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ABSTRACT. Grover’s quantum computational search procedure can
provide the basis for implementing adaptive global optimisation al-
gorithms. A brief overview of the procedure is given and a frame-
work called Grover Adaptive Search is set up. A method of Diirr
and Hgyer and one introduced by the authors fit into this frame-
work and are compared.

SECTION 1. INTRODUCTION

This paper aims to provide the global optimisation community with
some background knowledge of quantum computation, and to explore
the importance of this topic for the future of global optimisation.

Quantum computing [7] holds great potential to increase the effi-
ciency of stochastic global optimisation methods. Current estimates
are that quantum computers are likely to be in commercial production
within two or three decades. These devices will be in many respects
similar to the computers of today, but will utilise circuitry capable of
quantum coherence [7], enabling data to be manipulated in entirely
new ways.

Grover introduced in [9] a quantum algorithm (that is, an algorithm
to be executed on a quantum computer) for locating a “marked” item
in a database. This was extended in [2] to a quantum algorithm for lo-
cating one of an unknown number of marked items. The latter method
was incorporated into a minimisation algorithm by Diirr and Hgyer
in [8] (unpublished, but available electronically—see the reference list).

Diirr and Hgyer’s algorithm can be viewed as an example of Grover
adaptive search (GAS), an algorithmic framework we introduced in [4].
GAS in turn is a quantum-computational implementation of hesitant
adaptive search [6], a parameterised pseudoalgorithm whose perfor-
mance is well understood. Here we analyse Diirr and Hgyer’s method,
present another version of GAS, and explore the relative merits of the
two methods via numerical simulation.
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Outline. Section 2 presents the general optimisation problem and
introduces some notation and terminology. Section 3 gives a brief
overview of quantum computation and Grover’s algorithm. Section 4
describes the GAS framework. Section 5 discusses the considerations
involved in choosing the “rotation count sequence”, the parameter dis-
tinguishing one GAS algorithm from another. Section 6 presents Diirr
and Hgyer’s algorithm, extending and correcting the theoretical anal-
ysis in [8]. In Section 7, we present a refined version of GAS, and
in Section 8 this version is compared to that of Diirr and Hgyer by
numerical simulation. Section 9 concludes the paper.

SECTION 2. OPTIMISATION PROBLEM
We consider the following finite global optimisation problem:
minimise f(z)
subject to z € S

where f is a real-valued function on a finite set S.

Throughout this paper we associate with the objective function f
the following definitions. Let N = |S|, the cardinality of the finite set
S. We will usually assume N to be a power of two. Let /1 < --- < (g
be the distinct objective function values in the range of f. Notice that
there may be more than K points in S. Given the uniform probability
measure g on S, we let 7t be the range measure given by the stochastic
vector (my,...,7g) induced by f. That is, m; = |f~*(¢;)|/N for j =
1,2,..., K. Let p; denote > 7_, m;, the probability that a random point
has value of ¢; or less. In particular, px = 1. Corresponding to each
function value is an improving region, that part of the domain having
a strictly better value, and we call its measure under p the improving
fraction p. (Usually the specified function value will be the best yet
seen, and thus the improving region will be the set of points with
objective function values better than any yet seen.)

SECTION 3. QUANTUM COMPUTING

This paper concerns optimisation algorithms that require the use of a
quantum computer. The characteristic feature of a quantum computer
is that, in place of conventional computer bits, quantum bits or qubits
are used. A qubit can be in a simultaneous superposition of “off” and
“on” and thus allows quantum parallelism, where a single quantum
circuit can simultaneously perform a calculation on a superposed input,
corresponding to very many conventional inputs.

The Grover mechanism. The quantum procedure germane to our
purposes is Grover Search [9]. This is one of the major advances to date
in the fledgling field of quantum computation. More details are given
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in [4], but we reiterate the salient features here and give an intuitive
discussion.

Consider the following general search problem. Let n be a positive
integer, and let S = {0,1}", so that the domain size N = 2". Let
h:S — {0,1}. We wish to find a point u € S such that h(u) = 1. We
further assume that h is a black-box, that is, that knowledge of h can
only be gained by sampling (evaluation), but no structural information
is available.

