine: forces, temperature, and velocity-Verlet

The LJ pair potential is

U(r) = 4ε

[(σ

r

)12
−
(σ

r

)6
]

,

with a cutoff rc = 2.5σ. We use minimum-image PBC and a shifted potential U(r)−U(rc) so that U(rc) =
0 (reduces discontinuity in energy at the cutoff).

C.3.1 LJ forces (minimum image + cutoff + potential shift)

Listing 3: Lennard–Jones forces with minimum-image PBC and potential shift.
def lj_forces(positions, box, epsilon=1.0, sigma=1.0, rcut=2.5):

N = positions.shape[0]
forces = np.zeros_like(positions)
pe = 0.0
rcut2 = (rcut*sigma)**2

# potential shift U(rcut)=0
inv_rc2 = (sigma**2)/rcut2
inv_rc6 = inv_rc2**3
inv_rc12 = inv_rc6**2
U_shift = 4*epsilon*(inv_rc12 - inv_rc6)

for i in range(N-1):
rij = positions[i+1:] - positions[i]
rij -= box * np.round(rij/box) # minimum image
r2 = np.sum(rij*rij, axis=1)
mask = r2 < rcut2
if not np.any(mask):

continue

r2m = r2[mask]
rijm = rij[mask]

inv_r2 = (sigma**2)/r2m
inv_r6 = inv_r2**3
inv_r12 = inv_r6**2

pe += np.sum(4*epsilon*(inv_r12 - inv_r6) - U_shift)

fac = 24*epsilon*(2*inv_r12 - inv_r6) / r2m
fij = fac[:, None] * rijm

forces[i] -= np.sum(fij, axis=0)
forces[i+1:][mask] += fij

return forces, pe

C.3.1.1 What it does.

• Computes all pair interactions in an O(N2) loop (fine for N ≈ 256).
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• Enforces periodicity with the minimum-image convention:

rij ← rij − L · round(rij/L),

where L = box.

• Applies a cutoff r < rc and shifts the potential so U(rc) = 0.

• Returns the total force on each particle and the potential energy.

C.3.2 Instantaneous temperature from velocities

We estimate temperature from kinetic energy (with kB = 1 in reduced units). To avoid artificial heating
from center-of-mass drift, we remove the mean velocity before computing the kinetic energy.

Listing 4: Temperature and kinetic energy from velocities with COM drift removal.
def temperature_from_vel(vel, mass=1.0):

vel = vel - vel.mean(axis=0, keepdims=True) # remove COM drift
ke = 0.5 * mass * np.sum(vel**2)
dof = 3*vel.shape[0] - 3
T = (2*ke) / dof # kB=1
return T, ke, vel

C.3.2.1 What it does.

• Computes K = 1
2 m ∑i |vi|2 after removing COM motion.

• Uses degrees of freedom dof = 3N − 3 (subtract 3 for removed COM velocity).

• Returns (T, K, v) where vel is the drift-corrected velocity array.

C.3.3 Velocity-Verlet integrator

Velocity-Verlet is symplectic and widely used in MD because it provides good energy conservation in NVE
when ∆t is chosen appropriately.

Listing 5: Velocity-Verlet integration step.
def velocity_verlet(pos, vel, box, dt, mass=1.0, epsilon=1.0, sigma=1.0, rcut

=2.5):
F, pe = lj_forces(pos, box, epsilon, sigma, rcut)
vel_half = vel + 0.5*dt*F/mass
pos_new = (pos + dt*vel_half) % box
F_new, pe_new = lj_forces(pos_new, box, epsilon, sigma, rcut)
vel_new = vel_half + 0.5*dt*F_new/mass
return pos_new, vel_new, pe_new

C.3.3.1 What it does.

• Updates velocities by a half step using current forces.

• Updates positions by a full step and wraps them into the periodic box.

• Recomputes forces at new positions and completes the velocity update.

• Returns updated (r, v) and the new potential energy.
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C.4 Structure and dynamics analysis helpers

We now add analysis routines for g(r) and for MSD/D.

