

Modeling Photovoltaic Solar Cells Traditional Photovoltaic Solar Cells First and Second Generation: p-n junctions

The Power of the Sun: Walter Kohn's Description of Photovoltaic Solar Cells

> Section II Prof. Victor S. Batista

Computational Modeling and Physical Principles

- Computational design and characterization
- Solar cells for electricity
- Photocatalysis, biomimetic water oxidation
- Hydrogen economy

Dye-Sensitized Solar Cells Third Generation Photovoltaic Solar Cells

Modeling Dye-Sensitized Solar Cells Photoconversion in 4 steps: (1)-(4)

Modeling Dye-Sensitized Solar Cells Photoconversion: Energy Diagram

Modeling Dye-Sensitized Solar Cells Photoconversion into Chemical Bonds: Fuel

Modeling Dye-Sensitized Solar Cells Characteristic I-V Curve of Photoconversion

Modeling Dye-Sensitized Solar Cells Photoconversion: Efficiency

Modeling Dye-Sensitized Solar Cells Equivalent Circuit of Photoconversion

Modeling Dye-Sensitized Solar Cells Photoconversion: Output Current

Modeling Dye-Sensitized Solar Cells <u>Photoconversion Efficiency: Redox Couple</u>

Exercise 1 (due Thursday Sept 25, 2014):

Consider a dye-sensitized solar cell (DSSC) with an equivalent circuit with the following parameters:

- Photogenerated current density: $J_L = 16.7 \text{ mAmperes}/\text{cm}^2$
- Specific series resistance: $R_s = 2.0E-4 \text{ K}\Omega^*\text{cm}^2$
- Specific shunt resistance: $R_{SH} = 100 \text{ K}\Omega^* \text{cm}^2$
- Open circuit voltage (Volts): $V_{oc} = E^0 (I^-/I_3^-) E_{CB} + \Delta V (pH)$
- Reverse saturation current density: $J_0=J_L = 10^{-10} \text{ mAmperes/cm}^2$
- Diode ideality factor times kT/q= 0.0259 Volts: $nkt=V_{oc}/log(J_L/J_0+1)$
- (a) Compute the I-V characteristic at pH=7.75 assuming $E^0(I^-/I_3^-)=350$ mV, and $\Delta V(pH)=60$ mV*pH+E_{CB} relative to the hydrogen standard electrode (HSE).
- (b) Compute the light-to-electrical power conversion % efficiency (\eta) of the DSSC, assuming that incident sunpower P_i = 1 kW m^{-2}.
- (c) Compute η for an analogous DSSC, where the redox couple I^-/I_3^- has been replaced by a redox pair X^-/X_3^- with $E^0(X^-/X_3^-)=150$ mV.

Modeling Dye-Sensitized Solar Cells Photoconversion Efficiency: Redox Couple

Solution to Exercise 1 (standard fortran):

```
PROGRAM main
     PARAMETER(npt=100)
     dv=2.4/(npt-1)
     pmax=-1.
     DO i=1, npt
        v=(i-1)*dv
       rv=rj(v,rkt)
        IF(rv.GT.(-10.0)) THEN
           p=v*rv
           PRINT *,p
           IF(p.GT.pmax) THEN
              pmax=p
              vmax=v
              rmax=rv
           END TF
           WRITE(10,22) v,rv
        END IF
     END DO
     PRINT *, "n(ideality factor)", rkt/0.0259
     WRITE(11,22) 0,rmax
     WRITE(11,22) vmax,rmax
     WRITE(11,22) vmax,0.
     PRINT *, "PCE(eta*100)=",pmax
22
    FORMAT(2(e13.6, 2x))
     END
```

```
FUNCTION rj(v,rkt)
```

С

```
rjl=16.7 ! current density
      rs=2.0E-4 ! specific series resistance
      rsha=100. ! specific shunt resistance
      Voc=0.42+0.35+0.045+0.3 ! Voc
     rj0=rjl*1.0E10 ! Rev. sat. curr. Density
С
     ideality factor times kT/q= 0.0259 Volts
     rkt=Voc/log(rjl/rj0+1.)
      DO i=1,5
        IF (i.EQ.1) rj=rjl
         rj=rjl-rj0*(exp((v+rj*rs)/rkt)-1.)
           -(v+rj*rs)/rsha
     1
      END DO
      RETURN
      END
```


Conventional Solar Cells Cost and Space Requirements

Exercise (Current Scenario) (due Thursday Sept 25, 2014):

Considering that the current US energy consumption is at a rate of 3.5 TWatts:

- (1) What percentage of the US energy consumption is supplied by solar panels?
- (2) What percentage of the electricity in Germany is supplied by solar panels?
- (3) How much would the solar panels cost to supply the US with 3.5 Twatts?
- (4) How does that cost compare to the US military budget?
- (5) How much area would the solar panels take to supply 3.5 TWatts?
- (6) What percentage of the electricity in CT comes from nuclear reactors?
- (7) Where are the nuclear power plants?
- (8) When was the last time a hurricane hit the coast of CT?