With conventional computing, the Boolean function A could be im-
plemented as a subroutine, i.e., a conventional logic circuit constructed
to take an input string of bits, representing a point of S, and output
the associated bit value of h. The subroutine could then be applied
to all points of S, in succession, to find a required point. Such a con-
ventional program would require on average N/2 evaluations to find a
marked point.

In quantum computing, the circuit implementing h (using gates that
work with qubits) inputs and outputs superpositions. Thus it “sees”
many possible answers at once. On a quantum computer, observing
the output will collapse it into a conventional bit string, according
to a probability distribution determined by the superposition; thus
quantum computing has a stochastic side. Rather than loop through
the N points in S, a quantum computer can operate on superposed
states in such a way that the probablity distribution governing the
collapse can be changed. Grover in [9] showed if exactly one point
is marked, then only %\/N such operations are required to find the
marked point.

Denote the set of marked points by M = {u € S|h(u) = 1} and
denote the number of these marked target points by t. We may or
may not be aware of the value of t. Let p be the proportion of marked
points, t/N.

Grover introduced the Grover Rotation Operator, which incorporates
the oracle for h and provides a means of implementing a certain phase-
space rotation of the states of a quantum system encoding points in
the domain S. Repeated applications of this rotation can be used to
move from the equal amplitude state, which is simple to prepare within
a quantum computer, toward the states encoding the unknown marked
points. For details see [4, 2, 9].

A Grover search of r rotations applies the above rotation operator
r times, starting from the equal amplitude superposition of states, and
then observes (and hence collapses to a point) the output state. The
mathematical details in [2] show that executing such a search of r ro-
tations generates domain points according to the following probability
distribution v on S:
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9r(p) r €M,

(1) 1({e}) = { e o e vt

N—t

where

(2) g-(p) = sin® [(2r + 1) arcsin \/p) .

Note that, in the special case of r = 0, Grover search only observes
the prepared equal amplitude superposition of states and so reduces to
choosing a point uniformly from the domain.

Most of the work in implementing the Grover Rotation Operator is
in the oracle query, so the cost of a Grover search of r rotations is taken
as the cost of r oracle queries. The output is a point in S, and as one
would usually want to know if it is in M or not, a further oracle query
(acting on the point) would give the function value under h.

Grover Search is sometimes portrayed as a method for the database
table lookup problem. This is only one elementary application, how-
ever. Other interesting applications concern “marking functions” h
which are more than simple tests of indexed data. Examples relating
to data encryption and the satisfiability problem are given in [2, 9].

From searching to optimising. Grover Search solves a special global
optimisation problem: it finds a global maximum of h. For the more
general problem introduced in Section 2, our intention is to use Grover
search repeatedly within a global optimisation method of the adaptive
search variety. Adaptive search methods produce, or attempt to pro-
duce, an improving sequence of samples, each uniformly distributed in
the improving region of the previous sample (see [16, 15, 5]).

Given an objective function f : S — R and a point X € S with
f(X) =Y, we use Grover’s algorithm to seek a point in the improving
region {w € S : f(w) < Y}. As described above, Grover’s algorithm
requires an oracle, a quantum circuit able to classify a point w € S as
inside or outside the target set (see [10]). This will be the oracle for
the Boolean function h(w) = (f(w) <Y).

We denote by a “boxed” name the oracle for a given function. Sym-
bolically | A | is found as shown:

w — |[f]
N
(<] — Oor1l
/!

Y

The additional comparison logic circuitry to construct is mini-
mal, and we will take the cost of |h|and | f | to be the same.
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As far as Grover’s algorithm is concerned, is simply a black box
quantum circuit, inputting a point w in S (or a superposition of such
points), and outputting

{ L flw) <y,
0, flw)=y
(or the appropriate superposition of such bits).

