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Abstract

Simulating open quantum systems remains one of the most demanding problems in
quantum dynamics, as environmental interactions lead to non-unitary evolution that
challenges standard quantum simulation techniques. Variational quantum algorithms
(VQAS) offer a practical way forward by combining classical optimization with quan-

tum hardware, making them well suited for near-term devices. Here, in Part V of the
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QFlux implementation series, we introduce adaptive variational-ansatz methods for
solving the Lindblad master equation. This tutorial presents the Python-based gmad
module of the QFlux toolkit, which is designed to help students and researchers easily
build and explore adaptive VQA strategies. The tutorial walks through each step of
the workflow and applies the methods to two illustrative examples. The first is the
amplitude-damping channel, which models spontaneous emission in a two-level sys-
tem. The second is the Fenna—Matthews—Olson (FMO) complex, a prominent model
for excitonic energy transfer in photosynthesis. The two workflows utilizing adap-
tive variational approaches implemented here are the unrestricted adaptive variational
quantum dynamics (UAVQD) scheme and the stochastic Schrédinger equation (SSE)
based trajectory method. By working through these examples, readers gain both in-
tuition and hands-on experience with variational techniques for simulating dissipative

quantum dynamics.

1 Introduction

Open quantum systems introduce an additional layer of complexity beyond that encountered
in isolated, closed systems, primarily due to interactions between a system and its surround-
ing environment. Unlike closed quantum systems, which evolve only through their internal
Hamiltonian, open quantum systems interact with their surroundings. These external influ-
ences cause dissipation, decoherence, and time evolution that is no longer unitary. These
effects complicate the design of efficient quantum algorithms,'® yet they are unavoidable in
realistic physical settings. Indeed, many systems of interest in chemistry and physics operate

10 making the development of practical simulation strategies

inherently as open systems,
for open-system dynamics an essential goal of quantum computing research.
Quantum computing has emerged as a powerful computational paradigm with potential

applications across a wide range of disciplines, including the simulation of open quantum

systems. 411716 Earlier installments of the QFlux'” tutorial series introduced the Lindblad



master equation and its simulation using dilation-based approaches.® In this part, we shift
focus to wvariational quantum algorithms for open quantum systems by formulating trans-
formed representations of the Lindblad master equation that are amenable to variational
treatment on quantum hardware.

A central challenge in simulating open quantum dynamics is its fundamentally non-
unitary nature. This presents a significant obstacle, since the elementary operations avail-
able on quantum hardware are inherently unitary. »%'21® To address this mismatch, a grow-
ing family of hybrid quantum-classical methods known as wariational quantum algorithms
(VQASs) has been developed.®'%?® These approaches draw inspiration from classical varia-
tional techniques long used to approximate the dynamics of complex many-body systems. 222
In the context of noisy intermediate-scale quantum (NISQ) devices, VQAs are particularly
attractive because they rely on shallow circuits and parametrized ansétze optimized through
classical feedback loops.?5?® While VQAs were initially developed for energy minimization
and unitary dynamics, they have recently been extended to simulate dissipative and open-
system processes. *?

Early implementations of the Variational Quantum Eigensolver (VQE) typically relied
on fixed-form ansétze, such as the unitary coupled-cluster construction. Although success-
ful for small systems, these approaches often suffer from limited accuracy and unfavorable
scaling, requiring a polynomial increase in both circuit depth and the number of variational
parameters as system size grows.?4?® To overcome these limitations, adaptive VQE methods
have been introduced, in which the ansatz is constructed dynamically in response to the
problem at hand.® By tailoring the ansatz to the evolving system state, adaptive approaches
can achieve higher accuracy with significantly shallower circuits.