Plummeting Solar Module Cost PV Parity?

"what is certain is that we're headed for parity with fossil fuels (the gray area in the graph), and then solar will beat them..." <u>Michael Graham Richard</u>, May 1, 2013

Considering \$1/Watt

230 SOLAR PANEL

EXCEPTIONAL EFFICIENCY AND PERFORMANCE

SUNPOWER

1 KWatt/m² 18.5/100 = 185 W/m²

BENEFITS

Highest Efficiency

Panel efficiency of 18.5% is the highest commercially available for residential applications

11.2/0.185 = 60.5 m² /person

Solar Panel for Current U.S. Energy Consumption Size and Cost

✓ 11.2 KWatts/person = 3.5 10¹² Watts (3.5 Twatts) ✓ Cost of solar panels: \$11,200 /person = [\$3.5 Trillions]

2012 U.S. military budget = \$2,064/person [\$0.646 Trillion] 2011 Ivanpah BrightSource Energy = \$5.1/person

WASHINGTON (Army News Service, July 8, 2010) --"We view energy security as a critical mission-enabler and an operational imperative, which can provide the Army with an essential tactical advantage," said Jerry Hansen, the Army's senior energy executive, during a bloggers roundtable discussion, July 7, at the Pentagon. "Our Army installations, our tactical operations, Soldier training -- all require secure and uninterrupted access to energy."

Modeling Photovoltaic Solar Cells U.S. Energy Consumption

✓ 11.2 KWatts/person = (3.5 TWatts)

- Each person consumes energy, on average, at a rate comparable to the energy consumption of 11 window air conditioners, or 110 light bulbs (100 Watts each).
- Sunlight shines on earth at an average flux rate of 1.0 KWatt/m². Therefore, the average flux of solar energy shining on 11.2 m² (120 ft²) corresponds to the average energy consumption per capita.

2012 U.S. Renewable Energy Consumption

April 11, 2011. DOE Finalizes \$1.6 Billion Loan Guarantee for BrightSource Energy

BrightSource

nra

Google*

As World's Largest Solar Thermal Plant Opens, California Looks to End Solar Wars

July 12, 2013. In a few weeks, the largest solar plant of its kind in the world will start producing power in California's Mojave Desert.

The <u>Ivanpah Solar Electric Generating System</u> will supply both Northern and Southern California, inching the state one step closer to its ambitious renewable energy goal.

Summary 9-23-14

Computational Modeling and Physical Principles

- Solar Photovoltaic (PV)
 - Conventional doped semiconductor (SC) technology
 - SC Band gap matching solar radiance
 - Dye Sensitized Solar Cells (DSSCs)
 - Electricity
 - Fuels (e.g., H_2)
- Conventional Technology
 - Still expensive, close to parity with fossil fuels
 - Based on p-n junction
 - Equivalent circuit: I-V curves

Summary 9-23-14

Computational Modeling and Physical Principles

- Dye Sensitized Solar Cells (DSSCs)
 - Molecular Components
 - Dyes
 - Electrolyte
 - Redox couple
 - Catalyst (DSSCs for fuel production)
- Calculations of I-V curves
 - Iterative approach
 - Power, power point, % efficiency power conversion

Modeling Dye-Sensitized Solar Cells **Ru Polypyridyl Dyes: Transition Metal Adsorbates**

Modeling Dye-Sensitized Solar Cells Zn Porphyrin Dyes [August 4, 2010]

IPCE/%

40

20

350

700

650

 λ/nm

750

800

Zn porphyrin chromophore, integrated into a donor-acceptor dye as a π -conjugated bridge, exhibits efficiency of 11 % when used as a photosensitizer in a double-layer TiO2 film.

Angew. Chem. 2010, 122, 6796 - 6799

Modeling Dye-Sensitized Solar Cells <u>N3-Dye: Ru(II/III) MLCT, Aromatic</u> <u>Linkers</u>

Modeling Dye-Sensitized Solar Cells <u>N3-Dye: Ru(II/III) MLCT, Aromatic</u> <u>Linkers</u>

Modeling Dye-Sensitized Solar Cells Ab Initio Simulations of Photoabsorption Spectra

Modeling Dye-Sensitized Solar Cells Ab Initio Redox Potentials: Born-Haber Cycle

The redox potential $E_m^{(2+/3+)}$ is obtained from $\Delta G(aq) = -n F E_m^{(2+/3+)}$, where n = 1 is the # of electrons involved in the redox process. F = 96,500 C and $\Delta G(aq) = \Delta G(g) + \Delta G_{sol}(III) - \Delta G_{sol}(II)$, where $\Delta G(g) = G[Ru(bpy)_3^{3+}(g)] - G[Ru(bpy)_3^{2+}(g)]$, with $G^0 = H^0 - T S^0$, where H^0 is the molecular enthalpy obtained from the minimum energy structure and S^0 is the molecular entropy obtained from a frequency calculation.