Grover search of r rotations, using the compound oracle depicted
above, will require r uses of the objective function sub-oracle , and
will output a random domain point. An additional oracle query is
required to determine whether the output is an improvement or not.
Therefore, for practical purposes, we can consider the cost of running
Grover’s algorithm to be r 4+ 1 objective function evaluations (plus
additional costs, such as the cost of the comparisons, which we will
ignore).

As a point of departure for the mathematics to follow, we can con-
dense this subsection into the following axiom, and henceforth dispense
with any direct consideration of quantum engineering. (Note that the
content of this axiom is taken for granted in [2] and many other recent
publications on quantum searching.)

Axiom. Given f: S — Rand Y € R, there is a search procedure on a
quantum computer, which we shall call a “Grover search of r rotations
on f with threshold Y”, outputting a random point x € S distributed
uniformly in

{wesS : f(w) <Y} with probability g.(p), or uniformly in
{we S : f(w)>Y} otherwise,

where p = [{w € S : f(w) < Y}|/|S|. The procedure also outputs y =
f(z). The cost of the procedure is r + 1 objective function evaluations.

SECTION 4. GROVER ADAPTIVE SEARCH

This section presents the Grover adaptive search (GAS) algorithm
introduced in [4]. The algorithm requires as a parameter a sequence
(rn:n=1,2,...) of rotation counts. Initially, the algorithm chooses a
sample uniformly from the domain and evaluates the objective function
at that point. At each subsequent iteration, the algorithm samples the
objective function at a point determined by a Grover search. The
Grover search uses the best function value yet seen as a threshold.
Here is the algorithm in pseudocode form:



6 BARITOMPA, BULGER AND WOOD

Grover Adaptive Search (GAS)

(1) Generate X; uniformly in S, and set Y} = f(X;).
(2) For n =1,2,... until a termination condition is met, do:
(a) Perform a Grover search of r,, rotations on f with threshold
Y,,, and denote the outputs by = and y.
(b) If y <Yy, set X,,11 =2 and Y41 = v,
otherwise, set X,+1 = X,, and Y11 =Y.

GAS fits into the adaptive search framework developed in [5, 6, 15,
16, 17] which has proved useful for theoretical studies of convergence
of stochastic global optimisation methods. All adaptive algorithms as-
sume “improving” points can be found (at some cost). If Grover’s
algorithm were only applicable to database lookup, one might get the
impression that GAS would require all function values to be first com-
puted and tabled, before they could then be marked. However, Grover’s
algorithm can find points in an unknown target set, specified by an or-
acle. GAS exploits this ability by constructing, at each iteration, an
oracle targeting the current improving region. In this way, it builds a
sequence of domain points, each uniformly distributed in the improving
region of the previous point. Such a sequence is known to converge to
the global optimum very quickly; for instance, a unique optimum in a
domain of size N will be found after 1 + In N such improvements, in
expectation (see [17]).

Unfortunately this does not mean that GAS can find the global op-
timum for a cost in proportion to In N. The reason is that as the im-
proving fraction p decreases, larger rotation counts become necessary to
make improvement probable; thus the cost of GAS varies super-linearly
in the number of improvements required. Note also that not every iter-
ation finds a point in the improving region. The probability of finding
an improvement is given by Equation (2), and for a known p < 1, a
rotation count r can be found making this probability very nearly 1.
But since in general we can only guess at p, lower probabilities result.

Readers may wonder why we use the best value yet seen as the
threshold in the Grover search. In a sense, all of the work of the
algorithm is done in the last step, when a Grover search is performed
using a threshold only a little larger than the global minimum. This
final Grover search is not made any easier by the information gained
in earlier steps. In the general case, however, where we have no prior
knowledge of the objective function’s range, these earlier steps are an
efficient way of finding a good value to use as a threshold in the final
step. The earlier steps are not great in number. Moreover, the cost
of each step is roughly inversely proportional to the square root of the
improving fraction; thus, if the sequence of rotation counts is chosen
suitably, most of the earlier steps will be much quicker than the final
one.
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SECTION 5. CHOOSING THE ROTATION COUNT SEQUENCE

This section provides a general discussion of the selection of the
rotation count sequence used in the GAS algorithm, as a precursor to
Sections 6 and 7, each of which presents a specific selection method.