C.4.1 Pair distances and RDF g(r)

The RDF measures local structure:

g(r) =
1

4πr2ρ

〈
dN(r)

dr

〉
,

where ρ = N/V and dN(r) counts neighbors in a spherical shell. In practice we histogram pair distances
from snapshots and normalize by the ideal-gas expectation.

Listing 6: All unique pair distances under minimum-image PBC (used for RDF).
def pair_distances(positions, box):

"""All unique pair distances with minimum image. O(N^2) -- fine for N~256.
"""

N = positions.shape[0]
dists = []
for i in range(N-1):

rij = positions[i+1:] - positions[i]
rij -= box * np.round(rij/box)
d2 = np.sum(rij*rij, axis=1)
dists.append(np.sqrt(d2))

return np.concatenate(dists)

C.4.1.1 What it does.

• Computes distances for all unique pairs (i < j) under PBC via minimum-image.

• Returns a 1D array of distances, suitable for histogramming.

Listing 7: Compute RDF from a list of sampled configurations.
def rdf_from_trajectory(pos_samples, box, nbins=100, rmax=None):

"""
Compute radial distribution function g(r) from sampled configurations.
pos_samples: list/array of (N,3) snapshots
"""
pos_samples = list(pos_samples)
N = pos_samples[0].shape[0]
V = box**3
rho = N / V
if rmax is None:

rmax = box/2 # max meaningful under PBC

edges = np.linspace(0.0, rmax, nbins+1)
hist = np.zeros(nbins, dtype=float)

for pos in pos_samples:
d = pair_distances(pos, box)
hist += np.histogram(d, bins=edges)[0]
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# Normalize
dr = edges[1] - edges[0]
r = 0.5*(edges[:-1] + edges[1:])
shell_vol = 4*np.pi*r**2 * dr

# Expected counts per shell per snapshot for ideal gas:
# N * rho * shell_vol / 2 (divide by 2 because we counted unique pairs)
norm = len(pos_samples) * (N * rho * shell_vol / 2.0)
g = hist / norm
return r, g

C.4.1.2 What it does.

• Accumulates a histogram of pair distances over many snapshots.

• Uses rmax = L/2 by default (largest meaningful distance under minimum-image PBC).

• Normalizes by the ideal-gas expected counts per shell:

norm = Nρ 4πr2 dr/2

(the factor 1/2 corrects for using unique pairs).

• Returns bin centers r and g(r).

C.4.2 Unwrapping, MSD, and diffusion constant

Under PBC, wrapped coordinates jump discontinuously at the boundaries, which breaks long-time dis-
placement. We therefore construct unwrapped trajectories by accumulating minimum-image displacements
between frames.

Listing 8: Unwrap positions step-to-step to reconstruct continuous trajectories.
def unwrap_positions(pos, pos_prev, unwrapped_prev, box):

"""
Unwrap positions given current wrapped pos and previous wrapped pos.
"""
delta = pos - pos_prev
delta -= box * np.round(delta/box) # minimum-image displacement
return unwrapped_prev + delta

C.4.2.1 What it does.

• Computes the minimum-image displacement between successive wrapped frames.

• Accumulates this displacement into an unwrapped coordinate array so particles move continuously
across periodic boundaries.
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Listing 9: Compute MSD relative to a reference time index from unwrapped snapshots.
def msd_from_unwrapped(unwrapped_samples, ref_index=0):

"""
MSD(t) averaged over particles relative to reference time index.
"""
r0 = unwrapped_samples[ref_index]
msd = []
for ut in unwrapped_samples:

dr = ut - r0
msd.append(np.mean(np.sum(dr*dr, axis=1)))

return np.array(msd)

C.4.2.2 What it does.

• Computes
MSD(t) =

〈
|ri(t)− ri(0)|2

〉
i

averaged over particles, using unwrapped positions.

• Uses a single reference time (index ref_index); for higher accuracy you can time-average over
multiple reference origins, but this is often sufficient for a tutorial-scale run.

