30 January 2026

QFlux: An Open-Source Toolkit for Quantum Dynamics
Simulations on Quantum Computers. Part VI - The
Generalized Quantum Master Equation

Xiaohan Dan', Pouya Khazaei®, Brandon C Allen’, Ningyi Lyul, Callie Wilson®, Ellen Mulvihill*, Y uchen
Wang®, Saurabh Shivpuje®, Sabre Kais, Victor S Batista™”, Eitan Geva’®

1. Department of Chemistry Yale University

2. Department of Chemistry University of Michigan

3. Department of Chemistry Purdue University

4. Department of Electrical and Computer Engineering North Carolina State University
5. Yale Quantum Institute Y ale University

Abstract

Simulating guantum dynamics at finite temperature in complex chemical systemsremainsacentral challenge
in quantum chemistry and materials science. In many cases, it is advantageous to focus on the dynamics of
a subsystem of interest, represented by its reduced density matrix, whose interaction with the surrounding
environment gives rise to open-system behavior. The Nakgima-Zwanzig generalized quantum master
equation (GQME) provides aformally exact framework for capturing such non-Markovian dynamics, where
memory effects play a defining role. Here, in Part VI of the QFlux tutorial series, we explore methods for
simulating non-Markovian open quantum systems described by the GQME on quantum computers. The
approach leverages the Sz.-Nagy dilation theorem to embed memory-dependent, non-unitary evolution into
an enlarged unitary space suitable for quantum simulation. Using the spin-boson model as a prototypical
example, we demonstrate how to formulate, implement, and analyze GQME dynamics within the QFlux
open-source platform. This tutorial provides readers with both the theoretical foundation and practical
tools required to study non-Markovian quantum dynamics, bridging fundamental concepts with executable

workflows for quantum simulation.

Posted on 30 January 2026 — CC-BY 4.0 — Thisis apreprint and has not been peer reviewed. Data may be preliminary. — https://
doi.org/10.26434/chemrxiv.10001770/v1

QFlux: An Open-Source Toolkit for Quantum
Dynamics Simulations on Quantum Computers.
Part VI — The Generalized Quantum Master

Equation

Xiaohan Dan,"* Pouya Khazaei,** Brandon C. Allen,’ Ningyi Lyu,’ Callie
Wilson,* Ellen Mulvihill,” Yuchen Wang,¥ Saurabh Shivpuje,¥ Sabre Kais,?

Victor S. Batista,*"ll and Eitan Geva**

TDepartment of Chemistry, Yale University, New Haven, CT 06520, USA
I Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
Y Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
§ Department of Electrical and Computer Engineering, Department of Chemistry, North
Carolina State University, Raleigh, North Carolina 27606, USA
|| Yale Quantum Institute, Yale University, New Haven, CT 06511, USA

L Contributed equally to this work

E-mail: victor.batista@yale.edu; eitan@umich.edu

victor.batista@yale.edu
eitan@umich.edu

1

In chemistry, biology, and materials science, many dynamical processes unfold in complex
environments whose influence cannot be treated as instantaneous or memoryless. Electron
and exciton transfer in solution, charge separation in photosynthetic complexes, vibrational
relaxation in molecular systems, spin relaxation in superconducting qubits, and phonon-
assisted transport in semiconductors are all examples in which the environment retains a
persistent memory of past interactions.'™® These phenomena arise from intricate couplings

between a quantum subsystem and its surrounding bath, giving rise to behavior collectively

Abstract

Simulating quantum dynamics at finite temperature in complex chemical systems
remains a central challenge in quantum chemistry and materials science. In many cases,
it is advantageous to focus on the dynamics of a subsystem of interest, represented by its
reduced density matrix, whose interaction with the surrounding environment gives rise
to open-system behavior. The Nakajima—Zwanzig generalized quantum master equa-
tion (GQME) provides a formally exact framework for capturing such non-Markovian
dynamics, where memory effects play a defining role. Here, in Part VI of the QFlux
tutorial series, we explore methods for simulating non-Markovian open quantum sys-
tems described by the GQME on quantum computers. The approach leverages the
Sz.-Nagy dilation theorem to embed memory-dependent, non-unitary evolution into an
enlarged unitary space suitable for quantum simulation. Using the spin—boson model
as a prototypical example, we demonstrate how to formulate, implement, and ana-
lyze GQME dynamics within the QFlux open-source platform. This tutorial provides
readers with both the theoretical foundation and practical tools required to study
non-Markovian quantum dynamics, bridging fundamental concepts with executable

workflows for quantum simulation.

Introduction

described as non-Markovian dynamics.

In a Markovian regime, environmental effects are assumed to act instantaneously: bath
correlations decay rapidly, and the system’s evolution depends only on its current state. This
approximation underlies the Lindblad quantum master equation introduced earlier in the
QFlux? tutorial series, which provides a practical and widely used framework for modeling
dissipative and decoherent dynamics with memoryless reservoirs. Realistic condensed-phase
environments, however, often exhibit finite correlation times, structured spectral densities,
and temperature-dependent fluctuations that violate the Markovian assumption.'®!! Ac-
curately describing such systems therefore requires retaining information about how the
system’s past evolution influences its future behavior.

This installment, Part VI, addresses these challenges by focusing on non-Markovian
open-system dynamics within the framework of the Nakajima-Zwanzig generalized quantum
master equation (GQME).'>'* The GQME provides a formally exact equation of motion
for the reduced density operator of the system, introducing a memory kernel that captures
the delayed influence of the environment. This formulation naturally encompasses a broad
range of physical effects, including slow solvent relaxation, vibronic coupling, and long-lived
coherence in biological and solid-state systems, and establishes a rigorous connection between
microscopic system—bath models and emergent non-Markovian behavior.

Simulating memory-dependent dynamics presents both conceptual and computational
challenges. Unlike the Lindblad equation, which is local in time, the GQME is integro-
differential: the instantaneous rate of change of the system depends explicitly on its entire
prior history. In addition, quantum circuits are inherently unitary, whereas non-Markovian
reduced dynamics are fundamentally non-unitary. Bridging this gap requires reformulating
the open-system evolution in a form compatible with quantum hardware. !> Recent work
has shown that non-Markovian processes described by the GQME can be represented as
unitary dynamics in an enlarged Hilbert space using the Sz.-Nagy dilation theorem.” This
construction embeds irreversible reduced dynamics into a higher-dimensional, reversible evo-

lution that can be implemented naturally on qubit-based platforms.

The purpose of this tutorial is to guide readers through the formulation and simulation of
non-Markovian quantum dynamics within the QFlux framework. We begin by introducing
the theoretical structure of the GQME and its physical interpretation in terms of memory
effects and environmental back-action. We then show how the Sz.-Nagy dilation formalism
enables quantum simulation of these dynamics using unitary circuits acting on an extended
system—ancilla register. The spin—boson model serves as a representative case study, illus-
trating each step of the workflow — from constructing the Liouvillian and memory kernel to
executing non-Markovian time evolution on quantum backends.

Part VI thus completes the progression of the QFlux tutorial series by extending quan-
tum simulation techniques from closed and Markovian open systems to fully non-Markovian
regimes. Together with the earlier parts, this installment equips readers with a comprehen-
sive toolkit for modeling finite-temperature, memory-dependent quantum processes in realis-
tic molecular and materials environments, and for assessing when non-Markovian treatments

are essential for capturing the underlying physics.

2 Theory of Generalized Quantum Master Equation

We consider a molecular system described by the Hamiltonian

Ne Ne R .
H =3 H;(R,P)[5)jl+ > Vie(R)[5Xk| , (1)
j=1 jik=1
£

where H;(R,P) = P2/2 + V;(R) is the nuclear Hamiltonian in diabatic state |5), with the
index j running over the N, electronic states. V]k(f{) describes interstate coupling, and
R = {1%17]%2, ey I%Nn} and P = {]51,]52, ey pNn} are the mass-weighted nuclear coordinates

and momenta of the N, nuclear degrees of freedom (DOFs). Bold symbols denote vectors,

hats indicate operators, and calligraphic letters such as £ represent superoperators.

The evolution of the total density operator j(t) follows the quantum Liouville equation,

O — L p(0)] = L), 2)

where £(-) = [H,] is the Liouvillian. Because the Hilbert space of the full electronic-nuclear
system scales exponentially with system size, direct solution of Eq. (2) is generally infeasible.
In most applications, the focus lies on the electronic subsystem, which serves as the “system"
of interest, while nuclear motion acts as a thermal environment or “bath".

The corresponding reduced electronic density operator is

Ne

6(t) = Tra{p(t)} = > oyu(t) [Nk, (3)

Ji;k=1

where Tr,, traces over nuclear degrees of freedom (DOF’s). Assuming an initially separable

state,

p(0) = pn(0) ® 6(0), (4)

we seek a closed equation of motion for &(¢) that incorporates the effects of the bath.
This is achieved through the Nakajima-Zwanzig projection operator formalism.*!” To

this end, we define the projectors
PA=p,(0)®@ Tr,{A}, Q=TI-P, (5)

which partition operators into system and bath components. Applying these to Eq. (2) and
eliminating the @ component yields the formally exact generalized quantum master equation

(GQME):

8‘25” = L0 - O/dr K(r)é(t—7), (6)

where

(L) () = Tro{pn(0)L}(-), (7)
K(r) = ;2 Tr, { £ QL 5, (0)) (8)

The first term in Eq. (6) represents the instantaneous, mean-field effect of the environ-
ment, while the memory kernel K(7) encodes the delayed, history-dependent influence of the
bath on the system. When K(7) decays rapidly, the integral term simplifies to a Markovian
rate, leading to the Lindblad equation discussed in Part IV and Part V. When the bath
retains long-lived correlations, the full non-Markovian form must be retained.