Why the rotation count should vary. In [4] we considered the
possibility of using the same rotation count at each iteration. Although
it is easy to construct objective functions for which this method works
well, they are exceptional, and in general it is preferable to vary the
rotation count as the algorithm progresses.

To see why, suppose that at a certain point in the execution of the
GAS algorithm, the best value seen so far is Y, and the improving
fraction is p = {w : f(w) < Y}|/N. For any given rotation count
r, the probability of success of each single iteration of the algorithm
is given by g¢,(p). Although the rationale for using Grover’s algorithm
is to increase the probability of finding improving points, there are
combinations of values of r and p where the opposite effect occurs. For
instance, Figure 1 plots g3(p) versus p. If p = 0.2, then the step is
almost guaranteed not to find an improvement. If the rotation count
varies from each iteration to the next, then this is only an occasional
nuisance. But if it is fixed at r, and if the algorithm should happen to
sample a point z such that the improving fraction p for Y = f(x) has
gr(p) zero or very small, then the algorithm will become trapped.

9,(P)

0 0.2 0.4 0.6 0.8 1
p

FIGURE 1. The probability of a step of three Grover
rotations finding an improvement, as a function of the
improving fraction p.
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How the rotation count should vary. In fact, at each iteration
during the execution of the algorithm, some optimal rotation count r
is associated with the improving fraction p of the domain (assuming
p > 0). If it is used for the next Grover search, then an improving point
will almost certainly be found. This 7 is the first positive solution to
the equation g,(p) = 1. (Actually of course we must round this to the
nearest integer, and therefore success is not absolutely guaranteed, but
this would contribute little to the expected cost of the algorithm.)

Unfortunately, in the general case the improving fraction p is un-
known, so we are somewhat in the dark as to the choice of rotation
counts. In order to make the most use of all the information avail-
able to us at each iteration, we could take a Bayesian approach, and
keep track of a sequence of posterior distributions of the improving
fraction at each iteration, and choose each rotation count to optimise
the change in some statistic of this posterior distribution. As might
be expected, this kind of approach appears to be very complex and
unwieldy. The methods outlined in the following two sections, how-
ever, strike a happy balance between implementability and optimality
of rotation count selection.

SECTION 6. DURR AND H@YER’S RANDOM METHOD

In this section we outline a method due to Diirr and Hgyer for ran-
domly choosing rotation counts and correct two key arguments in its
originators’ analysis.

Grover’s search algorithm provides a method of finding a point within
a subset of a domain. If the size of the target subset is known, the
algorithm’s rotation count parameter can easily be tuned to give a
negligible failure probability. The case of a target subset of unknown
size is considered in [2], where the following algorithm is presented:

Boyer et al. search algorithm
(1) Initialise m = 1.
(2) Choose a value for the parameter A (8/7 is suggested in [2]).
(3) Repeat:
(a) Choose an integer j uniformly at random such that 0 <
7 <m.
(b) Apply Grover’s algorithm with j rotations, letting ¢ be the
outcome.
(c) If 7 is a target point, terminate.
(d) Set m = Am.

Actually, in [2], the final step updates m to min{Am,/N}. It is

pointless to allow m to exceed v/ N, because for a target set of any
size, it is known [2] that the optimal rotation count will be no more
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than [7v/N /4]. In the global optimisation context, however, this point
will usually be immaterial, since the target region, though comprising
a small proportion of the domain, will normally be large in absolute
terms.

For instance, suppose the domain contains 10%° elements and sup-
pose finding one of the smallest 10000 points is required. The optimal
rotation count to find a target set of this size is 1087 /4, substantially
less than [7v/N/4]. The actual target size will be unknown, and there-
fore the actual optimal rotation count will be unknown. But when m
reaches this magnitude, if not before, each step will have a substantial
probability (on the order of 1/2) of finding a target point. Therefore,
unless A is very large, there will be negligible probability of m reaching
VN = 10' before a target point is produced. For simplicity, therefore,
in this article we ignore the v/N ceiling on the growth of m.