Modeling Dye-Sensitized Solar Cells Ab Initio Computations of Redox Potentials

Exercise 2:

Consider the redox pairs $[Ru(bpy)_3]^{2+/3+}$, $[CoCp_2]^{0/+}$ and $[FeCp_2]^{0/+}$:

(a)Obtain the minimum energy structures of $[CoCp_2]^{0/+}$ and $[FeCp_2]^{0/+}$ and $[FeCp_2]^{0/+}$ at the B3LYP(LACVP/6-311G*) level of theory and compare them to the X-ray crystal structures for $[Ru(bpy)_3]^{2+}$, $[CoCp_2]^0$ and $[FeCp_2]^0$.

•Compute the redox potentials of $[CoCp_2]^{0/+}$ and $[FeCp_2]^{0/+}$ in DMSO (ε =46.83), versus $[FeCp_2]^{0/+}$ by using a polarizable continuum model (PCM) of solvation, and compare your results to the experimental values the following reference:

Connelly, N.G. & Geiger, W.E., Chem. Rev. 1996, 96, 877-910.

Solution to Exercise 2:

Download the <u>tutorial notes</u> on calculations of redox potentials and follow the instructions on how to create input files, launch calculations and obtain results from the output files.

Modeling Dye-Sensitized Solar Cells Ultrafast IET: Gerischer Model

$$k_{inj} \sim \int dE \rho_{CB}(E) * \rho_A(E) * k(E)$$

Modeling Dye-Sensitized Solar Cells
Ligand-to-Conduction Band Electron
Transfer

Modeling Dye-Sensitized Solar Cells Ligand-to-Conduction Band Electron Transfer

Modeling Dye-Sensitized Solar Cells Ultrafast IET: Quantum Dynamics Simulations

$$\begin{split} \left| \Psi(t) \right\rangle &= \hat{U}(t) \left| \Psi(0) \right\rangle, \text{ where } \hat{U}(t) = e^{-\frac{i}{\hbar} \int^{H(t') dt'}} \\ \text{and } \left| \Psi(t) \right\rangle &= \sum_{q} B_{q}(t) \left| \phi_{q}(t) \right\rangle \qquad, B_{q}(t) = \left\langle \phi_{q} \right| \Psi(0) \right\rangle e^{-\frac{i}{\hbar} \mathcal{E}_{q} t} \text{ and the MO's } \\ \left| \phi_{q}(t) \right\rangle &= \sum_{i} C_{i,q}(t) \left| K_{i}(t) \right\rangle \text{ are obtained in the basis of } \left| K_{i}(t) \right\rangle \end{split}$$

by solving the extended-Hückel generalized eigenvalue equation:

$$H(t)C(t) = S(t)C(t)E(t)$$

Modeling Dye-Sensitized Solar Cells Ultrafast IET: Quantum Dynamics Simulations

With this scheme, we can calculate for all *t>0* :

- electronic wavefunction
- electronic density
- Define the Survival Probability for electron to be found on initially populated adsorbate molecule

Modeling Dye-Sensitized Solar Cells Simulations of IET in sensitized TiO₂

Exercise 3: [by Robert C. Snoeberger III]

Consider a TiO_2 slab with atomic coordinates define in file <u>Tio2.com</u>. Download the software package <u>IETsim</u> and compute:

(a) The DOS of TiO_2 , as shown in page 7.

- (b) The DOS of TiO_2 sensitized with catechol covalently attached to the (101) surface, as shown in page 7.
- (c)The time-dependent electronic population of catechol $P_{MOL}(t)$, when the initial state is defined as the LUMO+1 orbital of the isolated catechol on the TiO2-anatase (101) surface. Plot the survival amplitude and estimate the rate. Compare your result with Figure 13 in <u>Reference [1]</u>.
- (d)Simulate IET from the HOMO orbital of catechol on the TiO2-anatase (101) surface. Explain why the probability $P_{MOL}(t)$ does not decay to zero.

Solution to Exercise 3:

Follow the instructions in the <u>tutorial notes</u> to install, compile and run IETsim using the input file provided in the directory dynamics/examples. The tutorial also provides guidelines to construct figures of the DOS, the time evolution of the electronic density during IET and the time-dependent electronic population.