The forms and derivations of the above GQME, along with its (£)? and K(7), can be
found in many previous studies.!”?° However, the dynamics described by the GQME are
inherently non-unitary, as environmental effects induce decoherence and energy dissipation
in the system. Recent developments have demonstrated that such non-unitary dynamics
can be simulated using the Sz.-Nagy dilation theorem, which maps the GQME evolution
onto a unitary process within an extended Hilbert space.” This transformation enables the
simulation of memory-dependent quantum dynamics on gate-based quantum hardware.

In the sections that follow, we demonstrate how to implement this dilation-based simula-
tion within the QFlux framework. Using the spin—-boson model as an example, we outline the

construction of Liouvillians, evaluation of memory kernels, and execution of non-Markovian

simulations on classical and quantum backends.

3 The Spin—Boson Model

To illustrate the generalized quantum master equation (GQME) formalism and its quantum
simulation, we focus on the spin—boson model-—a minimal yet powerful framework for de-
scribing electronic energy and charge transfer in molecular and condensed-phase systems. 1827

In this context, the two electronic states (N, = 2) correspond to the diabatic donor and ac-

ceptor states, | D) and |A), respectively. The nuclear degrees of freedom represent a thermal
environment that delivers dissipation and decoherence during the transfer process.

Within the spin-boson model, the nuclear Hamiltonians corresponding to |D) and |A)
are taken to be harmonic and identical, differing only by a shift in equilibrium geometry and

energy. Under these assumptions, the total Hamiltonian reads

ONUPRNISPE S E AL U R 9
H—€O’Z+FUI+Z 9 +2W1RZ Cszaz) (9)
=1

where 6, = |DXD| — |AXA| and 6, = |D)A| 4+ |AXD|. The parameter 2¢ defines the energy
bias (reaction energy) between donor and acceptor, and I' = Vp, denotes the electronic
coupling between them. The coupling coefficients ¢; describe how each nuclear mode R;
interacts with the electronic state difference, while w; and P; are the frequency and conjugate
momentum of the ith mode.

The influence of the bath is conveniently characterized by its spectral density,

Zc—ké(w—wk), (10)

which quantifies how strongly each frequency mode couples to the system. For concreteness,

we adopt the Ohmic spectral density with exponential cutoff, 230

J(w) = W;fwe“/“":, (11)

where ¢ is the Kondo parameter controlling the overall system—bath coupling strength, and
w, is the cutoff frequency that defines the timescale of bath memory.
Throughout this tutorial, we assume that the system is initially in the donor state and

that the nuclear degrees of freedom are in thermal equilibrium with respect to the mean of

the donor and acceptor Hamiltonians. The corresponding initial condition is

p(0) = [DXD[© pn(0), (12)

N, (P2 1 _.
55 on)
pu(0) = . (13

No (P21 .. ’
Tr, {exp [—5 =+ w?Rf)] }
i=1\ 2 2

where 8 = 1/(kgT) is the inverse temperature. The spin—boson model is therefore fully

specified by five parameters: the energy bias €, coupling strength I', inverse temperature 3,
system—bath coupling constant &, and cutoff frequency w. (Script S.1.1).

The spin—-boson model has served as a fundamental testing ground for open-system
methodologies for decades, inspiring a wide range of numerically exact and approximate
approaches. 91030739 Ag a benchmark for the simulations presented here, we employ the nu-
merically exact tensor-train thermofield dynamics (TT-TFD) method,3® which has been inte-
grated into the QFlux package. The derivation of the TT-TFD formalism and details of its
implementation were introduced in Part I. The TT-TFD propagates the thermal quantum
state using the time-dependent variational principle (TDVP)“’ and performs tensor-train
(TT) operations efficiently via the mpsqd library.*! The Script S.1.2 demonstrates how to
perform such a simulation within QFlux.

The TT-TFD results provide a reference for evaluating the performance of quantum
simulations based on the GQME and Sz.-Nagy dilation formalism. In the next section,
we use the spin—boson model to demonstrate how the projected Liouvillian and memory
kernel are constructed within QFlux, and how the resulting non-Markovian dynamics can
be simulated and compared to the TT-TFD benchmark.

Since the spin-boson model contains two electronic states (N, = 2), the reduced electronic
density operator is represented by a 2 x 2 matrix which can be given in terms of four
matrix elements: o;;(t) = (i|6(¢)|j) with i,j € {D, A}. Here, the diagonal elements o;;(?),

which are known as populations, correspond to the occupancies of the donor and acceptor

1.0
— TTTFD
+ 0.8
Q
a
o}
0.6 -
T T T T T T T
0.0 0.5 1.0 1.5 2.0 2.5 3.0

[t

Figure 1: Population dynamics on the donor state |D) for the spin—boson model, obtained
using the TT-TFD method. The oscillatory behavior reflects coherent energy exchange
between the donor and acceptor states, while the gradual decay arises from bath-induced
dissipation.

states, while the off-diagonal terms, which are known as coherences, contain information
about the coherent nature of the state.! Focusing on electronic energy and charge transfer,
our focus would be on the dynamics of the populations of the donor and acceptor states,
{opp(t),044(1)}.

The electronic reduced density operator is represented in the code in its vectorized form:
6(t) = lopp(t), 0pa(t), oap(t), oaa(t)] (14)
Thus, according to Eq. (12), the electronic initial state is 5(0) = |D){D| = [1,0,0,0]". In

this representation, the super-operators (E)g and /C(t) are represented by 4 x4 matrices.

4 The projected Liouvillian

We start with determining (E)g in Eq. (7). This electronic superoperator is defined by the

way it acts on an arbitrary electronic operator A:

A A

(Lo A="Tr, {[H,pn(0) ® A]} = [e6. + T6,, A . (15)

To get the second equality, we used the property

A A

2

P2 1 .. N P2 1 a4
5 T in?R?, pn(0) ® A} = lQ + §w3R?, ﬁn(O)] ®A=0,

and
Tr, {e;Ripn(0)} =0,

since the expectation value of the position operator in an unshifted harmonic oscillator at
thermal equilibrium vanishes.
Using the vectorized form of the system subspace operator in Eq. (14), (£)? in Eq. (15)

can be written as

(L), = : (16)

The projected Liouvillian <£>2 describes the time evolution that would be observed if the
system was uncoupled from the bath [i.e. the memory kernel K(¢) in Eq. (8) is zero since

P =7 and Q = 0], integrating Eq. (6) with K(t) = 0 gives
6(t) = e 1Ot 5(0) (17)

The Scripts S.2.1 and S.2.2 show how the dynamics can be calculated and the result is
shown in Fig. 2. The system oscillates between the donor state |D) and the acceptor state
|A), which corresponds to the time evolution of the pure system without the nuclear bath
(i.e. dynamics of the two-level closed system®). Compared to the TT-TFD results, coupling

to the bath brings in the dissipation effect, which makes the oscillation decay.

10

1.0 ————
Liguvillian only
e TI-TFD
+ 0.8 1
-._.-Q e®%%e .
o . ®
) .
0.6 N »
L
. .
T T T T T T T
0.0 0.5 1.0 1.5 2.0 2.5 3.0

Figure 2: The population dynamics on the donor state |D). Here the dynamics correspond
to the projected Liouvillian only. The numerically exact TT-TFD result is also shown for
comparison.

5 The memory kernel

The memory kernel, Eq. (8), is obtained by solving the following Volterra equation of the

second kind: 6:33:42-44

(1) = () — 3 FONL) +1 [dr Flt —) K(r) (18)

Here, the projection-free inputs (PFIs) F(t) and F(t) are

F(t) = 7{@ Tr, [Lo~ /"5, (0)] (19)

: i L .
f@:_ﬁqn@aww%@y (20)

As shown in Script S.3.1, QFlux evaluates the memory kernel directly. One first spec-
ifies the spin-boson model to create a DynamicsGQME object SBM, and uses TT-TFD to
compute the propagator (see Section 5.1). Once the propagator is available, invoking the
get_memory_kernel method of the DynamicsGQME class computes the PFIs and then solves

Eq. (18) for ().

In the following, we provide a step-by-step illustration of how to calculate the PFIs and

11

then use them to obtain the memory kernel by solving Eq. (18).

5.1 Calculation of the Projection-Free Inputs

21,24,30,38

The PFIs may be obtained in multiple ways. In this tutorial, we construct them

via TT-TFD. We note that F(t) = i G(t), where G(t) is the (in general non-unitary) time-

evolution superoperator (propagator), defined by
5(t) = G(t)5(0) = Tro[e /" 5,(0)] 6/(0) . (21)

Thus, F(t) and F(t) follow from time-derivatives of the propagator G(t). The superoperator
G(t) has elements G m(t), 7,k,1,m € {D, A}, obtained by preparing [I)(m| ® p,(0) at t=0
and measuring |7) (k| at time ¢. The Script S.3.2 computes {Gjk;(t)} using the TT-TFD
method.*°

Once {G;rim(t)} are obtained via TT-TFD, the PFIs F(t) and F(t) can be obtained

from it by taking time derivatives (see Script S.3.3).

5.2 Computation of the Memory Kernel

The memory kernel is obtained by solving Eq. (18). We rewrite it as

K(t) = g(t)+ [ft =) K(7) dr, (22)

where

o) = iF (W)~ SFOL, ft—7) = Flt— 7).