In the quant-ph internet archive, Diirr and Hgyer [8] propose using
the Boyer et al. algorithm as the nucleus of a minimisation algorithm.
Their paper gives the impression that the algorithm is just for the
database problem. They begin with “an unsorted table of N items
each holding a value from an ordered set. The minimum searching
problem is to find the index y such that T'[y] is minimum.” Again we
stress their algorithm fits in the GAS framework and is thus applicable
to the general optimisation problem.

In their paper, they indicate that every item that is improving is
explicity marked. However, this is a mistake as it is incompatible with
their complexity analysis later in the paper. We describe a corrected
version of their method using the terminology of this paper.

Diirr and Hgyer’s algorithm
(1) Generate X; uniformly in S, and set Y7 = f(X4).

(2) Set m = 1.

(3) Choose a value for the parameter A\ (as in the previous algo-
rithm).

(4) For n =1,2,... until a termination condition is met, do:

(a) Choose a random rotation count 7, uniformly distributed
on {0,...,[m—1]}.

(b) Perform a Grover search of 1, rotations on f with threshold
Y,,, and denote the outputs by = and y.

(c) f y <Yy, set Xpp1 =, Yo =y, and m = 1;
otherwise, set X, 11 = X,,, Yoir1 = Y,, and m = Im.

This is the special case of GAS arising when the rotation count 7,
is chosen randomly from an integer interval which is initialised to {0}
at each improvement, but which grows exponentially to a maximum of
{0,...,[V/N — 1]} between improvements.
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The analysis of the algorithm reported in the archive [8] uses incor-
rect constants from a preprint of [2]. In our analysis that follows, we
correct this by using the published version of [2]. Because the Boyer
et al. algorithm underpins that of Diirr and Hgyer, we begin with an
analysis of the former algorithm. Theorem 3 in [2] is an order of magni-
tude result, but inspection of the proof implies that the expected time
required by the Boyer et al. algorithm to find one of ¢ marked items
among a total of N items is bounded by 8,/N/t. This constant can be
improved upon, though, as we shall see after the following theorem.

Theorem 1. The expected number of oracle queries required by the
Boyer et al. algorithm with parameter X to find and verify a point from
a target subset of size t from a domain of size N is

© N /1 sin(40[X1))
(3) ; 2 ll (5 * AT sin(29))
where § = arcsin(,/t/N).

Proof. Conditioned on reaching iteration j, the expected number of
oracle queries required at that iteration is [A]/2 (including the test of
the output of Grover’s algorithm for target subset membership.) The
probability of reaching iteration j is a product of failure rates; the
probability of the algorithm failing to terminate at iteration j, having
reached this iteration, is

1 sin(40[\'])

2 4[\]sin(20)

(this is Lemma 2 in [2]). Thus the expected number of oracle queries
required at iteration j, mot conditioned on whether the iteration is

reached, is
N1ir (1 sin(40]x
(QW 11 (§+4S1;z‘( '( 22 ) ’
pain [AT] sin(260)
and summing over all possible iterations j = 0...00 gives the result.
O

It is straightforward to evaluate the geometrically convergent se-
ries (3) numerically. By graphing the ratio of (3) to \/N/t versus t
for a range of )\, empirically A that gave the lowest maximum is 1.34.
The plot of Figure 2 uses this value of A\, and it justifies the following
observation.

Observation. The expected number of oracle queries required by the
Boyer et al. algorithm with parameter X = 1.34 to find and verify a
point from a target subset of size t from a domain of size N is at most

1.32\/N/t.
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Partial sums of (3) divided by (N/t)?

| | | | | |
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Target proportion of domain

“ 1 1 1

FiGURE 2. The ratio between the partial sums of the
geometrically convergent series (3) and y/N/t when A =
1.34, plotted against t/N. Note that 1.32 appears to be
an upper bound.

Now we can derive a performance bound for Diirr and Hgyer’s algo-
rithm. This is similar to and extends the result in [8]; the main differ-
ence is in our treatment of the coefficient of the order bound. Also we
correct another technical error in their argument, which is pointed out
in our proof below.