In this work, we will discuss two distinct approaches which utilize adaptive ansatz: the
first is an unrestricted, vectorized adaptive variational quantum dynamics (AVQD) scheme,

which iteratively appends operators from a predefined pool to ensure that the McLachlan

distance remains below a prescribed threshold during time evolution. The second approach



is based on a stochastic Schridinger equation (SSE) formulation, which avoids vectorization
and preserves the original system qubit count. This trajectory-based method is therefore
more suitable for NISQ devices, while reproducing Lindblad dynamics through ensembles of
pure-state evolutions. 2"

Although adaptive ansatz frameworks have been proposed in several recent studies, their
practical implementation often remains challenging. Many works provide detailed theoretical
descriptions or pseudo-algorithms, but the absence of readily executable code poses a barrier
for researchers seeking to apply these methods in practice.??:?6:2" While robust quantum
optics and open-system packages exist in languages such as Julia,?® much of the quantum
computing community relies on Python-based software development kits. 232

To address this gap, we introduce the gmad module within the QFlux framework (avail-
able via pip install qflux), a Python-based®? toolkit designed to support adaptive vari-
ational quantum algorithms for open-system dynamics. gmad module provides a unified and
accessible implementation of the methods developed in this work, enabling users to incor-
porate adaptive variational techniques directly into their simulation workflows. The module
exposes the core algorithmic components discussed throughout this paper and allows users
to explore different adaptive ansatz constructions across a broad range of quantum systems.

To illustrate these methods, we consider two representative examples. The first is the
amplitude-damping channel, which models spontaneous emission in a two-level system.!?
The second example is the Fenna—Matthews—Olson (FMO) complex, a chemically realistic
system widely studied in the context of light-harvesting and energy transfer in photosyn-
thetic bacteria.®!? For both cases, Lindblad dynamics are first simulated using the QuTiP
framework to establish classical reference results.?? We then apply the unrestricted adaptive
variational quantum dynamics (UAVQD) approach to the amplitude-damping model,?%° fol-
lowed by the SSE-based variational trajectory method for the FMO complex.*? Together,

these examples demonstrate how adaptive variational algorithms can be used to simulate

realistic open-system dynamics within the QFlux framework.



Finally, while adaptive variational frameworks can, in principle, be extended to treat non-
Markovian dynamics, the methods implemented in this installment focus on Lindblad-form
generators and therefore describe Markovian open-system evolution.

In the following section, we first establish classical reference simulations of Lindblad
dynamics, which serve as benchmarks for the adaptive variational quantum algorithms in-

troduced thereafter.

2 Numerical Simulations on Classical Computers

Before delving into the key quantum algorithms in this work, it is crucial to first become
acquainted with the numerical simulations that can be performed on classical computers. It
is a best practice to run simpler trial examples using numerical simulations before testing
quantum algorithms on quantum computers. The results obtained from such simulations,
often referred to as “exact results”, serve as a benchmark for evaluating the accuracy of
quantum algorithms and quantum computers.

In this section, we demonstrate the simulation of the Lindblad master equation?3%34

0 — X0 p0)) 4 X 2L ()L — p(0) L L — L Lap(t)]. (2.1)

This equation describes the time-evolution of the density matrix p(f) for an open quan-
tum system, accounting for both unitary evolution and dissipative effects. The first term,
—%[H , p(t)], represents the system’s Hamiltonian evolution, while the second term includes
Lindblad operators L,, with rate coefficients ,,, modeling environmental interactions like dis-
sipation or decoherence. Together, they form the Lindblad master equation, a fundamental
tool in quantum dynamics for describing systems that interact with external environments.
To illustrate this equation and introduce the examples presented in this work, we simulate
the dynamics of an amplitude-damping channel and then proceed to simulate the dynamics

of an FMO complex system.



2.1 for the Lindblad master equation

An effective way to obtain numerically exact solutions of the Lindblad master equation is to
use a dedicated , such as QuTiP.3?3* QuTiP provides a built-in Lindblad solver, mesolve,
which relies on SciPy’s complex-valued VODE (“zvode”) integrator.® The integrator offers
two main methods: Adams, a variable-step predictor—corrector scheme suited for non-stiff
problems, and BDF, a backward differentiation formula appropriate for stiff systems. Users
need only specify the system parameters and desired outputs; the software handles the
numerical integration and returns the computed dynamics.