This can be implemented as shown in Script S.3.4.

We solve Eq. (22) by fixed-point iteration at discrete times ¢, = nAt, n =0,..., N with

12

NAt = t. The iteration is initialized with K (t,) = g(t,) and proceeds until convergence:

KO (tn) = g(tn),

K(l)(tn) =g(t,) + /ndT flt, —71) K© (1),

with stopping criterion

S () = K (8)| < 10710 for all j, k, 1, m, n.

Jk,Im jk,dm

The time integrals are evaluated using the trapezoidal rule, and convergence is tested
element by element for all matrix elements and time steps (Script S.3.5).

The function Calculatelntegral in Script S.3.6 calculates the integral part of the
Volterra equation through the trapezoidal rule which approximates an integral on a uni-

form grid with NV slices as:

[100~ 170+ 410+ 3 pGavin], (23
k=1

where h = (a —b) / N.

As an illustration, Fig. 3 shows two representative elements of the memory kernel,
Kpp.pp(t) and Kpapp(t). The quantity Kpp pp(t) remains small, indicating that the
environment has only a weak direct effect on the population opp(t). In contrast, Kpa pp(t)
exhibits a larger amplitude - a bath-induced process that converts the population opp(7T)

into the coherence opa(t).

13

The memory kernel matrix element Kpa pp(t) starts at zero, rises, and then decays as
the bath relaxes. If it decays to zero by a characteristic time 7p, then the bath loses its
memory beyond 7g, and values of opp(t — 75) for 73 > 75 no longer contribute to the

current dynamics of op4(t).

0.15
— Re Kpa,oo
0.10 1 — Re Kpp,oo
=
id 0.05
4 I /\
T T T T T T T
0.0 0.5 1.0 1.5 2.0 2.5 3.0

[t

Figure 3: Memory kernel for the Spin-Boson model visualized using Script S.3.7. Here only
Kpp.pp(t) and Kpa pp(t) elements are shown.

6 Solution of the GQME

Given (£)° and K(7) from the preceding subsections, the GQME in Eq. (6) can be numer-
ically integrated using a 4th-order Runge-Kutta (RK4) scheme. In practice, this is done
by calling the solve_ggme method of the DynamicsGQME class in QFlux. In Script S.4.1,
the memory kernel is supplied together with a chosen memory-time cutoff, and solve_gqme
returns the time-evolved reduced density operator &(t).

In the following Script S.4.2, we detail its implementation. Starting from the initial value
problem

d
d—‘z = f(t,y) with an initial value y(t9) = yo , (24)

and substituting (¢) for y, the RK4 method propagates y from time t, to time t,,1 (n =

14

0,1,2,...) as follows:

h
Yntl = Yn T 6 (k’l + 2ko + 2ks + k‘4)> (25)

where v, = y(t), Yns1 = Y(tas1), h is the time step, and

kl :f<tnayn)
h h
k2:f<tn+2ayn+ 2k1>
h h

ka = f(tn+ by yn + hks).

Compared to the GQME in Eq. (6), the time-derivate function f(¢,y) in Eq. (24) is

f(t,&) = —;Z<£Jklm O-Zm Z/dT’Cjklm Ulm(t - T) 3 (26)

Ilm Im

which is calculated using the extended trapezoidal rule using the function Calculatef in

Script S.4.3.

With the functions PropagateRK4 and Calculatef defined, the GQME is solved to obtain
d(t) as implemented in Script S.4.4.

The result shows that the dynamics calculated from GQME are the same as the Exact TT-

TFD result which demonstrates the correctness of our memory kernel and GQME approach.

15

1.0 1
— GOME

® benchmark TT-TFD

0.0 0.5 1.0 1.5 2.0 2.5 3.0

[t

Figure 4: GQME result of the population on the donor state | D) for the Spin-Boson model,
compared with numerically exact TT-TFD result.

7 Quantum Algorithms of GQME based on Dilation

7.1 Solving the GQME to get the propagator

In this section we introduce the quantum simulation of the GQME. The reduced dynamics

of an open system can be written in terms of its (generally non-unitary) propagator G(t):
a(t)=G(t)a(0). (27)

The non-unitarity of G(t) reflects the coupling to an environment, which induces irreversible
processes and memory effects in the subsystem.
Substituting Eq. (27) into Eq. (6) and using the fact that the GQME must hold for an

arbitrary 6(0), one finds that G(t) satisfies the same generalized quantum master equation:
i t

S = (056() — [drK() G- 7). (28)
0

Starting from the identity superoperator G(0) = I, one can therefore compute G(t) by solving

the same GQME with the (£)% and memory kernel K(7) obtained in the previous sections,

16

as implemented in Script S.5.1.

7.2 Dilation of the non-unitary propagator

We now introduce the key step enabling quantum simulation: the Sz.-Nagy unitary dilation

45-48

procedure, which embeds the non-unitary propagator G(¢) into a unitary evolution on

an enlarged Hilbert space.”

We begin by computing the operator norm of G(t) to determine whether it is a contraction:

1G(@0) o = sup HQH(ZFH <1. (29)

If G(t) is not a contraction, we introduce a normalization factor n. > [|G(¢)||, and define the
rescaled propagator G'(t) = G(t)/n., which is then a contraction.
For a contraction G'(t), the Sz.-Nagy unitary dilation is given by

Uor (1) = G'(t) Dgn(t) | (30)

Dg(t) —G"(t)

where

Do(t) = /I -GH(1)G(1), Dgilt) =1 -G)G (1). (31)

The operator Ug/(t) is unitary on a Hilbert space of doubled dimension and reproduces the

action of G'(t) on the original space:

&(0)"
- 0

g'(t)5(0) = Ug(t) E (32)
0

such that projecting the output back onto the original subspace yields the same result as

17

applying G'(t) directly.
The function dilate in Script S.5.2 implements this procedure: given G(t) as input it

returns the dilation Ug (t) and the corresponding normalization factor n..

7.3 Quantum Simulation of GQME with QASM Simulator

In this section, we will delve into the simulation of GQME using Qiskit’s QASM simulator,
focusing on the spin-boson model.” All components of the quantum algorithm are imple-
mented in the QFlux package, as shown in Script S.5.3.

Here are the detailed steps of the implementation:

o the quantum algorithm starts from initializing the quantum circuit with the initial

state (6(0)T, 0,--- ,O)T.

« For the spin-boson model, this requires three qubits with two from the four components

of 5(0) as in Eq. (14) and one from the dilation procedure that doubles the space.

o After initialization, the dilated propagator Ug (t) is converted into a quantum gate and

applied to the quantum circuit.

o Then, measuring two qubits at 00 or 11 [the first or fourth component in Eq. (14)]
with the dilated qubit at 0, the electronic populations can be retrieved by taking the

square root of the measuring probability, and multiplying by the normalization factor

n. is the dilation process: 6pp(t) = nev/ FPooo and G44(t) = ney/ Pori .-

The corresponding quantum circuit is shown in Figure 5.

5(0) — | <
Uq (t)
0) — | <

Figure 5: Circuit for implementing the GQME with a one-qubit dilation.

18

For each specific time ¢, we generate the quantum circuit and perform the simulations.
We implement the quantum circuit using Qiskit’s QASM simulator, which is shown in
Scripts S.6.1 and S.6.2.

With the QASM simulations complete, we can generate the plots using Script S.6.3 and

compare the resulting electronic state population dynamics to the Exact TT-TFD result (see

Fig. 6).
1.0 1 quantum simulation
e penchmark TT-TFD
+ 0.8 -
(-
S
0.6

0.0 0.5 1.0 1.5 2.0 2.5 3.0

[t

Figure 6: Electronic donor state population dynamics of the spin-boson model, simulated
by the GQME-based quantum algorithm as implemented on the IBM QASM quantum sim-
ulator. The result is compared to the numerically exact TT-TFD result.

8 Conclusions

This tutorial introduced the generalized quantum master equation (GQME) as a rigorous
framework for simulating non-Markovian open quantum dynamics and demonstrated its
practical implementation using the spin—boson model as a representative example. We re-
viewed the formal structure of the GQME, highlighting the role of the memory kernel in
capturing delayed environmental effects, and showed how classical reference simulations can
be carried out efficiently using Python-based tools.

Building on this foundation, we presented a quantum algorithm based on the Sz.-Nagy

19

dilation theorem that embeds the inherently non-unitary, memory-dependent GQME dy-
namics into a unitary evolution on an enlarged Hilbert space. This construction enables
non-Markovian dynamics to be simulated within the standard circuit model of quantum com-
putation and provides a clear pathway for benchmarking quantum implementations against
classical results.

All elements of the workflow were implemented within the QFlux platform, which offers a
reproducible and streamlined environment spanning model formulation, classical validation,
and quantum execution. Together, these components make this tutorial a practical entry
point for the simulation of finite-temperature, non-Markovian open quantum dynamics and
establish a foundation for extending quantum simulation methods beyond the Markovian

regime on current and emerging quantum hardware.

Supporting Information

Detailed code snippets are available in the Supporting Information and corresponding Google

Colab notebook as well as through the QFlux Documentation site.

Acknowledgements

This work was supported by the National Science Foundation under Award No. 2124511 (CCI
Phase I: NSF Center for Quantum Dynamics on Modular Quantum Devices, CQD-MQD),
Award CHE 2154114 (Quantum master equations for simulating chemical dynamics), and
Award No. 2302908 (Engines Development Award: Advancing Quantum Technologies, CT).
The authors also acknowledge the use of IBM Quantum services and open-source software

packages, including Qiskit, Bosonic Qiskit, Strawberry Fields, QuTiP, and MPSQD.