Listing 10: Estimate diffusion constant by linear fit of MSD in a late-time window.
def diffusion_from_msd(times, msd, fit_start_frac=0.4, fit_end_frac=0.9):

"""
Fit MSD ~ 6 D t over a late-time window.
"""
n = len(times)
i0 = int(fit_start_frac*n)
i1 = int(fit_end_frac*n)
tfit = times[i0:i1]
mfit = msd[i0:i1]

# linear fit
slope, intercept = np.polyfit(tfit, mfit, 1)
D = slope / 6.0
return D, slope, intercept, (i0, i1)

C.4.2.3 What it does.

• Fits a straight line to MSD in a late-time region (default 40%–90% of the sampled times).

• Uses the 3D Einstein relation at long times:

MSD(t) ≈ 6Dt ⇒ D =
1
6

d MSD
dt

.

• Returns D, the fitted slope/intercept, and the fit index window for plotting.
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C.5 Running the simulation: equilibration (NVT-like) then production (NVE)

A common workflow is:

1. Equilibration: drive the system to the target temperature using simple velocity rescaling (a
lightweight thermostat).

2. Production: switch off the thermostat and run NVE for collecting physically meaningful dynamics
(MSD, diffusion).

In the provided driver code, snapshots are stored every sample_every steps for RDF and MSD analysis,
while unwrapping is updated every step.

C.6 Computing and plotting g(r) and MSD/D

Once pos_samples (wrapped snapshots) and unwrapped_samples are collected:

• Call rdf_from_trajectory(pos_samples, box, ...) to obtain (r, g(r)).

• Call msd_from_unwrapped(unwrapped_samples) to get MSD(t).

• Fit a late-time region via diffusion_from_msd(times, msd) and report D.

C.7 Optional: mapping reduced units to real argon units

If you choose LJ parameters for argon (one common set is σ = 3.405 Å, ε/kB = 119.8 K, m =
39.948 amu), the LJ time unit is

τ = σ

√
m
ε

,

and diffusion converts as

DSI = DLJ
σ2

τ
.

This lets you translate the dimensionless D from the simulation into m2/s (or cm2/s).

C.8 Run MD: Equilibrate with velocity rescaling, then NVE

# --- Simulation parameters (reduced LJ units) ---
np.random.seed(0)

n_cells = 4 # 4x4x4 FCC cells => N = 4*n_cells^3 = 256 atoms
N = 4 * n_cells**3

rho = 0.8 # number density (typical LJ liquid-ish)
box = (N / rho)**(1/3)

dt = 0.004 # time step (LJ units)
steps_eq = 2000 # equilibration steps
steps_prod = 3000 # production steps
rcut = 2.5

T_target = 1.0 # target temperature (LJ units)
mass = 1.0 # LJ reduced mass
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epsilon = 1.0
sigma = 1.0

# --- Initialize positions on FCC lattice ---
pos = fcc_lattice(n_cells, box)

# Small random jitter to break perfect symmetry (optional)
pos = (pos + 0.02*np.random.randn(N,3)) % box

# --- Initialize velocities (Maxwell-ish) ---
vel = np.random.randn(N,3)
T0, ke0, vel = temperature_from_vel(vel, mass=mass)
vel *= np.sqrt(T_target / T0) # scale to target T

# --- Run ---
pes, kes, temps = [], [], []

# Equilibration: simple velocity rescaling thermostat
for step in range(steps_eq):

pos, vel, pe = velocity_verlet(pos, vel, box, dt, mass, epsilon, sigma,
rcut)

T, ke, vel = temperature_from_vel(vel, mass)
vel *= np.sqrt(T_target / T) # rescale (thermostat)
pes.append(pe); kes.append(ke); temps.append(T)

# Production: NVE (no thermostat)
for step in range(steps_prod):

pos, vel, pe = velocity_verlet(pos, vel, box, dt, mass, epsilon, sigma,
rcut)

T, ke, vel = temperature_from_vel(vel, mass)
pes.append(pe); kes.append(ke); temps.append(T)

E = np.array(pes) + np.array(kes)
print("N:", N, "box:", box)
print("T (last 1000 avg):", np.mean(temps[-1000:]))
print("Energy drift (prod):", E[-1] - E[steps_eq])