When using mesolve as shown in Script S.1.1, key components must be provided: the
system Hamiltonian H, the initial density matrix p(0), a list of times for dynamic simulation,
and collapse operators c_ops, defined as /7, L,. If no collapse operators are given, the solver
propagates the Liouville equation of the pure system. Additionally, users must specify the
output instructions, particularly the operators e_ops whose expectation values are to be
calculated. With these quantities defined, mesolve generates time-dependent expectation
values for the given operators by propagating either the Liouville equation or the Lindblad

master equation.

2.2 Amplitude Damping Channel

The amplitude-damping channel illustrated here models spontaneous emission and energy
dissipation, which are among the dominant noise processes affecting quantum systems. This
process is ideally suited for benchmarking numerica solutions since it can be solved analyti-
cally as shown in Section S.2.1 of the Supporting Information.

The amplitude damping dynamics is governed by a decay rate 7, which determines how
rapidly the system transitions from the excited state |1) to the ground state |0). Throughout
this work, we adopt the computational basis ordering commonly used in quantum optics.
Accordingly, in Script S.2.1, the lowering operator is defined as ¢~ = |0)(1| and implemented

as sm, which induces the “downward” transition from |1) to |0) and models the decay of
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population from the excited to the ground state.

The initial state, defined as a superposition of |0) and |1) and normalized for proper
behavior, is converted to a density matrix rhoO to allow for compatibility with the master
equation solver. To capture the dynamics of energy dissipation, a collapse operator c_ops is
constructed by scaling the lowering operator with /7, thus modeling the amplitude damping
at rate 7.

For the time-evolution, the code utilizes QuTiP’s mesolve function to simulate the sys-
tem’s behavior over a specified time array, ‘times’, with each time step set at dt = 0.1 ps,
culminating at a final time tf = 1000 ps. The solver computes the evolution of rho0O under
the influence of c_ops, providing a realistic model of energy dissipation. To observe the
population dynamics, two projectors, proj_ground and proj_excited, are defined to ex-
tract the populations of the ground and excited states at each time step. These populations
are then plotted to reveal the behavior of the system as it undergoes amplitude damping,
offering valuable insights into the effects of spontaneous emission on a simple two-level quan-
tum system, an essential foundation for understanding quantum noise and the challenges of
mitigating decoherence in quantum computing applications.

Figure 1 depicts the temporal evolution of state populations in a two-level quantum
system undergoing amplitude damping. At the initial time, the system exhibits a dominant
population in the excited state, indicating a higher occupancy of |1). As time advances,
a continuous relaxation process is observed, characterized by the progressive transfer of
population from the excited state to the ground state.

This behavior reflects the amplitude damping process, where the population in the ex-
cited state |1) dissipates over time due to energy loss (spontaneous emission), resulting in an
increase in the ground state |0) population. By the end of the simulation (at around 1000 ps),
the ground state population approaches a higher value, while the excited state population
diminishes, demonstrating the effect of continuous decay. This trend aligns with the charac-

teristics of amplitude damping, as the system loses energy and stabilizes predominantly in
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Figure 1: Population dynamics of a two-level quantum system under amplitude damping.
The blue curve illustrates the population of the ground state |0), while the orange curve
represents the excited state |1). Initially excited, the system relaxes to the ground state via
damping.

its ground state, highlighting the impact of noise on quantum states over time.