20

https://colab.research.google.com/github/batistagroup/qflux/blob/master/demos/manuscript/SI_VI.ipynb
https://colab.research.google.com/github/batistagroup/qflux/blob/master/demos/manuscript/SI_VI.ipynb
https://qflux.batistalab.com

References

(1)

(2)

(3)

(4)

Nitzan, A. Chemical Dynamics in Condensed Phases. Relaxation, Transfer, and Reac-

tions in Condensed Molecular Systems; Oxford University Press: New York, 2014.

Breuer, H.-P.; Petruccione, F. The Theory of Open Quantum Systems; Oxford Univer-
sity Press: New York, 2007.

Hammes-Schiffer, S.; Stuchebrukhov, A. A. Theory of Coupled Electron and Proton

Transfer Reactions. Chemical Reviews 2010, 110, 6939-6960.

Collini, E.; Wong, C. Y.; Wilk, K. E.; Curmi, P. M. G.; Brumer, P.; Scholes, G. D. Co-
herently wired light-harvesting in photosynthetic marine algae at ambient temperature.

Nature 2010, 463, 644-647.

Clarke, J.; Wilhelm, F. K. Superconducting quantum bits. Nature 2008, /53, 1031—
1042.

Dan, X.; Xu, M.; Yan, Y.; Shi, Q. Generalized master equation for charge transport in
a molecular junction: Exact memory kernels and their high order expansion. Journal

of Chemical Physics 2022, 156, 134114.

Wang, Y.; Mulvihill, E.; Hu, Z.; Lyu, N.; Shivpuje, S.; Liu, Y.; Soley, M. B.; Geva, E.;
Batista, V. S.; Kais, S. Simulating Open Quantum System Dynamics on NISQ Com-
puters with Generalized Quantum Master Equations. Journal of Chemical Theory and

Computation 2023, 19, 4851-4862.

Dan, X.; Geva, E.; Batista, V. S. Simulating Non-Markovian Quantum Dynamics on
NISQ Computers Using the Hierarchical Equations of Motion. Journal of Chemical
Theory and Computation 2025, 21, 1530-1546.

Allen, B. C.; Batista, V. S.; Cabral, D. G. A.; Cianci, C.; Dan, X.; Dutta, R.; Geva, E.;
Hu, Z.; Kais, S.; Khazaei, P.; Lyu, N.; Mulvihill, E.; Shivpuje, S.; Soudackov, A. V.;

21

(10)

(11)

(12)

(13)

(14)

(15)

(16)

Vu, N. P.; Wang, Y.; Wilson, C. QFlux — An Open-Source Python Package for Quan-
tum Dynamics Simulations. https://qflux.batistalab.com, 2025; (accessed: 2025-

10-12).

Dan, X.; Xu, M.; Stockburger, J. T.; Ankerhold, J.; Shi, Q. Efficient low-temperature
simulations for fermionic reservoirs with the hierarchical equations of motion method:

Application to the Anderson impurity model. Physical Review B 2023, 107, 195429.

Dan, X.; Long, Z.; Qiu, T.; Menzel, J. P.; Shi, Q.; Batista, V. Nonadiabatic H-Atom
Scattering Channels on Ge (111) Elucidated by the Hierarchical Equations of Motion.

arXiv preprint arXiw:2509.16916 2025,

Nakajima, S. On Quantum Theory of Transport Phenomena: Steady Diffusion. Progress
of Theoretical Physics 1958, 20, 948-959.

Zwanzig, R. Ensemble Method in the Theory of Irreversibility. The Journal of Chemical
Physics 1960, 33, 1338-1341.

Mori, H. Transport, Collective Motion, and Brownian Motion. Progress of Theoretical

Physics 1965, 33, 423-455.

Vu, N. P.; Dong, D.; Dan, X.; Lyu, N.; Batista, V.; Liu, Y. A Computational Frame-
work for Simulations of Dissipative Nonadiabatic Dynamics on Hybrid Oscillator-Qubit

Quantum Devices. Journal of Chemical Theory and Computation 2025, 21, 6258-6279.

Dutta, R.; Cabral, D. G. A.; Lyu, N.; Vu, N. P.; Wang, Y.; Allen, B.; Dan, X.; Cor-
tinas, R. G.; Khazaei, P.; Schafer, M.; Albornoz, A. C. C. d.; Smart, S. E.; Nie, S.;
Devoret, M. H.; Mazziotti, D. A.; Narang, P.; Wang, C.; Whitfield, J. D.; Wilson, A. K.;
Hendrickson, H. P.; Lidar, D. A.; Pérez-Bernal, F.; Santos, L. F.; Kais, S.; Geva, E.;
Batista, V. S. Simulating Chemistry on Bosonic Quantum Devices. Journal of Chemical

Theory and Computation 2024, 20, 6426—6441.

22

https://qflux.batistalab.com

(17)

(18)

(19)

(20)

(21)

(22)

(23)

Zwanzig, R. Memory Effects in Irreversible Thermodynamics. Physical Review 1961,
124, 983-992.

Montoya-Castillo, A.; Reichman, D. R. Approximate but Accurate Quantum Dynamics
from the Mori Formalism: I. Nonequilibrium Dynamics. Journal of Chemical Physics

2016, 14, 184104.

Montoya-Castillo, A.; Reichman, D. R. Approximate but Accurate Quantum Dynam-
ics from the Mori Formalism. Ii. Equilibrium Time Correlation Functions. Journal of

Chemical Physics 2017, 146, 084110.

Pfalzgraff, W. C.; Montoya-Castillo, A.; Kelly, A.; Markland, T. E. Efficient construc-
tion of generalized master equation memory kernels for multi-state systems from nona-

diabatic quantum-classical dynamics. Journal of Chemical Physics 2019, 150, 2441009.

Mulvihill, E.; Schubert, A.; Sun, X.; Dunietz, B. D.; Geva, E. A Modified Approach
for Simulating Electronically Nonadiabatic Dynamics Via the Generalized Quantum

Master Equation. Journal of Chemical Physics 2019, 150, 034101.

Mulvihill, E.; Gao, X.; Liu, Y.; Schubert, A.; Dunietz, B. D.; Geva, E. Combining the
mapping Hamiltonian linearized semiclassical approach with the generalized quantum

master equation to simulate electronically nonadiabatic molecular dynamics. Journal

of Chemical Physics 2019, 151, 074103.

Mulvihill, E.; Lenn, K. M.; Gao, X.; Schubert, A.; Dunietz, B. D.; Geva, E. Simulat-
ing energy transfer dynamics in the Fenna-Matthews-Olson complex via the modified

generalized quantum master equation. Journal of Chemical Physics 2021, 154, 204109.

Mulvihill, E.; Geva, E. Simulating the dynamics of electronic observables via reduced-
dimensionality generalized quantum master equations. Journal of Chemical Physics

2022, 150, 044119.

23

(25)

(26)

(29)

(30)

(31)

Ng, N.; Limmer, D. T.; Rabani, E. Nonuniqueness of generalized quantum master

equations for a single observable. Journal of Chemical Physics 2021, 155, 156101.

Sayer, T.; Montoya-Castillo, A. Efficient formulation of multitime generalized quantum
master equations: Taming the cost of simulating 2D spectra. Journal of Chemical

Physics 2024, 160, 044108.

May, V.; Kithn, O. Charge and Energy Transfer Dynamics in Molecular Systems; Wiley-
VCH Verlag: Weinheim, 2011.

Lai, Y.; Geva, E. On simulating the dynamics of electronic populations and coherences
via quantum master equations based on treating off-diagonal electronic coupling terms

as a small perturbation. Journal of Chemical Physics 2021, 155, 204101.

Sun, X.; Geva, E. Exact vs. asymptotic spectral densities in the Garg-Onuchic-
Ambegaokar charge transfer model and its effect on Fermi’s golden rule rate constants.

Journal of Chemical Physics 2016, 144, 044106.

Lyu, N.; Mulvihill, E.; Soley, M. B.; Geva, E.; Batista, V. S. Tensor-Train Thermo-
Field Memory Kernels for Generalized Quantum Master Equations. Journal of Chemical

Theory and Computation 2023, 19, 1111-1129.

Makarov, D. E.; Makri, N. Path integrals for dissipative systems by tensor multiplica-
tion. Condensed phase quantum dynamics for arbitrarily long time. Chemical Physics

Letters 1994, 221, 482.

Wang, H.; Thoss, M. Multilayer Formulation of the Multiconfiguration Time-dependent
Hartree Theory. Journal of Chemical Physics 2003, 119, 1289-1299.

Shi, Q.; Geva, E. A New Approach to Calculating the Memory Kernel of the Gener-
alized Quantum Master Equation for an Arbitrary System-Bath Coupling. Journal of
Chemical Physics 2003, 119, 12063.

24

(34)

(35)

(36)

(37)

(38)

(39)

(40)

(41)

(42)

Shi, Q.; Chen, L.; Nan, G.; Xu, R.-X.; Yan, Y. Efficient hierarchical Liouville space
propagator to quantum dissipative dynamics. Journal of Chemical Physics 2009, 130,
084105.

Meyer, H.-D., Gatti, F., Worth, G. A., Eds. Multidimensional Quantum Dynamics:
MCTDH Theory and Applications; Wiley-VCH Verlag: Weinheim, 20009.