Solar Spectrum

Black body Radiation at 5800 C

Solar Spectrum: Maximum Intensity

lambda [nm]

Solar Spectrum: Maximum Photon Flux

Comparison to Spectrum of Chlorophyll a

Flux of Solar Photons: Solution

22

```
PROGRAM main
IMPLICIT NONE
DOUBLE PRECISION rd,rtot,F,rlmax,rlmin,dlambda
DOUBLE PRECISION R,T,rc,rh,pie,rk,rl,rn,SB
INTEGER i J.npt
npt=1000
rlmax=3000.0E-9
rlmin=20.00E-9
dlambda=(rlmax-rlmin)/(npt-1.)
rc=3.0E+08
                         ! Speed of light, m/sec
rh=6.626E-34
                          ! Planck's constant, J sec
pie=acos(-1.0)
                          ! pi
                          ! Boltzmann constant, J KA{-1}
rk=1.38E-23
T=5800.
                          ! Sun Blackbody Temp, K
SB=5.67E-8
                          ! Stefan-Boltzmann constant, W/m^2/K^4
OPEN(1,FILE="spectrumn")
DO i=1.npt
   rl=rlmin+(i-1)*dlambda
   rd=rl**5*(exp(rh*rc/(rk*rl*T))-1.)
   F=2.0*pie*rh*rc*rc/rd *1380./(SB*T**4) ! W/m^2/m Blackbody radiation
   rtot=rtot+F*dlambda
                         _!_₩/m^2
   WRITE(1,22) rl*(1.0E+9),F*1.0E-9,F*1.0E-24/(rh*rc/rl)/5000. ! KW/m^2/micro-m, #phot/sec/nm^2/nm
END DO
FORMAT(6(e13.6,2x))
END.
```


Breakthroughs in X-ray Diffraction Models of Photosystem II

Ferreira, K. N. et al *Science* 2004, *303*, 1831-1838. [3.5 Å resolution]
Biesiadka, J. et al *Phys. Chem. Chem. Phys.* 2004, *6*, 4733-4736. [3.2 Å resolution]
Loll, B. et al *Nature* 2005, *438*, 1040-1044 [3.0 Å resolution]
Guskov A, Kern J, Gabdulkhakov A, et al. *Nature Struct. & Mol. Biol.* 2009, *16*, 334-342 [2.9 Å resolution]
Umena, Y., Kawakami, K., Shen, J.-R., and Kamiya, N. (2011) *Nature*, 473, 55-60 [1.9 Å resolution]

Natural Photosynthesis PSII Energy Diagram

Artificial Photosynthesis Dye Sensitized Solar Cell

It is time to build an actual *artificial photosynthetic* system, to learn what works and what doesn't work, and thereby set the stage for making it. *Melvin Calvin*

Jim Barber's Model

Ferreira et al. Science (2004) 303:1831-1838

The coordinates of the Mn atoms were chosen consistently with the observed dual-lobe electronic density to have Mn-Mn distances of about 2.7 Å and 3.3 Å length as reported by XAS studies [see, e.g., George, G.N.; Prince, R.C. and Cramer, S.P. Science (1989) **243**:789-791] and the cuboidal structure with a dangling Mn suggested by EPR and ENDOR data [Peloquin, J.M.; Campbell, K.A.;Eandall, D.W.;Evanchik, M.A.;Pecoraro, V.L.;Amstrong, W.A.;Britt, R.D. J. Am. Chem. Soc. (2000) **122**:10926-10942].

Quantum Mechanics / Molecular Mechanics (QM/MM) Hybrid Methodology (Warshel, 1976)

Two-layer ONIOM-Electronic Embedding (EE) (Morokuma), G03.

QM = DFT B3LYP/lacvp* MM = Amber Force Field

UB3LYP ONIOM-EE optimizations

DFT QM/MM:

J.A. Gascon and V.S. Batista, Biophys. J. 87, 2931-2941 (2004)

J.A. Gascon, E.M. Sproviero and V.S. Batista, J. Chem. Theor. Comput. 2, 11-20 (2005)

DFT QM/MM Self-Consistent Protein Polarization:

J.A. Gascon, S.S.F. Leung, E.R. Batista and V.S. Batista, J. Chem. Theor. Comput. 2, 175-186 (2006)

DFT-QM/MM Model

Sproviero, E.M; Gascon, J.A. et. al. J. Chem. Theor. Comput., (2006) 4:1119-1134; Curr. Op. Struct. Biol., (2007) 17:173-180; Phil. Trans. Royal Soc. London B 363:1149-1156 (2008); Coord. Chem. Rev. 252:395-415 (2008); J. Am. Chem. Soc. 130:3428-3442 (2008); J. Am. Chem. Soc. 130:6427-6430 (2008); Biochemistry 50, 6308-6311 (2011); Biochemistry 50, 6312-6315 (2011); Biochemistry in press (2013).

2006 DFT QM/MM S₀ model

2011 Shen's X-ray model

2011 DFT QM/MM Model: Validation by EXAFS Analysis

Biochemistry **50**, 6308-6311 (2011) Sandra Luber, Ivan Rivalta, Y. Umena, K. Kawakami, Jian-R. Shen, N. Kamiya, Gary Brudvig, and Victor S. Batista

Isotropic

Polarized

Experimental EXAFS Data:

Haumann, M.; Muller, C.; Liebisch, P.; Iuzzolino, L.; Dittmer, J.; Grabolle, M.; Neisius, T.; Meyer-Klaucke, W.; Dau, H. Biochemistry 2005, 44, 1894–1908.