2.3 FMO Complex

Another example of using numerical calculations to study a real-world system*° is the Fenna-
Matthews-Olson (FMO) complex, a well-studied pigment-protein complex (PPC), prominent
in quantum computations. Found in green sulfur bacteria, the FMO complex facilitates ex-
citonic energy transfer (EET) between chromophores.?” Within its intricate protein scaffold
structure, chromophores are optimally packed, enabling highly efficient energy transfer be-
tween excitations. %3

In every FMO complex entity, there are seven chromophore sites. The reaction center
is located near site 3, while photoexcitation typically occurs at either site 1 or site 6. %404
The excited state energy from site 1 or 6 is then transferred to the reaction center through

interactions with neighboring sites. This efficient energy transfer is facilitated by the close

proximity and optimal arrangement of the chromophores within the complex.3®



To study this quantum mechanical process, we will consider only one of the multiple
pathways of excitation, i.e. excitation starting from site 1 and traveling to the reaction
center via site 3. This brings the total number of possible states to 5: 3 chromophore states
in the pathway, including ground and sink states. Hamiltonian for this considered pathway
is:

4
H= Z&O';_Ui_ ‘I—ZJZ](O':—UJ_ ‘f‘O'j O'l_) (22)
i=0 i£j

In the above Hamiltonian equation, ;" and o; are Pauli raising and lowering operators,
respectively, for the state 7. €; denotes their creation and annihilation energy, and J;; denote
the coupling strength between the two states ¢,j. For calculations here, we utilize the
Hamiltonian matrix as provided by Hu et al.'® and mentioned in the accompanying code
(Script S.3.1).

The Lindblad master equation to simulate the FMO complex excitation pathway is given

as:

1

. 1
= _I[Ha ptot(t)] + Z(antot(t)LqTq, - §LILantOt(t) - iptot(t)LILLn)' (23)

OProt (t)
ot

where pgor refers to the density matrix encompassing the populations and correlations be-
tween the system (ground state and excited states) and the reaction center (sink state). The
operators L, are the jump operators, which account for the 7 dissipation channels present
in the pathway. One must note that the rate constants for the 7 different channels are
wrapped within L, as V/rate constant x L, — L,. These channels include the dephasing
rate parameter, denoted as «, applied to sites 1 through 3. The dissipation rate parameter,
[, also pertains to sites 1 through 3 and describes transitions from these chromophores to
the ground state. Additionally, v represents the dissipation rate from site 3 to the sink
state 4. These parameters are crucial for modeling jump operators as shown in the code
(Script S.3.1) and understanding the energy transfer dynamics within the FMO complex.

Now, each site’s population is studied using the diagonal elements of the density matrix,



which are obtained through projection measurements in the computational subspace. This
procedure is detailed in Script S.3.2, which also includes the code to plot the results. In
Fig. 2, the population change over time among all five states is illustrated. Observing how

the populations transfer among the states as time progresses provides valuable insights.
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Figure 2: Time-evolution of populations for chromophore sites in Fenna-Matthews-Olson
(FMO) complex during energy transfer.

Figure 2 shows that following initialization at site 1 of the FMO complex, the excitation
is coherently redistributed among the intermediate chromophore sites before being funneled
toward site 3 and subsequently transferred to the sink state, which represents the reaction
center. The gradual depletion of population from the excited sites, together with the ac-
cumulation in the sink state, reflects the combined effects of coherent coupling, dephasing,
and irreversible dissipation encoded in the Lindblad operators. This behavior is consistent
with the role of the FMO complex as an efficient energy-transfer conduit in photosynthetic
systems.

Having established reliable classical benchmarks for the Lindblad dynamics using nu-

merical simulations, we now turn to variational quantum approaches for simulating open
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quantum systems. In the following section, we introduce adaptive variational quantum dy-
namics methods that leverage parametrized quantum circuits to approximate non-unitary

time evolution, using the amplitude-damping channel as a representative example.