Kelly, A.; Brackbill, N.; Markland, T. E. Accurate Nonadiabatic Quantum Dynamics
on the Cheap: Making the Most of Mean Field Theory with Master Equations. Journal

of Chemical Physics 2015, 142, 094110.

Shi, Q.; Xu, Y.; Yan, Y.; Xu, M. Efficient propagation of the hierarchical equations
of motion using the matrix product state method. Journal of Chemical Physics 2018,
148, 174102.

Xu, M.; Yan, Y.; Liu, Y.; Shi, Q. Convergence of high order memory kernels in the
Nakajima-Zwanzig generalized master equation and rate constants: Case study of the

spin-boson model. Journal of Chemical Physics 2018, 148, 164101.

Dan, X.; Shi, Q. Theoretical study of nonadiabatic hydrogen atom scattering dynam-
ics on metal surfaces using the hierarchical equations of motion method. Journal of

Chemical Physics 2023, 159, 044101.

Lubich, C.; Oseledets, I.; Vandereycken, B. Time Integration of Tensor Trains. SIAM
Journal on Numerical Analysis 2015, 53, 917-941.

Guan, W.; Bao, P.; Peng, J.; Lan, Z.; Shi, Q. mpsqd: A matrix product state based
Python package to simulate closed and open system quantum dynamics. Journal of

Chemical Physics 2024, 161, 122501.

Shi, Q.; Geva, E. A Semiclassical Generalized Quantum Master Equation for an Arbi-

trary System-Bath Coupling. Journal of Chemical Physics 2004, 120, 10647-10658.

25

(43) Zhang, M.-L.; Ka, B. J.; Geva, E. Nonequilibrium quantum dynamics in the condensed
phase via the generalized quantum master equation. Journal of Chemical Physics 2006,

125, 044106.

(44) Kelly, A.; Montoya-Castillo, A.; Wang, L.; Markland, T. E. Generalized quantum mas-
ter equations in and out of equilibrium: When can one win? Journal of Chemical

Physics 2016, 14, 184105.

(45) Levy, E.; Shalit, O. M. Dilation theory in finite dimensions: the possible, the impossible

and the unknown. Rocky Mountain Journal of Mathematics 2014, 44, 203-221.

(46) Hu, Z.; Xia, R.; Kais, S. A Quantum Algorithm for Evolving Open Quantum Dynamics

on Quantum Computing Devices. Scientific Reports 2020, 10, 1-9.

(47) Hu, Z.; Head-Marsden, K.; Mazziotti, D. A.; Narang, P.; Kais, S. A General Quan-
tum Algorithm for Open Quantum Dynamics Demonstrated with the Fenna-Matthews-

Olson Complex. Quantum 2022, 6, 726.

(48) Zhang, Y.; Hu, Z.; Wang, Y.; Kais, S. Quantum Simulation of the Radical Pair Dynam-

ics of the Avian Compass. Journal of Physical Chemistry Letters 2023, 1., 832-837.

26

Supporting Information for

QFlux: An Open-Source Toolkit for Quantum
Dynamics Simulations on Quantum Computers.

Part VI — The Generalized Quantum Master

Xiaohan Dan," Pouya Khazaei,®*+ Brandon Allen,’ Ningyi Lyu,! Callie Wilson,! Ellen
Mulvihill,
Yuchen Wang,¥ Saurabh Shivpuje,¥ Sabre Kais,! Victor S. Batista,* !l and

Eitan Geva**

T Department of Chemistry, Yale University, New Haven, CT 06520, USA
tDepartment of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
Y Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
$ Department of Electrical and Computer Engineering, Department of Chemistry, North
Carolina State University, Raleigh, North Carolina 27606, USA
I'Yale Quantum Institute, Yale University, New Haven, CT 06511, USA

L Contributed equally to this work

E-mail: victor.batista@yale.edu; eitan@umich.edu

S1

Contents

S.1 Spin—Boson Model S4
S.1.1 Model Parameters S4
S.1.2 TT-TFD Reference Dynamics S4

S.2 Projected Liouvillian S5
S.2.1 Constructing the Projected Liouvillian S6
S.2.2 Markovian Dynamics and Comparison to TT-TFD S6

S.3 Memory Kernel for the GQME S7
S.3.1 Obtain the Kernel with QFlux S7
S.3.2 Propagator Superoperator U(t) S8
S.3.3 Projection-Free Inputs F(¢) and F(£) S9
S.3.4 Linear Term g(t) o S10
S.3.5 Volterra Solver for IC(t) Lo S11

S.3.5.1 Main Iteration.o S11
S.3.5.2 Trapezoidal Integral Helper S12
S.3.6 Kernel Diagnostics S13

S.4 Solving the GQME S13
S.4.1 One-Line Solver S13
S.4.2 Manual RK4 Propagation S14

S.4.21 RK4Step S14
S.4.2.2 Derivative Function oo S14
S.4.2.3 Full Propagation and Benchmarking S15

S.5 Quantum Algorithms for GQME via Unitary Dilation S16
S.5.1 Compute G(t) from the GQME S16
S.5.2 Sz-Nagy Dilation S17

S.5.3 Quantum Simulation via QFlux Interface S18

S.6 QASM Simulation and Visualization S19
S.6.1 Qiskit Dependencies. L S19
S.6.2 QASM Execution Loop S19
S.6.3 Visualization and Benchmarking S21

S.7 Practical Notes and Tips S22

S3

S.1 Spin—Boson Model

The Spin—Boson Model (SBM) captures a two-level system (donor/acceptor) coupled to a
bosonic environment. Below we define the central parameters: diabatic coupling I'p4, energy
bias €, inverse temperature 3, the Kondo parameter £, and a bath cutoff frequency w.. These

values set the Hamiltonian and spectral density used throughout.

S.1.1 Model Parameters

The snippet below initializes all physical parameters used by gqflux modules downstream.

Script S.1.1: Spin—Boson Model parameters L]

GAMMA_DA = 1.0 # diabatic coupling
EPSILON = 1.0 # energy bias

BETA = 5.0 # inverse temperature
XI =0.1 # Kondo parameter
OMEGA_C = 2.0 # cutoff frequency

S.1.2 TT-TFD Reference Dynamics

We employ TT-TFD as a high-fidelity baseline for the reduced density operator (RDO).
You can toggle between computing fresh trajectories and loading precomputed data using

Is_run_dynamics. The plot compares opp(t) from TT-TFD with later approximations.

Script S.1.2: Using TT-TFD to simulate the Spin—-Boson Model 2

import numpy as np

import matplotlib.pyplot as plt
import gflux

import gqflux.GQME.readwrite as wr
import qflux.GQME.params as pa
import matplotlib.pyplot as plt

S4

https://colab.research.google.com/github/batistagroup/qflux/blob/master/demos/manuscript/SI_VI.ipynb
https://colab.research.google.com/github/batistagroup/qflux/blob/master/demos/manuscript/SI_VI.ipynb

Download the precomputed trajectory data files

from the qflux GitHub repository https://github.com/batistagroup/qflux

to the local folder ./GQUME_example

from gqflux.utils.io import download_github_directory

data_dir = ’GQME_Example_data’

download_github_directory(’batistagroup’, ’qflux’, ’data/GQME_Example’, data_dir)

setup the Hamiltonian and initial state for Spin-Boson Model
Hsys = pa.EPSILON*pa.Z + pa.GAMMA_DAx*pa.X

rho0 = np.zeros((pa.DOF_E,pa.DOF_E) ,dtype=np.complex128)
rho0[0,0] = 1.0

Create the Spin-Boson model (SBM)
SBM = DynamicsGQME (pa.DOF_E,Hsys,rho0)
SBM.setup_timestep(pa.DT, pa.TIME_STEPS)

The TT-TFD simulation (may take significant computational time).

Is_run_dynamics = True -- Trajectories will be computed and the data will be
written to ‘data_dir¢

Is_run_dynamics = False —— Trajectory data will be read from data_dir

Is_run_dynamics = False

if Is_run_dynamics:

RDO: reduced density operator, contain the information of population and

coherence

initial_state=0: initial at Donor state

t, RDO_arr = SBM.tt_tfd(initial_state=0, show_steptime=True, update_type=’rk4’)

wr.output_operator_array(t, RDO_arr, f"{data_dir}/TTTFD_Output/TFDSigma_")
else:

Read precomputed data from disk

t, RDO_arr = wr.read_operator_array(pa.TIME_STEPS,

f"{data_dir}/TTTFD_Output/TFDSigma_")

plt.figure(figsize=(6,4))

plt.plot(t, RDO_arr[:,0] .real,’b-’, label="TT-TFD’)
plt.xlabel(r’Γt’,fontsize=15)
plt.ylabel(r’σ_{DD}(t)’,fontsize=15)
plt.legend()

plt.show()

S.2 Projected Liouvillian

Before introducing memory effects, we construct the system-only projected Liouvillian. This

Markovian generator omits bath history and serves as a foil for non-Markovian GQME

S5

behavior.

S.2.1 Constructing the Projected Liouvillian

The following code builds the projected Liouvillian <£)SL in the diabatic basis from € and

I'pa.

Script S.2.1: Projected Liouvillian L]

import numpy as np

LNO = np.zeros((pa.DOF_E_SQ, pa.DOF_E_SQ))

LNO[0] [1] = LNO[1] [0] = LNO[2] [3] = LNO[3][2] = -GAMMA_DA
LNO[0] [2] = LNO[2] [0] = LNO[1][3] = LNO[3][1] = GAMMA_DA
LNO[1][1] = 2. * EPSILON
LNO[2] [2] = -2. * EPSILON

S.2.2 Markovian Dynamics and Comparison to TT-TFD

We propagate using exp(—i <£>2 t) and compare opp(t) to the TT-TFD benchmark, high-

lighting the role of missing memory.