Yano, J.; Kern, J.; Irrgang, K. D.; Latimer, M. J.; Bergmann, U.; Glatzel, P.; Pushkar, Y.; Biesiadka, J.; Loll, B.; Sauer, K.; Messinger, J.; Zouni, A.; Yachandra, V. K. Proc. Natl. Acad. Sci. U.S.A. 2005, 102, 12047–12052.

S₀-State Model of the OEC of Photosystem II

<u>Biochemistry 52: 7703-7706 (2013)</u> Rhitankar Pal, Christian F. A. Negre, Leslie Vogt, Ravi Pokhrel, Mehmed Z. Ertem, Gary W. Brudvig, and Victor S. Batista

Dr. Rhitankar Pal Dr. Christian Negre

Haumann, M.; Muller, C.; Liebisch, P.; Iuzzolino, L.; Dittmer, J.; Grabolle, M.; Neisius, T.; Meyer-Klaucke, W.; Dau, H. Biochemistry 2005, 44, 1894–1908.

Water Channels

<u>Coord. Chem. Rev. **252**:395-415 (2008)</u> J. Am. Chem. Soc. **130**:3428-3442 (2008)

O-O Bond Formation

Zundel/HOO-Mn(4) State Formation

Modeling Biomimetic Water Oxidation Catalytic Mn Complex Activated by Oxone

Biomimetic Oxygen Evolution Catalytic Mn Complex Activated by Oxone

O₂-Evolution by Water Splitting: The Yale Mn-Terpy Dimer in Action

Modeling Biomimetic Oxygen Evolution Water Oxidation by a Mn-Dimer Adsorbate

Modeling Biomimetic Oxygen Evolution Water Splitting Catalyzed by a Mn-Dimer

Modeling Biomimetic Oxygen Evolution O-O Bond Formation: PCET

O-O BOND FORMATION: SUPEROXO INTERMEDIATE

reaction coordinate

Biomimetic water Oxidation O-O Bond Formation: Spin Injection

[Wang, T. et al. JCTC (2010) 6:755-760] PCET: Activation Mechanism

Dr. Ting Wang

DFT UB3LYP/cc-pVTZ(-f) Free Energy Calculations: (III,IV) ->(IV,IV) Transition

 $[H_2O Mn^{III} (u-O)_2 Mn^{IV} OH_2]^{3+} \xrightarrow{pH=4.5} [H_2O Mn^{IV} (u-O)_2 Mn^{IV} OH]^{3+} + H^+ + e^{-1}$

Pourbaix Diagrams: Theory vs. Experiments

DFT UB3LYP/cc-pVTZ(-f) Free Energy Calculations

Regulation of PCET by Lewis Base (Carboxylate) Binding

Dr. Ting Wang

[Wang, T. et al. JCTC (2010) 6:755-760]

 $[H_2O(terpy)Mn^{III}(\mu-O)_2Mn^{IV}(terpy)CH_3COO]^{2+} \longrightarrow [HO (terpy) Mn^{IV} (\mu-O)_2Mn^{IV} (terpy) CH_3COO]^{+}H^{+}+e^{-}$

Modeling Visible-Light Photocatalysis Photoactivation of a Mn-Adsorbate Complex

Sabas G. Abuabara, Clyde W. Cady, Jason B. Baxter, Charles A. Schmuttenmaer, Robert H. Crabtree, Gary W. Brudvig, and Victor S. Batista. <u>J. Phys. Chem. C, 111:11982–11990 (2007)</u>.

Modeling Biomimetic Oxygen Evolution Simulations of IET from a Mn Adsorbate

First 100 fs after photoexcitation of the Mn(III,IV) adsorbate

Sabas G. Abuabara

Photocatalysis with Visible Light

<u>J. Catalysis **310**</u>: 37-44 (2014) Photoelectrochemical Oxidation of a Turn-On Fluorescent Probe Mediated by a Surface Mn(II) Catalyst Covalently Attached to Ti₂ Nanoparticles, Alec C. Durrell, Gonghu Li, Matthieu Koepf, Karin J. Young, C.F. A.

Negre, L. J. Allen, W. R. McNamara, H. Song, Victor S. Batista, Robert H. Crabtree and Gary W. Brudvig.