3 Variational Simulations of Lindblad Dynamics

Adaptive Variational Quantum Dynamics Simulations (AVQDS), which fall under the cat-
egory of variational simulations, offer a method for leveraging an ongoing improvements of
quantum hardware that offer scalability and reduced noise to address systems governed by
open quantum dynamics.?’ Here, we focus on the unrestricted and vectorized variation of
AVQDS, which is particularly useful for simulating systems that can evolve in many possible
pathways in a non-unitary manner. In this work, we will limit our discussion to introduc-
ing this method for a relatively simple example. We begin by discussing the fundamental
principles of unrestricted-vectorization variant of AVQDS and its uniqueness.”

Next, we provide an example involving an amplitude damping channel. This example
showcases the development of an expressible ansatz, which is a critical component in the
AVQDS framework. The ansatz unitary serves as a trial solution, which is iteratively im-
proved to approximate the desired quantum state evolution. Additionally, we delve into
the creation of the associated operator pool, which consists of various quantum operations
(gates) that can be applied to the system. This operator pool is essential for the adaptive

nature of the algorithm, allowing it to dynamically adjust and refine the ansatz unitary

based on the system’s specific needs.

3.1 Vectorized Effective Hamiltonian

The initial step in developing a computational framework for this method involves converting
the conventional Lindblad Master equation (Eq. (2.1)) into an effective Schrodinger equa-

tion. The reformulated effective Hamiltonian based evolution equation in AVQDS method
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is presented as follows:

Owp(t)) _ .
# = —lHeff(t>|Vp<t)>, (31)
where,
p— ’Vp> = [pU?'"7p1N7p217"'7p2N7"'7pN17"'7pNN]T7 (32)
1
Hy — [H@H—HT®]I]+12{L:‘L®LH—2(H®LLLH+LZL;®H) 33

Here, the Lindblad operator L, embodies 7, as /¥, L, — L,.
The effective Hamiltonian is further split based on hermicity, into a Hermitian and an

anti-Hermitian components as described next:
Hg=H,—iH, (3.4)
The components after the decomposition are defined as follows:
H =1oH-H"®I, (3.5)

and

1
Ha:—iZ{L;;@Ln—2(H®L;Ln+L§L;®H) . (3.6)

n
The python functions responsible for this vectorization process and the decomposition of

the effective Hamiltonian are provided in Script S.4.1.

3.2 Unrestricted adaptive procedure and system evolution

Following the vectorization of the density matrix and the determination of an effective Hamil-
tonian, we arrive at the core of this method: developing a quantum circuit (ansatz) that
accurately describes the evolving quantum state of the system. To achieve a close approx-
imation, the quantum circuit is parameterized for each timestep according to the following

relation:
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k
(1)) = [o(t)) = [T e % [0}, (3.7)

I=1
where |¢(t)) is an approximated state obtained by applying unitary gates e 1%®9 to the
initial state |¢;). The operators O; represent the ansatz operators added adaptively to the
™™ layer of the circuit (discussed in detail in the next subsection) and 6;(¢) are real tunable
parameters. The evolution of the state is achieved by tuning the parameters 6;(¢) such that

the distance between the ideal evolution and the evolution induced by 6;(¢) is minimized.

This is suggested by the McLachlan’s variational principle*? expressed as

2

o| S oot o 35)
The solution to the above equation is given by:
M()6(t) = V (1), (3.9)

where the elements of the matrix M and components of the vector V are given by the
following expressions:
9(e(0(1))| 019(6(1))) 0l¢(6(1))) 9l¢(6(1)))
AP AN+ ot 25T o 25N 1o
(

V() = 2Tm [<Heﬂ><¢<9<t>>!8'29%3» * 8<5e(f<(tt>))|

Mk](t) = 2Re [

Halo(0) (3.11)

The calculations are performed at every timestep to determine the evolution trajectory of
the system over a given interval of time. In addition to the parameter tuning in the adaptive
procedure, the ansatz is updated by adding an operator from an operator pool to maintain
the McLachlan distance below a specified limit. However, this lower bound distance is not
always known a priori. This is where the unrestricted flavor of AVQDS was introduced.?"