Script S.2.2: The dynamics with projected Liouvillian only

import scipy.linalg as LA

sigma_liou = np.zeros((pa.TIME_STEPS, pa.DOF_E_SQ), dtype=np.complex128)
time_arr = np.linspace(0, (pa.TIME_STEPS-1)*pa.DT,pa.TIME_STEPS)
sigma_liou[0] = np.array([1.0,0,0,0],dtype=np.complex128)
for i in range(1,pa.TIME_STEPS):

sigma_liou[i] = LA.expm(-1j*LNO*pa.DT)@sigma_liou[i-1]

read TT-TFD result and plot to compare

timeVec, sigma_tt_tfd =
wr.read_operator_array(pa.TIME_STEPS,f"{data_dir}/TTTFD_Output/TFDSigma_")

plt.figure(figsize=(6,4))

S6

https://colab.research.google.com/github/batistagroup/qflux/blob/master/demos/manuscript/SI_VI.ipynb
https://colab.research.google.com/github/batistagroup/qflux/blob/master/demos/manuscript/SI_VI.ipynb

plt.plot(time_arr, sigma_lioul[:,0].real,’b-’, label=’Liouvillian only’)

plt.plot(timeVec, sigma_tt_tfd[:,0].real,’ko’, markersize=4,markevery=15,
label="TT-TFD’)

plt.xlabel(r’Γt’,fontsize=15)

plt.ylabel(r’σ_{DD}(t)’,fontsize=15)

plt.legend(loc = (0.22, 0.8))

plt.show()

S.3 Memory Kernel for the GQME

The GQME introduces a memory kernel () that captures non-Markovian bath effects. We

now show how to construct IC(¢) using QFlux and TT-TFD data.

S.3.1 Obtain the Kernel with QFlux

We set up DynamicsGQME, prepare Hgy, supply (or read) the TT-TFD propagator, and

compute the kernel.

Script S.3.1: Using QFlux to obtain the memory kernel L]

from gqflux.GQME.dynamics_GQME import DynamicsGQME

Setup the Hamiltonian and initial state for Spin-Boson Model
Hsys = pa.EPSILON*pa.Z + pa.GAMMA_DA*pa.X

rho0 = np.zeros((pa.DOF_E, pa.DOF_E), dtype=np.complex128)
rho0[0,0] =1.0

#Create the Spin-Boson model (SBM)
SBM = DynamicsGQME(pa.DOF_E, Hsys, rhoO)
SBM.setup_timestep(pa.DT, pa.TIME_STEPS)

1. Get the propagator for memory kernel calculation

The line below calculates all U elements with TT-TFD. The expected waiting time %s
40 minutes on Google Colab.

To save time, the results are already pre-computed and saved, and Is_run_dynamics
1s therefore set as False.

The following code would still run normally. Please set Is_run_dynamics = True if

S7

https://colab.research.google.com/github/batistagroup/qflux/blob/master/demos/manuscript/SI_VI.ipynb

one wishes to perform these calculations.

if Is_run_dynamics:
print (° now using tt-tfd to calculate propagator’)
timeVec,Gt = SBM.cal_propagator_tttfd()
print (’End of calculate propagator’)

output the propagator
wr.output_superoper_array(timeVec, Gt, f"{data_dir}/U_Output/U_")
else:
timeVec,Gt = wr.read_superoper_array(pa.TIME_STEPS, f"{data_dir}/U_Output/U_")
SBM. setup_propagator (Gt)

2. Volterra scheme: calculating the Memory kernel and output to the file
kernel = SBM.get_memory_kernel()

output the kernel

wr.output_superoper_array(timeVec, kernel, f"{data_dir}/K_Output/K_")

Plot the kernel without the last two boundary points that have numerical errors

plt.figure(figsize=(6,4))

plt.plot(timeVec[:-2], kernel[:-2,1,0] .real,’b-’, label=r’Re
$\mathcal{K}_{DA,DD}$’)

plt.plot(timeVec[:-2], kernel[:-2,0,0] .real,’k-’, label=r’Re
$\mathcal{K}_{DD,DD}$’)

plt.xlabel (r’Γt’,fontsize=15)

plt.ylabel(r’\mathcal{K}(t)’,fontsize=15)

plt.legend(loc = ’upper right’)

plt.show()

S.3.2 Propagator Superoperator U(t)

We compute the full set of initializations needed to reconstruct U(t) for populations and

coherences and write the resulting superoperator to disk.

Script S.3.2: The propagator L]

def cal U_tt_tfd():
U = np.zeros((pa.TIME_STEPS, pa.DOF_E_SQ, pa.DOF_E_SQ), dtype=np.complex128)

tt-tfd with initial state 0,1,2,3
initial state [0> means donor state [D>, [3> means acceptor state [A>

S8

https://colab.research.google.com/github/batistagroup/qflux/blob/master/demos/manuscript/SI_VI.ipynb

[1> is (ID> + [A>)/sqrt(2), 2> is (|D> + i[/A>)/sqrt(2)

print (’========calculate the propagator, starting from O state========")
t,U[:,:,0] = tfd.tt_t£d(0)

print (’========calculate the propagator, starting from 1 state========’)
t,U[:,:,1] = tfd.tt_tfd(1)

print (’========calculate the propagator, starting from 2 state========’)
t,U[:,:,2] = tfd.tt_tfd(2)

print (’========calculate the propagator, starting from 3 state========")
t,U[:,:,3] = tfd.tt_t£fd(3)

print (’========calculate the propagator done========’)

U_final = U.copy()

the coherence elements that start at initial state [D><A| and [A><D/

15 the linear combination of above U results

|D><A| = |1><1] + 4 * [2><2] - 1/2 * (1 + i) * (]0><0] + [3><3]/)
U_finall:,:,1] =U[:,:,1] +1.j *U[:,:,2] - 0.5 * (1. +1.j) * (U[:,:,0] +
Ul:,:,3])

[A><D[| = [1><1] - @ * [2><2] - 1/2 * (1 - i) * ([]0><0] + [3><3])
U_finalfl:,:,2] =U[:,:,1] - 1.5 *xU[:,:,2] - 0.5 *% (1. - 1.3) * (U[:,:,0] +
Ul:,:,3D

return t,U_final

The line below calculates all U elements with TT-TFD. The expected waiting
time ts 40 minutes on Google Colab. To save time, the results are already
pre-computed and saved, and Is_run_dynamics 1S therefore set as False.

Set Is_run_dynamics = True to perform these calculations.

if Is_run_dynamics:
t, Gt = cal_ U_tt_tfd()
output the propagator
Wr.output_superoper_array(t,Gt,f"{data_dir}/U_Output/U_")

S.3.3 Projection-Free Inputs F(t) and F(t)

We differentiate U(t) component-wise to obtain the projection-free inputs that enter the

Volterra equation.

S9

Script S.3.3: Projection-Free Inputs F(7) and F(7)

def cal F():
#read the propagator data from files
timeVec,U = wr.read_superoper_array(pa.TIME_STEPS,f"{data_dir}/U_Output/U_")

F = np.zeros((pa.TIME_STEPS, pa.DOF_E_SQ, pa.DOF_E_SQ), dtype=np.complex128)
Fdot = np.zeros((pa.TIME_STEPS, pa.DOF_E_SQ, pa.DOF_E_SQ), dtype=np.complex128)

for j in range(pa.DOF_E_SQ):
for k in range(pa.DOF_E_SQ):
extracts real and imag parts of U element
Ureal = U[:,j,k].copy() .real
Uimag = U[:,j,k].copy() .imag

#F =14 * d/dt U so Re[F] = -1 * d/dt Im[U] and Im[F] = d/dt Re[U]
Freal = -1. * np.gradient (Uimag.flatten(), pa.DT, edge_order = 2)
Fimag = np.gradient (Ureal.flatten(), pa.DT, edge_order = 2)

Fdot = d/dt F so Re[Fdot] = d/dt Re[F] and Im[Fdot] = d/dt Im[F]
Fdotreal = np.gradient(Freal, pa.DT)
Fdotimag = np.gradient (Fimag, pa.DT)

F[:,j,k] = Freal[:] + 1.j * Fimag[:]
Fdot[:,j,k] = Fdotreal[:] + 1.j * Fdotimag[:]

return timeVec,F,Fdot

timeVec,F,Fdot = cal_F()

S.3.4 Linear Term g(t)

The linear contribution combines F with the Liouvillian action.

Script S.3.4: Linear term g(t) @

linearTerm = 1.j * Fdot.copy() # first term of the linear part
for 1 in range(pa.TIME_STEPS):

subtract second term of linear part

linearTerm[1l,:,:] -= 1./pa.HBAR * F[1,:,:] @ LNO

S10

https://colab.research.google.com/github/batistagroup/qflux/blob/master/demos/manuscript/SI_VI.ipynb
https://colab.research.google.com/github/batistagroup/qflux/blob/master/demos/manuscript/SI_VI.ipynb

S.3.5 Volterra Solver for K(t)

We iterate a Volterra equation with trapezoidal quadrature until the full kernel converges.