Department of Chemistry

Yale University

Photocatalysis with Visible Light

Photooxidation of isopropanol

Dr. Gonghu Li Dr. Christiaan Richter

J. Catalysis 310: 37-44 (2014)

Net redox reaction: 0.8 $(CH_3)_2CHOH \longrightarrow (CH_3)_2C=O + H_2$ PHOTOCURRENT 0.6 TiO₂/Mn-cat. Photocurrent (10-6 A) Photoactivation of the catalyst: 0.4 $h\nu$ 2+/3+ 0.2-**MLCT** TiO₂ 0 Off On On -0.2 5 10 15 20 Time (min) Department of Chemistry Yale University

Modeling Systems for a Hydrogen Economy Photocatalysis with Visible Light

Modeling Systems for a Hydrogen Economy Photocatalysis with Visible Light

Molecular Rectification: DFT NEGF: I-V Characteristics Aviram, M. A. Ratner Chem. *Phys. Lett.* **29**: 277-283 (1974)

Molecular Rectification: DFT NEGF: I-V Characteristics Aviram, M. A. Ratner Chem. *Phys. Lett.* **29**: 277-283 (1974)

Molecular Rectification: DFT NEGF: I-V Characteristics Aviram, M. A. Ratner Chem. *Phys. Lett.* **29**: 277-283 (1974)

DFT-NEGF Methodology

Wendu Ding – Christian Negre

Yale University

Wendu Ding, Leslie Vogt, Christian F. A. Negre, and Victor S. Batista [J. Chem. Theory Comput 10: 3393–3400 (2014)]
Molecule-Lead coupling

Wendu Ding, Leslie Vogt, Christian F. A. Negre, and Victor S. Batista [J. Chem. Theory Comput 10: 3393–3400 (2014)]

Experimental I-V histograms

4,4'-Diaminostilbene

Prof. Latha Venkataraman Columbia University

0.2

Nanotechnology. 2009, 20, 434009

Wendu Ding

Yale University

Molecular Rectification: The Break Junction Technique & Recent Results

11-1-2013 Chris Koenigsmann

2000

0

-6

-5

increases.

4. A second low-conductance plateau (B) also observed (+400 mV).

Molecule R5

-2

-1

0

-3

Experimental and Theoretical IV curves

Latha Venkataraman, Chris Koeningsmann (I-V exp), Matthieu Koepf (synthesis), Christian Negre (I-V calc)

R5, Rectification at 0.85 V = 1.45

Molecule	Conductance (G ₀)	RR
R1	1.7 x 10 ⁻⁴	1.30
R5	2.9 x 10 ⁻⁴	1.45

Scaled, statistically most probable IV curves for the three molecules. The curves are calculated from log-binned 2D histograms with bin sizes and histogram ranges kept constant. All curves have been scaled to zero-bias conductance of molecule **3**, with the red curve multiplied by 2 and the blue curve by 4. Inset: Rectification ratio as a function of bias. Molecule **3** rectifies over three times as much as molecule **2**, with rectification at 0.85V approaching 2.

Modeling Systems for a Hydrogen Economy Molecular Inverse Design: LCAP Methodology

Modeling Systems for a Hydrogen Economy Inverse Design: Molecular Sensitizers

Dr. Dequan Xiao

Target molecular property: the total visible absorbance

 $f = \sum_{p,q} f_{pq}$ + constraint: $400nm \le \lambda_{qp} \le 800nm$

 f_{pq} is the oscillator strength of the p to q electronic transition, and λ_{pq} is the wavelength of the electronic transition.

$$f_{pq} = \frac{8\pi^2 v_{pq} m_e}{3he^2} \left| \mu_{pq} \right|^2$$

 $\mu_{pq} = \langle \psi_q | r | \psi_p \rangle$: transition dipole moment, v_{pq} : wavenumber of the electronic transition,

 m_e : electron mass.

Gradients of molecular property:

$$\frac{\partial f}{\partial b_A^i} = \frac{f(+\delta b_A^i) - f(-\delta b_A^i)}{2\delta b_A^i}$$

Finally, the **continuous optimization** of *f* by varying $\{b_A^i\}$ is performed based on a quasi-Newton (BFGS algorithm) method.

Modeling Systems for a Hydrogen Economy Inverse Design: Molecular Sensitizers

Modeling Systems for a Hydrogen Economy Inverse Design: Molecular Sensitizers

Modeling Systems for a Hydrogen Economy Liquid H-Carriers: Fuel Cell/Flow Battery Concept

Modeling Systems for a Hydrogen Economy Organic Fuel Cell/Flow Battery Concept

"Feed the hydrogenated organic liquid carrier directly into the fuel cell where it is electrochemically dehydrogenated without ever generating H_2 "

Modeling Systems for a Hydrogen Economy Organic Fuel Cell/Flow Battery Concept

"Electrochemical dehydrogenation can be done at lower temperatures and high rates"

 $\begin{array}{ll} LQ^{*}H_{n} \rightarrow LQ + n H^{+} + n e^{-} & (1) \\ n/2 O_{2} + n H^{+} \rightarrow n/2 H_{2}O - n e^{-} & (2) \\ LQ^{*}H_{n} + n/2 O_{2} \rightarrow n/2 H_{2}O + LQ & (3) \end{array}$

*where LQ stands for an organic carrier molecule

Electrochemical dehydrogenation of saturated cyclic hydrocarbons (e.g., cyclohexane and decaline) is possible in alkaline electrolyte using Pd and Rh catalysts.