The output should read:

• N: 256 box: 6.839903786706787

• T (last 1000 avg): 0.9865451989895921

• Energy drift (prod): 0.03515588407606174

C.9 Plot temperature and energy traces

plt.figure(figsize=(10, 4))

plt.subplot(1, 2, 1)
plt.plot(temps)
plt.xlabel("Step")
plt.ylabel("Temperature (LJ units)")
plt.title("Temperature")
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plt.subplot(1, 2, 2)
plt.plot(E)
plt.xlabel("Step")
plt.ylabel("Total Energy (LJ units)")
plt.title("Total Energy")

plt.tight_layout()
plt.show()

The plots should show equilibration and energy conservation, as show below in Fig. 7. You should see:

• Temperature stabilizes near Ttarget during equilibration

• During production (NVE), total energy is roughly conserved (small drift is normal in a simple code)

Figure 7: Instantaneous temperature (left) and total energy (right) as a function of MD step for the Lennard–
Jones liquid argon simulation. During the initial equilibration stage, velocity rescaling maintains the tem-
perature near the target value, while the total energy adjusts accordingly. After the switch to the NVE
production run, the temperature exhibits natural fluctuations about equilibrium and the total energy remains
constant, demonstrating good energy conservation and stable time integration.

C.10 Quick 2D snapshot

A scatter plot for a quick 2D visualization of the system can be generated, as follows:

plt.figure()
plt.scatter(pos[:,0], pos[:,1], s=10)
plt.xlim(0, box); plt.ylim(0, box)
plt.gca().set_aspect('equal', adjustable='box')
plt.xlabel("x"); plt.ylabel("y")
plt.title("Argon LJ MD snapshot (projection)")
plt.show()

producing the following picture:
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Figure 8: Two-dimensional projection of a representative snapshot from the Lennard–Jones molecular dy-
namics simulation of liquid argon. Each point corresponds to a particle position projected onto the x–y
plane under periodic boundary conditions. The disordered spatial distribution is characteristic of a dense
liquid state.

C.11 Run MD and collect samples

# --- Parameters (reduced LJ units) ---
np.random.seed(0)
n_cells = 4
N = 4 * n_cells**3

rho = 0.8
box = (N/rho)**(1/3)

dt = 0.004
steps_eq = 2000
steps_prod = 6000
rcut = 2.5

T_target = 1.0
mass = 1.0
epsilon = 1.0
sigma = 1.0

# sampling controls
sample_every = 10 # take a snapshot every N steps
nbins_rdf = 120

# --- Initialize ---
pos = fcc_lattice(n_cells, box)
pos = (pos + 0.02*np.random.randn(N,3)) % box

vel = np.random.randn(N,3)
T0, ke0, vel = temperature_from_vel(vel, mass)
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vel *= np.sqrt(T_target / T0)

pes, kes, temps = [], [], []

# --- Equilibration (velocity rescaling thermostat) ---
for step in range(steps_eq):

pos, vel, pe = velocity_verlet(pos, vel, box, dt, mass, epsilon, sigma,
rcut)

T, ke, vel = temperature_from_vel(vel, mass)
vel *= np.sqrt(T_target / T)
pes.append(pe); kes.append(ke); temps.append(T)

# --- Production (NVE), collect snapshots for RDF and unwrapped positions for
MSD ---

pos_samples = []
unwrapped_samples = []

pos_prev = pos.copy()
unwrapped = pos.copy() # start unwrapped == wrapped at t=0 of production
t_samples = []

for step in range(steps_prod):
pos, vel, pe = velocity_verlet(pos, vel, box, dt, mass, epsilon, sigma,

rcut)
T, ke, vel = temperature_from_vel(vel, mass)
pes.append(pe); kes.append(ke); temps.append(T)

# unwrap every step (cheap)
unwrapped = unwrap_positions(pos, pos_prev, unwrapped, box)
pos_prev = pos.copy()

if step % sample_every == 0:
pos_samples.append(pos.copy())
unwrapped_samples.append(unwrapped.copy())
t_samples.append(step*dt)