S.3.5.1 Main Iteration

Script S.3.5: Memory Kernel - Volterra Algorithm

import time
from tqdm import tqdm

START_TIME = time.time() # starts timing

sets initial guess to the linear part
prevKernel = linearTerm.copy ()
kernel = linearTerm.copy()

loop for iterations
for numIter in tqdm(range(1l, pa.MAX_ITERS + 1)):

iterStartTime = time.time() # starts timing of iteration
#print ("Iteration:", numlter)

calculates kernel using prevKernel and trapezoidal rule
kernel = CalculateIntegral(F, linearTerm, prevKernel, kernel)

numConv = 0 # parameter used to check convergence of entire kernel
for i in range(pa.DOF_E_SQ):
for j in range(pa.DOF_E_SQ):
for n in range(pa.TIME_STEPS):
1if matrixz element and time step of kernel is converged, adds 1
if abs(kernel[n] [i] [j] - prevKernel[n] [i][j]) <= pa.CONVERGENCE_PARAM:
numConv += 1

if at maz tters, prints which elements and time steps did not
converge and prevKernel and kernel values
elif numIter == pa.MAX_ITERS:
print ("\tK time step and matrix element that didn’t converge: s,

hshs"h(n,i,3))
#print ("\tIteration time:", time.time() - iterStartTime)
enters i1f all times steps and matriz elements of kernel converged

if numConv == pa.TIME_STEPS * pa.DOF_E_SQ * pa.DOF_E_SQ:
prints number of iterations and time necessary for convergence

S11

https://colab.research.google.com/github/batistagroup/qflux/blob/master/demos/manuscript/SI_VI.ipynb

print ("Number of Iterations:", numIter, "\tVolterra time:", time.time() -
START_TIME)

prints memory kernel to files
wr.output_superoper_array(timeVec,kernel,f"{data_dir}/K_Output/K_")

break # exits the iteration loop

1f not converged, stores kernel as prevKernel, zeros the kernel, and then
sets kernel at t = 0 to linear part

prevKernel = kernel.copy ()

kernel = linearTerm.copy()

if maxz tters reached, prints lack of convergence

if numIter == pa.MAX_ITERS:
print ("\tERROR: Did not converge for %s iterations"’pa.MAX_ITERS)
print ("\tVolterra time:", print(time.time() - START_TIME))

S.3.5.2 Trapezoidal Integral Helper

Script S.3.6: Function to Calculate Integral via Trapezoidal Rule

def CalculateIntegral(F, linearTerm, prevKernel, kernel):

time step loop starts at 1 because K is equal to linear part at t =0
for n in range(1, pa.TIME_STEPS):
kernel[n,:,:] = 0.

f(a) and f(b) terms
kernel[n,:,:] += 0.5 * pa.DT * F[n,:,:] @ kernel[O,:,:]
kernel[n,:,:] += 0.5 * pa.DT * F[0,:,:] @ prevKernel([n,:,:]

sum of f(a + kh) term

for ¢ in range(1, n):
since a new (supposed-to-be-better) guess for the
kernel has been calculated for previous time steps,
can use it rather than prevKernel
kernel[n,:,:] += pa.DT * F[n - c,:,:] @ kernel([c,:,:]

multiplies by 1 and adds the linear part
kernel[n,:,:] = 1.j * kernel[n,:,:] + linearTerm[n,:,:]

return kernel

S12

https://colab.research.google.com/github/batistagroup/qflux/blob/master/demos/manuscript/SI_VI.ipynb

S.3.6 Kernel Diagnostics

We visualize representative real parts of kernel elements and omit last boundary points often

affected by numerical edge effects.

Script S.3.7: Plot the memory kernel 2

Plot the kernel without the last two boundary points that have numerical errors

plt.figure(figsize=(6,4))

plt.plot(timeVec[:-2], kernel[:-2,1,0] .real,’b-’, label=r’Re
$\mathcal{K}_{DA,DD}$’)

plt.plot(timeVec[:-2], kernel[:-2,0,0] .real,’k-’, label=r’Re
$\mathcal{K}_{DD,DD}$’)

plt.xlabel(r’Γt’,fontsize=15)

plt.ylabel(r’\mathcal{K}(t)’,fontsize=15)

plt.legend(loc = ’upper right’)

plt.show()

S.4 Solving the GQME

With IC(¢) in hand, we propagate the reduced density matrix either via a convenience call

(SBM.solve_ggme) or manually with RK4 to expose the structure of the calculation.

S.4.1 One-Line Solver

Script S.4.1: Solve GQME through QFlux

sigma = SBM.solve_gqgme (kernel, pa.MEM_TIME)

S13

https://colab.research.google.com/github/batistagroup/qflux/blob/master/demos/manuscript/SI_VI.ipynb
https://colab.research.google.com/github/batistagroup/qflux/blob/master/demos/manuscript/SI_VI.ipynb

S.4.2 Manual RK4 Propagation

We expose the integrator and the derivative function f used to evolve o(t) under the GQME

with finite memory time.

S.4.2.1 RK4 Step

Script S.4.2: GQME - Propagation via RK4 Method]

def PropagateRK4(currentTime, memTime, kernel,
sigma_hold, sigma, DT=pa.DT):

Hh
|
o
I

Calculatef (currentTime, memTime,
kernel, sigma, sigma_hold)

k_1 = sigma_hold + DT * £_0 / 2.

f_1 = Calculatef (currentTime + DT / 2., memTime,
kernel, sigma, k_1)

k_2 = sigma_hold + DT * £_1 /2.

f 2 = Calculatef (currentTime + DT / 2., memTime,

kernel, sigma, k_2)

k_3 = sigma_hold + DT * £_2

f 3 = Calculatef (currentTime + DT, memTime,
kernel, sigma, k_3)

sigma_hold +=DT / 6. * (f_0+ 2. *x f_1 +2. xf_2 + f_3)

return sigma_hold

S.4.2.2 Derivative Function

S14

https://colab.research.google.com/github/batistagroup/qflux/blob/master/demos/manuscript/SI_VI.ipynb

Script S.4.3: Calculating the function f

def Calculatef (currentTime, memTime, kernel, sigma_array, kVec, DT=pa.DT,
HBAR=pa.HBAR, LNO=LNO) :

memTimeSteps = int (memTime / DT)
currentTimeStep = int(currentTime / DT)

f_t = np.zeros(kVec.shape, dtype=np.complex128)
f_t -=1.j / HBAR * LNO @ kVec
limit = memTimeSteps
if currentTimeStep < (memTimeSteps - 1):
limit = currentTimeStep
for 1 in range(limit):

f_t —= DT * kernel[l,:,:] @ sigma_array[currentTimeStep - 1]

return f_t

S.4.2.3 Full Propagation and Benchmarking

We propagate, save o(t), and compare to TT-TFD.

Script S.4.4: GQME - Propagation of the Density Matrix]

from tqdm import tqdm

read the memory kernel
timeVec, kernel = wr.read_superoper_array(pa.TIME_STEPS, f"{data_dir}/K_Output/K_")

array for reduced density matrixz elements
sigma = np.zeros((pa.TIME_STEPS, pa.DOF_E_SQ), dtype=np.complex128)

array to hold copy of sigma
sigma_hold = np.zeros(pa.DOF_E_SQ, dtype = np.complex128)

sets the inttial state at Donor State
sigma[0,0] = 1.
sigma_hold[0] = 1.

loop to propagate sigma

S15

https://colab.research.google.com/github/batistagroup/qflux/blob/master/demos/manuscript/SI_VI.ipynb
https://colab.research.google.com/github/batistagroup/qflux/blob/master/demos/manuscript/SI_VI.ipynb

print (">>> Starting GQME propagation, memory time =", pa.MEM_TIME)
for 1 in tqdm(range(pa.TIME_STEPS - 1)): # it propagates to the final time step

#if 14100==0: print (1)

currentTime = 1 * pa.DT

sigma_hold = PropagateRK4 (currentTime, pa.MEM_TIME, kernel, sigma_hold, sigma)
sigma[l + 1] = sigma_hold.copy()

prints sigma to files
wr.output_operator_array(timeVec, sigma, f"{data_dir}/GQME_Output/Sigma_")

Read the reference data and plot

timeVec, sigma_tt_tfd =
wr.read_operator_array(pa.TIME_STEPS,f"{data_dir}/TTTFD_Output/TFDSigma_")

timeVec, sigma =
wr.read_operator_array(pa.TIME_STEPS,f"{data_dir}/GQME_Output/Sigma_")

plt.figure(figsize=(6, 4))

plt.plot(timeVec, sigmal:,0].real,’b-’, label=’GQME’)

plt.plot(timeVec, sigma_tt_tfd[:,0] .real ,’ko’, markersize=4, markevery=15,
label=’benchmark_TT-TFD’)

plt.xlabel(r’Γt’,fontsize=15)

plt.ylabel(r’σ_{DD}(t)’,fontsize=15)

plt.legend ()

plt.show()

S.5 Quantum Algorithms for GQME via Unitary Di-
lation

To realize a quantum-circuit-level emulation of non-unitary dynamics, we compute the su-
perpropagator G(t) and dilate it to a unitary using the Sz.-Nagy construction. The dilated

system is then executed on a QASM simulator.