[K.V. Kordesch, J.F. Yeager, J.S. Dereska, *US Patent* 3280014 (1966); M. Okimoto, Y. Takahashi, K. Numata, G. Sasaki, *Heterocycles*, **65** (2005) 371]

Modeling Systems for a Hydrogen Economy Organic Liquid H-Carriers

Modeling Systems for a Hydrogen Economy Organic Liquid H-Carriers

Exercise 4:

Nitrogen atoms introduced into heterocycles tune the thermodynamic tendency to absorb or release H_2 , or to absorb or release 2(H+ and e-). A particularly favorable condition is when aromatic stabilization can be achieved after cleavage of only four C-H bonds as in the following reaction:

This can be analyzed by computing the temperature $T = T_d$ that makes the dehydrogenation free energy $\Delta G = \Delta H - T \Delta S$ equal to zero. At this point $(T = T_d)$ the unfavorable enthalpy due to the endothermicity of the reaction is exactly compensated by the favorable entropy of H_2 release.

- (a) Find the minimum energy configurations of reactants and products for the dehydrogenation reaction shown above in the gas-phase at the DFT B3PW91 level of theory.
- (b) Perform a frequency calculation for reactants and products and compute the temperature ${\rm T}_{\rm d}$ at which the dehydrogenation becomes spontaneous.
- (c) Compare your results with the analogous calculation of dehydrogenation ${\rm T}_{\rm d}$ for cyclopentane.

Solution Exercise 4: See tutorial notes on ab initio free energy calculations.

Organic fuel cell/flow battery: Fuel selection from thermodynamic considerations Energy Env Sci 5: 9534-9542 (2012)

C. Moyses Araujo, Davide L. Simone, Steven J. Konezny, Aaron Shim , Robert H. Crabtree, Grigorii L. Soloveichik, and Victor S. Batista

 $H = E_{\text{elect}} + U_{\text{vib}} + U_{\text{trans}} + U_{\text{rot}} + PV \quad G = H - T(S_{\text{vib}} + S_{\text{rot}} + S_{\text{trans}})$ $H = H^0 + C_p(T - 298.15 \text{ K}) \qquad S = S^0 + C_p \ln(T/298.15 \text{ K}).$

Fuel selection for regenerative organic fuel cell/flow battery: thermodynamic consideration, EES 5: 9534-9542 (2012)

C. Moyses Araujo, Davide L. Simone, Steven J. Konezny, Aaron Shim , Robert H. Crabtree, Grigorii L. Soloveichik, and Victor S. Batista

Correlation between OCP's obtained from the calculated free energies at B3LYP/cc-PVTZ theory level and from the experimental thermodynamic data (NIST database).

Calculated open circuit potentials and hydrogen gravimetric densities for six- (type A) and fivemember (type C) ring fuels.

LOH((in dehydrogen	C ated state)	H, wt. %	E ⁰ , V
Name	Structure		
Benzene	\bigcirc	7.19	1.049
Pyridine		7.10	1.081
Pyrimidine		7.02	1.116
Pyridazine		7.02	1.085
1,3,5-triazine		6.94	1.198
Cyclopentadiene	\bigcirc	5.75	0.854
Furan		5.59	1.004
1H-pyrrole	<">N	5.67	1.092
1H-imidazole		5.59	1.203
1H-pyrazole		5.59	1.269
1H-1,2,3-triazole		5.52	1.351
1H-1,2,4-triazole		5.52	1.328

Fuel selection for regenerative organic fuel cell/flow battery: thermodynamic consideration, EES 5: 9534-9542 (2012)

C. Moyses Araujo, Davide L. Simone, Steven J. Konezny, Aaron Shim , Robert H. Crabtree, Grigorii L. Soloveichik, and Victor S. Batista

Calculated open circuit potentials and hydrogen gravimetric densities for fused six- (type D) and five-member (type E) ring fuels.