Theorem 2. Assume the validity of the above observation. Let1 < s <
N and assume that there are s points in the domain with strictly better
objective function values than the remaining N — s points. The expected
number of oracle queries required by Dirr and Hoyer’s algorithm with
A = 1.34 to find one of these s points is bounded above by

N
1
1.32V' N Z S
et rvr—1

Note that, if s is small compared to N, then the above bound ap-
proximately equals 2.46,/N/s.

Proof. Assign the domain points ranks from 1 to N, giving the best
point rank 1 and so forth. Where several points have equal objective
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function value, break ties arbitrarily, but let [(r) be the least rank and
h(r) the greatest rank among the points with the same value as the
rank r point. (In the distinct values case we will have [(r) = h(r) =
for each r € {1,...,N}.)

Since Diirr and Hgyer’s algorithm will move through a succession of
threshold values with rank above s before finding the desired target
point, the bound on the expectation in question is given by

N
(4> Z p(N,’I“)B(N,l(’I“) - 1)7
r=s+1
where p(N,r) is the probability of the rank r point ever being chosen
and B(N,(r)—1) is the expected number of iterations required by the
Boyer et al. algorithm to find and verify a point from a target subset
of size [(r) — 1.

The probability p(N,r) = 1/h(r). This is demonstrated in the proof
of Theorem 1 in [17], and in Lemma 1 of [8]. Also, by the observation
on page 10, B(N,l(r) — 1) < 1.324/N/(l(r) — 1).

In the distinct values case, substitution of the above value for p(N, )
and bound for B(N,I(r) — 1) = B(N,r — 1) into (4) gives the theo-
rem immediately. In [8] it is claimed for the case of repeated objective
function values that since the equation p(N,r) = 1/r becomes the in-
equality p(N,r) < 1/r, the bound still holds. This argument ignores
that the value of B(N,[l(r)—1) increases (for a given r) when repeated
values are allowed. Nevertheless, the theorem holds as follows. Con-
sider 7 € {1,..., N} with I(#) < h(). We examine just that part of
the summation in (4) with index going from [(7) to h(7).

h(r) h(r)

1
> p(N,r)B(N,I(r)—1) < 132N Z
= h(r)\/l(r) —1
r=I(7) r=I(7)
h(7)
= 1.32/N Z ﬁ
r=I(7)
h(7)
= 1.32\/N Z
i) r(r—1)
h(r)

1
< 1.32v N E .
1) 7“\/7“ — 1

O

Remark. Diirr and Hgyer’s method can be viewed as an implementa-
tion of Pure Adaptive Search [17], requiring no more than 1.32(N/t)'/2
iterations in expectation to find an improvement, when t is the cardi-
nality of the improving region.
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SECTION 7. A NEW METHOD

In this section we propose an explicit sequence of integers to be used
as the GAS rotation count sequence. This gives a special case of GAS
that can be identified with an inhomogeneous Markov chain having
states 01,..., k.

For this paper we have sought an efficient choice for the rotation
count sequence used in GAS. This has led us to the special case of GAS
arising when the sequence (r,,) is fixed in advanced, and determined by
the following pseudocode. Note that the sequence of rotation counts it
produces is independent of the particular optimisation task; its first 33
entries are

(5) 0,0,0,1,1,0,1,1,2,1,2,3,1,4,5,1,6,2,7,9,
11,13,16,5, 20, 24, 28, 34, 2, 41,49, 4, 60, . . . .

Here is the pseudocode:

Rotation Schedule Construction Algorithm

(1) Initialise u to be the polynomial u(y) = y.
(2) Fori=1,2,..., do:
(a) Set B, =1 — foludy.
(b) Set b’ = 0.
(¢) For r=0,1,... until E,/(r +1) <2V, do:
(i) Set v =u+y [ (g:(t)/t) du(t).
(i) Set B, =1 — [ vdy.
(iii) Set b = (E, — E,)/(r +1).
(iv) If b > b’ then:
(A) Set r' =7,
(B) Set ' = b.
(C) Set v' =w.
(d) Set u ="
(e) Output ith rotation count 7.