E = np.array(pes) + np.array(kes)
print("N:", N, "box:", box, "rho:", rho)
print("T (prod avg):", np.mean(temps[-steps_prod:]))
print("Energy drift (prod):", E[-1] - E[-steps_prod])
print("Snapshots:", len(pos_samples))

The output should look, as follows:

• N: 256 box: 6.839903786706787 rho: 0.8

• T (prod avg): 0.985597823433789

• Energy drift (prod): 0.0011463063798373696

• Snapshots: 600

C.12 Compute and plot g(r)
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r, g = rdf_from_trajectory(pos_samples, box, nbins=nbins_rdf, rmax=box/2)

plt.figure()
plt.plot(r, g)
plt.xlabel("r (LJ units)")
plt.ylabel("g(r)")
plt.title("Radial Distribution Function")
plt.show()

The figure should look, as follows:

Figure 9: Radial distribution function g(r) of the Lennard–Jones liquid argon system computed from the
NVE production trajectory. The pronounced first peak near r ≈ σ indicates strong short-range ordering
due to repulsive cores and nearest-neighbor coordination, while the damped oscillations at larger r reflect
medium-range liquid structure and convergence toward the ideal-gas limit g(r)→ 1.

C.13 Compute MSD and diffusion constant D

times = np.array(t_samples)
msd = msd_from_unwrapped(unwrapped_samples)

D, slope, intercept, (i0, i1) = diffusion_from_msd(times, msd)

plt.figure(figsize=(10, 4))

# Left: MSD vs time
plt.subplot(1, 2, 1)
plt.plot(times, msd)
plt.xlabel("t (LJ units)")
plt.ylabel("MSD (LJ units$^2$)")
plt.title("Mean Squared Displacement")

# Right: MSD with linear fit
plt.subplot(1, 2, 2)
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plt.plot(times, msd, label="MSD")
plt.plot(times[i0:i1], slope*times[i0:i1] + intercept, label="Linear fit")
plt.xlabel("t (LJ units)")
plt.ylabel("MSD")
plt.title(f"Diffusion estimate: D = {D:.4f} (LJ units)")
plt.legend()

plt.tight_layout()
plt.show()

print(f"Estimated diffusion constant D = {D:.6f} (LJ units)")

The figures should look, as follows:

Figure 10: Mean-squared displacement (MSD) of Lennard–Jones liquid argon as a function of time (left)
and MSD with a linear fit to the long-time regime (right). At late times the MSD grows linearly with time,
consistent with diffusive behavior. The diffusion constant D is obtained from the slope of the fit using the
Einstein relation MSD(t) ≈ 6Dt, yielding D ≈ 5.2× 10−2 in reduced LJ units.

C.14 Optional: Conversion of the Diffusion Constant to Real Argon Units

The diffusion constant obtained from the simulation is expressed in reduced Lennard–Jones (LJ) units. To
convert this value to physical units (m2/s) for argon, one may use a commonly adopted set of LJ parameters:

• Lennard–Jones length parameter:

σ = 3.405 Å = 3.405× 10−10 m,

• Lennard–Jones energy parameter:

ε/kB = 119.8 K ⇒ ε = 119.8 kB,

• Argon atomic mass:

m = 39.948 amu = 39.948× 1.66054× 10−27 kg.
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In LJ reduced units, the natural time scale is

τ = σ

√
m
ε

. (694)

Using this time unit, the diffusion constant in SI units is obtained from the reduced diffusion constant DLJ
via

DSI = DLJ
σ2

τ
. (695)

This conversion yields DSI in m2/s; conversion to cm2/s follows by multiplying by 104.

C.15 Computational Notes

The evaluation of the radial distribution function g(r) and the mean-squared displacement (MSD) scales
as O(N2) per sampled configuration due to explicit pair-distance loops. For the system size used here
(N = 256) and snapshot sampling every ten MD steps, this cost is negligible in typical Colab or laptop
environments. For significantly larger systems (e.g., N & 800), the use of cell lists or neighbor lists is
recommended to reduce the computational complexity to approximately O(N) per step.