Organic cat (in dehydrogena	rrier state)	H, wL %	E ⁰ , V	Organ (in dehydr	Organic carrier		<i>E</i> [∅] , <i>V</i>
Name	Structure			(in activate	genuieu siuie)		
1H-indene	(\mathcal{D})	6.49	1.041	Name	Structure	•	
benzofuran	$\langle \rangle \rangle$	6.39	1.084	naphthalene		7.29	1.078
benzo[b]thiophene	$\langle \rangle \rangle$	5.67	1.080	quinoline	()	7.24	1.097
1H-indole	$\langle \rangle \rangle$	6.54	1.128	isoquinoline		7.24	1.098
2H-isoindole	\Leftrightarrow	6.54	1.092	4H-quinolizine		5.79	0.946
indolizine	\odot	6.54	1.064	cinnoline	()	7.19	1.087
IH-benzo [d]imidazole		0.49	1.187	phthalazine	Ň	7.19	1.098
1H-indazole	\odot	6.49	1.206	quinazoline		7.19	1.119
1H-pyrrolo [2,3-b]pyridine	\bigcirc	0.39	1.107	quinoxaline		7.19	1.108
imidazo[1,2-a] pyrazine	\square	6.34	1.145				
7H-purine	$\langle i \rangle$	6.29	1.228	1,8- naphthyridine		7.19	1.112
1,4-dihydropentalene	$\langle \square \rangle$	5.49	0.901	1,5- naphthyridine	(7.19	1.115
1H-pyrrolizine	$\langle \Sigma \rangle$	5.44	1.017	pteridine		7.09	1.128
1,4-dihydropyrrolo [3,2-b]pyrrole	$\langle \Box \rangle$	5.39	1.159	pyrazino[2,3-b] pyrazine		7.09	1.122
1,4-dihydroimidazo [4,5-d]imidazole	$\langle I \rangle$	5.30	1.313	pyrimido[4,5-d] pyrimidine		7.09	1.160

Fuel selection for regenerative organic fuel cell/flow battery: thermodynamic consideration, EES 5: 9534-9542 (2012)

C. Moyses Araujo, Davide L. Simone, Steven J. Konezny, Aaron Shim, Robert H. Crabtree, Grigorii L. Soloveichik, and Victor S. Batista

Organic car (in dehydrogenat	H, wt %	E ⁰ , V	
Name	Structur e		
9H-fluorene	\bigcirc	6.78	1.109
dibenzo[b,d]furan	$\langle \rangle \rangle$	6.71	1.125
dibenzo[b,d] thiophene	\bigcirc	6.16	1.117
5H-dibenzo [b,d]borole	Q	6.81	1.108
9H-carbazole	Q_{μ}	6.75	1.152
9H-pyrrolo [2,3-b:5,4-b'] dipyridine		6.67	1.206
5H-pyrrolo [3,2-c:4,5-c'] dipyridine	00	6.67	1.191
5H-pyrrolo [3,2-b:4,5-b'] dipyridine	Q	6.67	1.181
9X-carbazole	0H0	H 6.75	1.152
		Et	1.167
9X-1,8-	Ω	H 6.67	1.206
dıazacarbazole	diazacarbazole		1.222
	-	Et	1.230

Boiling point, specific energy and energy density of selected organic fuels, and theoretical efficiency of fuel cells based on dehydrogenation.

Organic	carrier	Boiling	Specific	Energy	Efficienc
(in hydrogena	ated state)	point, °C	energy,	density,	y, %
			Wh/kg	Wh/L	
Liquid hydrogen		-252.9	-	2539	83.0
Pyrrolidine		87	1660	1438	92.8
Tetrahydrofu	rane	66	1500	1334	93.4
Tetrahydrothi	iophene	119	1196	1195	93.5
Cyclohexane		80.7	2025	1578	94.1
Methylcycloh	lexane	101	1747	1345	94.3
Cyclohexylamine		134.5	1772	1532	95.2
Chlorocyclohexane		66	1403	1403	93.4
Cyclohexanol		160.8	1686	1622	93.0
Cyclohexanethiol		158	1292	1227	94.0
Piperidine		106	2046	1764	94.2
2-methylpipe	ridine	118	1776	1499	94.5
Piperazine		146	2055	2260	9 5.7
trans-Decalin		187	2095	1877	93.1

Modeling Systems for CO₂/CO Conversion Lesson From CO Dehydrogenases

Modeling Systems for CO/CO₂ Conversion <u>Crabtree's Biomimetic Ni Catalyst</u>

Lu, Z.; Crabtree, R. H. J. Am. Chem. Soc. 1995, 117, 3994

Inverse Design of Electrocatlysts: CO/CO₂ Conversion Crabtree's Biomimetic Ni Catalyst

Reaction Coordinate

Modeling Systems for a Hydrogen Economy CO Conversion into Liquid Fuel

The Fischer-Tropsch Process

1) Synthesis Gas Formation

$$CH_n + O_2 \xrightarrow{(Catalyst)} \frac{1}{2} n H_2 + CO$$

2) Fischer-Tropsch Reaction

2n H₂ + CO
$$\xrightarrow{\text{Catalyst}}$$
 - (CH₂-)_n- + H₂O

3) Refining

- $(CH_2-)_n$ - (Catalyst) Fuels, lubricants, etc.

Modeling Systems for CO₂ Conversion Lesson From Rubisco: CC Bond Formation

Natural CO₂ Fixation based on Mg Catalysts?

Carboxylation in Ribulose 1,5-BisPhosphate carboxylase (Rubisco)

10¹¹ metric tons of CO₂ per year are converted to organic material by the world's most abundant enzyme

Modeling Systems for CO₂ Conversion Lesson From Rubisco: CC Bond Formation