The resulting sequence (5) is heuristically chosen to maximise a
benefit-to-cost ratio, denoted b in the pseudocode, at each GAS itera-
tion. The reader can verify that u and F, are the cumulative distribu-
tion function and expectation, respectively, of the improving fraction of
the domain, after the first ¢ — 1 iterations of the GAS algorithm. The
symbols v and F, denote the corresponding cumulative distribution
function and expectation after a further GAS step of r rotations. The
benefit is (somewhat arbitrarily) taken to be the expected decrease in
the improving fraction of the domain, E, — E,. The cost is r+ 1, where
r is the number of rotations chosen, as per the axiom on page 5. The
inner loop at (2c¢) terminates since even if g, were identically one, the
expected improving region measure would halve. Thus, higher rotation
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counts need not be considered once we pass the point where half the
expected improving region measure, divided by the cost, exceeds the
current best found benefit-to-cost ratio.

SECTION &. COMPUTATIONAL RESULTS

In Section 6 we presented a corrected version of Diirr and Hgyer’s
demonstration of a performance bound for their algorithm. This read-
ily establishes the O(y/N/s) complexity, inherited from Grover’s al-
gorithm. However, even the improved coefficient of 2.46 suggested by
Theorem 2 is based on an upper bound, and may be a poor indica-
tor of the algorithm’s actual performance. In this section we study
the methods described in Sections 6 and 7 using numerical simulation.
Our aim is twofold: to tune the parameter A appearing in Diirr and
Hgyer’s algorithm, and then to compare their tuned method against
the method of Section 7.

Our simulations will determine the length of time each algorithm
requires to sample a point in a target region, constituting a certain
proportion of the domain. Intuitively, the algorithm terminates upon
finding a value equal to or lower than the quantile determined by a
proportion .

Recall the proportion of the domain with value lower than or equal
to ¢; is p;. More precisely, we specify an intended quantile proportion
Onominal a0d set & = min{j : p; > Anomina}. We require the algorithm

to find a point with value less than or equal to ¢x. The target set is
FH ({1, 0, ..., 0}). Let s be its cardinality. So a = p;, = s/N and
gives the quantile the algorithm will find. Note that it is the measure
under 7 of {l1,0s,...,0}. It may be inevitable that o and apominal
differ since it can happen that py_1 < Qnominal < @ = Pg.

Thus the quantity « is often unknown in practice, and is a “global”
piece of information. The dependence of performance on global infor-
mation is unavoidable [14], but we will see that for certain methods,
the dependence is primarily on «.. For the rest of this paper we assume
« is close to ameminal-

Methodology. For the performance of either algorithm under consid-
eration, the distribution of objective function values influences perfor-
mance only via the range measure 7v. Our primary focus here will be
the case where 7 is uniformly distributed over a finite set of distinct
function values. Without loss of generality we can take this finite set
to be {1,..., K}. For example to explore seeking the best 1% of the
domain under a uniform range distribution (i.e. apominal = 0.01), using
K = 100 will be fairly representative. At the end of this section we
look briefly at other distributions.
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FIGURE 3. Performance graphs for Diirr and Hgyer’s al-
gorithm for various values of the parameter A\ and two
domain sizes. The third graph repeats the second with
a finer mesh of \ values.

To compare the algorithms, we plot their performance graphs [11]
which relate practical computational effort to the probability of find-
ing a point in the target set. The performance graph is simply the
cumulative distribution function of the effort to success, defined as the
number of objective function evaluations before a point in the target set
is sampled. We compute these with Matlab, using standard techniques
for Markov chains and stochastic processes.

Tuning A. The observation on page 10 suggests the parameter choice
A = 1.34 for Diirr and Hgyer’s algorithm. Numerical experimentation
agrees with this choice. Figure 3 shows the performance graphs, seeking
1% (K = 100) or 0.2% (K = 500) of the domain, of Diirr and Hgyer’s
algorithm using a selection of values of A ranging from 1.05 to 30,
and including the values 8/7 and 1.34 suggested by [2] and Figure 2.
Performance deteriorates slowly outside of the range from 1.34 to 1.44,
but within that range there is no visible performance gradient. The
value of A may become more important for smaller values of «, but for
the remainder of this section we shall use the value A\ = 1.34.
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FIGURE 4. Performance graphs comparing Diirr and
Hgyer’s method to the method of Section 7, for a uni-
form range distribution.