D Liouville’s Theorem

Liouville’s theorem is a fundamental result of classical statistical mechanics. It states that Hamiltonian
dynamics preserves phase-space density along the motion.

Consider a classical system with phase-space coordinates (x, p) and Hamiltonian H(x, p). The equa-
tions of motion are given by Hamilton’s equations,

ẋ =
∂H
∂p

, ṗ = −∂H
∂x

. (696)

Let ρ(x, p, t) be the phase-space density of an ensemble of systems. Conservation of probability implies
a continuity equation in phase space (explained in Sec. D.1),

∂ρ

∂t
+∇Γ · (ρ Γ̇) = 0, (697)

where Γ = (x, p) and Γ̇ = (ẋ, ṗ).
Expanding the divergence term,

∂ρ

∂t
+ ẋ

∂ρ

∂x
+ ṗ

∂ρ

∂p
+ ρ

(
∂ẋ
∂x

+
∂ ṗ
∂p

)
= 0. (698)

The first three terms define the total derivative along a phase-space trajectory,

dρ

dt
=

∂ρ

∂t
+ ẋ

∂ρ

∂x
+ ṗ

∂ρ

∂p
.

Using Hamilton’s equations,

∂ẋ
∂x

=
∂2H

∂x ∂p
,

∂ ṗ
∂p

= − ∂2H
∂p ∂x

.
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Since mixed partial derivatives commute, these terms cancel and

∂ẋ
∂x

+
∂ ṗ
∂p

= 0.

The continuity equation therefore reduces to

dρ

dt
= 0. (699)

Liouville’s Theorem: The phase-space density is conserved along Hamiltonian trajectories. Equivalently,
Hamiltonian flow is incompressible and preserves phase-space volume.

In Poisson-bracket form, Liouville’s theorem can be written as

∂ρ

∂t
= −{ρ, H}, {A, B} = ∂A

∂x
∂B
∂p
− ∂A

∂p
∂B
∂x

. (700)

D.1 Derivation of the Continuity Equation in Phase Space

Let ρ(Γ, t) be the phase-space probability density, with Γ = (x, p). Consider an arbitrary region R of phase
space. The probability that the system lies inside R at time t is

PR(t) =
∫

R
dΓ ρ(Γ, t), dΓ ≡ dx dp. (701)

Step 1: Change in probability comes only from flux across the boundary. Probability is neither created
nor destroyed, so PR(t) can change only because probability flows through the boundary ∂R. Define the
probability current in phase space as

J(Γ, t) ≡ ρ(Γ, t) Γ̇(Γ, t), (702)

where Γ̇ = (ẋ, ṗ) is the phase-space velocity field induced by the dynamics.
The net probability leaving R per unit time is the outward flux of J through ∂R:

dPR

dt
= −

∮
∂R

J · dS. (703)

(The minus sign ensures that outward flow decreases the probability inside R.)

Step 2: Express the same change using the time derivative of ρ. Differentiating Eq. (701) with respect to
time (with R fixed in phase space) gives

dPR

dt
=
∫

R
dΓ

∂ρ

∂t
. (704)

Step 3: Convert the boundary flux into a volume integral. Using the divergence theorem in phase space,∮
∂R

J · dS =
∫

R
dΓ∇Γ · J, ∇Γ ≡

(
∂

∂x
,

∂

∂p

)
, (705)

Eq. (703) becomes
dPR

dt
= −

∫
R

dΓ∇Γ · J. (706)
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Step 4: Equate the two expressions and localize. Equating Eqs. (704) and (706) yields∫
R

dΓ
[

∂ρ

∂t
+∇Γ · J

]
= 0. (707)

Because R is arbitrary, the integrand must vanish pointwise. Therefore,

∂ρ

∂t
+∇Γ · J = 0. (708)

Finally, substituting J = ρ Γ̇ from Eq. (702) gives the continuity equation in phase space:

∂ρ

∂t
+∇Γ · (ρ Γ̇) = 0, (709)

which expresses local conservation of probability in phase space.
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