S.5.1 Compute G(t) from the GQME

S16

Script S.5.1: Calculating G(t) by solving the GQME L

from tqdm import tqdm

read the memory kernel
timeVec,kernel = wr.read_superoper_array(pa.TIME_STEPS, f"{data_dir}/K_Output/K_")

array for Propagator superoperator elements
G_prop = np.zeros ((pa.TIME_STEPS, pa.DOF_E_SQ, pa.DOF_E_SQ), dtype=np.complex128)

time O propagator: identity superoperator
G_prop[0] = np.eye(pa.DOF_E_SQ)

array to hold copy of G propagator
G_prop_hold = np.eye((pa.DOF_E_SQ), dtype=np.complex128)

loop to propagate G_prop using GHME
print (">>> Starting GQME propagation, memory time =", pa.MEM_TIME)

for 1 in tqdm(range(pa.TIME_STEPS - 1)): # ¢t propagates to the final time step

#if 1%4100==0: print (1)

currentTime = 1 * pa.DT

G_prop_hold = PropagateRK4 (currentTime, pa.MEM_TIME, kernel, G_prop_hold,
G_prop)

G_prop[l + 1] = G_prop_hold.copy()

S.5.2 Sz.-Nagy Dilation

We map contractions to a larger unitary acting on an extended Hilbert space; this is crucial

for implementing non-unitary G(t) on a gate model.

Script S.5.2: Dilation of the non-unitary propagator L]

from numpy import linalg as la
import scipy.linalg as sp

def dilate(array):
Normalization factor of 1.1 to ensure contraction

norm = LA.norm(array,2)*1.1
array_new = array/norm

S17

https://colab.research.google.com/github/batistagroup/qflux/blob/master/demos/manuscript/SI_VI.ipynb
https://colab.research.google.com/github/batistagroup/qflux/blob/master/demos/manuscript/SI_VI.ipynb

ident = np.eye(array.shape[0])

Calculate the conjugate transpose of the G propagator
fcon = (array_new.conjugate()).T

Calculate the defect matriz for dilation
fdef = LA.sqrtm(ident - np.dot(fcon, array_new))

Calculate the defect matriz for the conjugate of the G propagator
fcondef = LA.sqrtm(ident - np.dot(array_new, fcon))

Dilate the G propagator to create a unitary operator
array_dilated = np.block([[array_new, fcondef], [fdef, -fcon]])

return array_dilated, norm

S.5.3 Quantum Simulation via QFlux Interface

We show a direct QFlux route to produce a propagator and set up measurement counts for

donor/acceptor populations.

Script S.5.3: Using QFlux to perform quantum algorithm for GQME (7

G_prop = SBM.solve_gqgme (kernel, pa.MEM_TIME, dtype=’Propagator’)
from gflux.open_systems.quantum_simulation import QubitDynamics0S
gSBM = QubitDynamics0S(rep=’Density’, Nsys = pa.DOF_E, Hsys = Hsys, rhoO = rhoO)

qSBM.set_count_str([’000°,°011°])
gSBM.set_dilation_method(’Sz-Nagy’)

res_qc = qSBM.qc_simulation_vecdens(timeVec, Gprop=G_prop)

pop_qc = res_qc[’data’]

visualizing

Read the exact TT-TFD results

timeVec, sigma_tt_tfd = wr.read_operator_array(pa.TIME_STEPS,
f"{data_dir}/TTTFD_Output/TFDSigma_")

Plot the population of the donor and acceptor states
plt.figure(figsize=(6, 4))

S18

https://colab.research.google.com/github/batistagroup/qflux/blob/master/demos/manuscript/SI_VI.ipynb

plt
plt

plt
plt

.plot (timeVec, pop_qcl[:,0], ’r-’, label="quantum simulation")
.plot(timeVec, sigma_tt_tfd[:,0].real ,’ko’, markersize=4, markevery=15,

label=’benchmark TT-TFD’)

.xlabel (r’Γt’,fontsize=15)

.ylabel(r’σ_{DD}(t)’,fontsize=15)
plt.
plt.

legend(loc = ’upper right’)
show ()

S.6

We now execute the dilated non-unitary dynamics on a QASM backend and reconstruct

QASM Simulation and Visualization

donor/acceptor populations for comparison to TT-TFD.

S.6.1

Qiskit Dependencies

Script S.6.1: Installing and importing Qiskit dependencies

from qiskit import QuantumRegister, ClassicalRegister, QuantumCircuit, transpile
from qiskit_aer import AerSimulator, QasmSimulator
from giskit.visualization import plot_histogram
from qiskit.quantum_info import Operator

S.6.2

We iterate over time, apply the dilated propagator, and estimate state populations from shot

QASM Execution Loop

statistics.

S19

https://colab.research.google.com/github/batistagroup/qflux/blob/master/demos/manuscript/SI_VI.ipynb

Script S.6.2: QASM simulation for GQME L]

from tqdm import tqdm

Create a dictionary to store the measurement results
result = {’°000’: 0, ’001°: O, ’010’: O, ’011’: O, >100’: O, ’101’: O, ’110’: O,
’111°: 0%}

Create lists to store the population for the acceptor and donor states
pop_accept = []
pop_donor = []

initial state in the dilated space
rho0O_dilated = np.concatenate((np.array([1 + 0j, 0, 0, 0]) ,np.zeros(pa.DOF_E_SQ)))

pbar = tqdm(range (pa.TIME_STEPS), desc="Running simulation", colour="green",
leave=True)
for i in pbar:

gr = QuantumRegister(3) # Create a quantum register with 3 qubits

cr = ClassicalRegister(3) # Create a classical register to store measurement
results

gc = QuantumCircuit(qr, cr) # Combine the quantum and classical registers to
create the quantum circuit

Initialize the quantum circuit with the initial state
qc.initialize(rhoO_dilated, qr)

Dilated propagator
U_G, norm = dilate(G_prop[il)

Create a custom unitary operator with the dilated propagator
U_G_op = Operator (U_G)

Apply the unitary operator to the quantum circuit’s qubits
qc.unitary(U_G_op, qr)

Measure the qubits and store the results in the classical register
qc.measure(qr, cr)

Run the Simulation and Plot the Results
simulator = QasmSimulator()

shots = 2000 # Number of shots

job = simulator.run(qc,shots=shots)
counts = job.result().get_counts(qc)

Update the result dictionary

for x in counts:
result[x] = counts[x]

S20

https://colab.research.google.com/github/batistagroup/qflux/blob/master/demos/manuscript/SI_VI.ipynb

Calculate the populations of donor and acceptor states from measurement
probabilities

pop_d = np.sqrt(result[’000°] / shots) * norm # Multiply by the normalization
factor

pop_a = np.sqrt(result[’011’] / shots) * norm # Multiply by the normalization
factor

#if 1%4100==0: print(’at’, s, ’step’, ’population’,pop_d,pop_a)

pop_donor.append(pop_d) # Stacking the population for the donor state
pop_accept.append(pop_a) # Stacking the population for the acceptor state

pbar.set_postfix(populationD=pop_d, populationA=pop_a)

pbar.close()

S.6.3 Visualization and Benchmarking

We compare the QASM-based population estimates to TT-TFD data.

Script S.6.3: Visualizing the Results

Read the exact TT-TFD results
timeVec, sigma_tt_tfd =
wr.read_operator_array(pa.TIME_STEPS,f"{data_dir}/TTTFD_Output/TFDSigma_")

Plot the population of the donor and acceptor states

plt.figure(figsize=(6,4))

plt.plot(timeVec, pop_donor, ’r-’, label="quantum simulation")

plt.plot(timeVec, sigma_tt_tfd[:,0] .real ,’ko’, markersize=4, markevery=15,
label=’benchmark_TT-TFD’)

plt.xlabel(r’Γt’,fontsize=15)

plt.ylabel(r’σ_{DD}(t)’,fontsize=15)

plt.legend(loc = ’upper right’)

plt.show()

521

https://colab.research.google.com/github/batistagroup/qflux/blob/master/demos/manuscript/SI_VI.ipynb

S.7 Practical Notes and Tips

e Performance. TT-TFD propagator generation can be expensive; keep

Is_run_dynamics=False to use supplied data during prototyping.

« Numerics. Derivatives for F(t) and F(t) use centered numpy.gradient. Ensure

pa.DT matches the TT-TFD sampling cadence.

 Stability. The dilation step normalizes by 1.5||G||5 to enforce contraction before Sz.-

Nagy dilation.

« Validation. Always cross-check opp(t) from GQME and QASM against TT-TFD to

catch discretization or 10 issues.

522

	Introduction
	Theory of Generalized Quantum Master Equation
	The Spin–Boson Model
	The projected Liouvillian
	The memory kernel
	Calculation of the Projection-Free Inputs
	Computation of the Memory Kernel

	Solution of the GQME
	Quantum Algorithms of GQME based on Dilation
	Solving the GQME to get the propagator
	Dilation of the non-unitary propagator
	Quantum Simulation of GQME with QASM Simulator

	Conclusions
	Supporting Information
	Acknowledgements
	References
	Spin–Boson Model
	Model Parameters
	TT-TFD Reference Dynamics

	Projected Liouvillian
	Constructing the Projected Liouvillian
	Markovian Dynamics and Comparison to TT-TFD

	Memory Kernel for the GQME
	Obtain the Kernel with QFlux
	Propagator Superoperator U(t)
	Projection-Free Inputs F(t) and dF(t)/dt
	Linear Term g(t)
	Volterra Solver for K(t)
	Main Iteration
	Trapezoidal Integral Helper

	Kernel Diagnostics

	Solving the GQME
	One-Line Solver
	Manual RK4 Propagation
	RK4 Step
	Derivative Function
	Full Propagation and Benchmarking

	Quantum Algorithms for GQME via Unitary Dilation
	Compute G(t) from the GQME
	Sz.-Nagy Dilation
	Quantum Simulation via QFlux Interface

	QASM Simulation and Visualization
	Qiskit Dependencies
	QASM Execution Loop
	Visualization and Benchmarking

	Practical Notes and Tips