Comparing the new method to Diirr and Hgyer. Having settled
on the parameter value A = 1.34 for Diirr and Hgyer’s method, we can
compare it to the method of Section 7. Figure 4 shows that, in the
two cases studied, the new method dominates that of Diirr and Hgyer.
For instance, to sample a target comprising 0.2% of the domain with
probability 90% or more, Diirr and Hgyer’s method requires more than
100 units of effort, whereas the new method requires only 79 (and in
fact it then samples the target with probability 96%).

Note also, in the two situations depicted in Figure 4, the estimated
bound of 2.46,/ N/s on the expected time required by Diirr and Hgyer’s
algorithm, mentioned following Theorem 2, amounts to 24.6 and 55.0.
While the true expectations cannot be computed from any finite por-
tion of the performance graphs, these figures do appear visually to be
in approximate agreement with the numerical results.

Nonuniform range distributions. Until now in this section we have
assumed a uniform range distribution. This corresponds to the assump-
tion of injectivity of the objective function, that is, that different points
in the domain map to different values in the range. In many cases, how-
ever, for instance in combinatorial optimisation, there may be a unique
optimum, or a small number of optimal domain points, but large sets
of the domain sharing values in the middle of the range; this results in
a nonuniform range distribution.

Experimentation indicates that nonuniformity of the range distribu-
tion improves the performance of both methods under study. To pro-
duce Figure 5, we randomly created five stochastic vectors of length
20 with first element 0.002 (the remainder of each vector was a point
uniformly distributed in [0, 1]' and then scaled to sum to 0.998), and
simulated the performance of both methods. Compare this with the
last plot of Figure 4. Nonuniformity has improved the performance of
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FIGURE 5. Performance graphs comparing Diirr and
Hgyer’s method to the method of Section 7, for a nonuni-
form range distribution.

the method of Section 7 somewhat. However, a greater improvement
in Diirr and Hgyer’s method has allowed it to overtake the method of
Section 7. Here, for most of the five sample range distributions, Diirr
and Hgyer’s method reaches the target with probability 90% or more
after 61 or fewer units of effort, whereas the new method now requires
67.

SECTION 9. CONCLUSION

This paper outlines the significance of Grover’s quantum search al-
gorithm (with its performance characteristics implying O(y/N/t) per-
formance taken as an axiom) for global optimisation. Grover search
can provide the basis of implementing adaptive global optimisation al-
gorithms. One example is an algorithm of Diirr and Hgyer’s introduced
as a method for finding minimum values in a database. An improved
analysis of Diirr and Hgyer’s algorithm suggests increasing its param-
eter A from 8/7 to 1.34. Also, that algorithm fits the Grover Adaptive
Search framework, and thus is applicable to the more general global
optimisation problem. A new algorithm within the same framework is
proposed in Section 7. Our numerical experiments in Section 8 show
that the algorithms have similar performance. The method proposed
in Section 7 had its parameters tuned for the distinct objective func-
tion value case, and shows superior performance to that of Diirr and
Hgyer’s in that case. On the other hand, Diirr and Hgyer’s method
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(with A = 1.34) overtakes the new method if there is a great deal of
repetition in objective function values.

A final comment concerning implementation on a quantum com-
puter. This is work mainly for computer engineers of the future, but
some indications are known at the present time. A fully functional
quantum computer would be able to evaluate an objective function in
just the same way as a conventional computer, by executing compiled
code. A technical requirement to control quantum coherence, which
we have not mentioned previously, is that the gates must implement
reversible operations. The code implementing the objective function
must be run in the forward direction and then in the reverse direction.
This obviously at most doubles the computational effort for a function
evaluation compared to a conventional computer.
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