Instead of fixing the threshold to a specific value, an operator is appended to the circuit
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at each timestep such that it lowers the McLachlan distance below a relative threshold.
This approach ensures that the distance attains the lowest possible value of the McLachlan
distance. All these calculations are implemented through various Python functions. It is
recommended to initially overlook these functions and run the codes as described in the

following section, examining these functions only if modifications are needed.

3.3 Defining a Pool of Operators

As previously discussed, it is crucial for the algorithm to have a specified pool of operators
from which it can heuristically select the appropriate candidate for the ansatz. The choice
of the operator pool is specific to the system of interest. For a simple example such as the
amplitude damping benchmark, a basic pool of one- and two-qubit Pauli/identity operators
is chosen as these operators form a complete basis for the vectorized density matrix of the
two-level system.

The actual implementation involves defining a function to build the operator pool and
another function to create the ansatz with these operators. Script S.5.1 provides the code for
defining a pool of operators. The function build_pool generates a pool of Pauli operators
by iterating over combinations of qubit indices and Pauli operators for systems that involve
multiple qubits. The ansatz function then uses this pool to construct the ansatz for the
given initial state. This setup allows the algorithm to dynamically select and apply the most

suitable operators from the pool to accurately model the evolving quantum state.

3.4 Amplitude Damping Channel

To illustrate the AVQDS scheme, we present a simulation of the two-level amplitude damping
channel as a benchmark implementation. For this system, we need to predefine a pool of
operators to be used in building an ansatz. This pool includes both single-qubit and two-
qubit Pauli operators. Specifically, the single-qubit Pauli operators involve rotations around

the X, Y, and Z axes, parameterized by the angle 0(¢). To capture entanglement and
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correlation, for example with an ancilla qubit, the two-qubit operators are introduced from
the pool of combinations given by Py, = e_%, where P;, P; € {X,,Y;, Z;}. This selection
allows for dynamic evolution and accurately captures the entanglement and correlations in
the system. The relevant code, showcased in Scripts S.5.1 and S.6.1, demonstrates how to
provide inputs for the system to execute the code. It is important to note that these are
just snippets of the complete code. The functions mentioned in the following script, such
as Ansatz and solve_avq, which perform the ansatz construction and simulation process
respectively, consist of relatively long lines of code with many supporting functions. For a
detailed view, one can refer to the QFlux documentation.'”

Figure 3 compares the approximate population dynamics obtained from the unrestricted
adaptive variational quantum dynamics (UAVQD) method with the exact Lindblad solution
computed using QuTiP which agrees with the analytical solution. The close agreement be-

tween the two results demonstrates that the adaptive variational ansatz accurately captures

the dissipative dynamics of the amplitude-damping channel.
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Figure 3: Time evolution of the populations of states |0) and |1) for the amplitude-damping
model. Solid lines correspond to the exact QuTiP solution, while star markers denote the
results obtained using the UAVQD method.
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4 Stochastic Schrodinger Equation Based Variational
Approach

The algorithm, showcased in the previous section, uses a vectorized Hamiltonian, is very
efficient for simulating the full density matrix of systems with local interactions. However,
it has a significant drawback — it requires twice as many qubits. For the near-term devices,
the approach discussed in this section is advantageous for the two key reasons. First, the
number of qubits needed is the same as the number of qubits required to describe the system’s
state itself, meaning no extra qubits are necessary. Second, increasing the number of qubits
typically demands more entangling gates to form a sufficiently expressive ansatz, which raises
the overall gate count and hardware connectivity requirements. In light of these challenges,
we showcase an alternative variational algorithm based on the SSE, which offers a way to

simulate quantum trajectories more efficiently on near-term quantum hardware.*2°

4.1 Stochastic Schrodinger Equation

In the framework of the quantum stochastic Schrodinger equation, the density matrix p,
which is typically described by the Lindblad master equation, is instead represented by an
ensemble of randomly evolving wave functions 1.(t), each describing the state of an individ-
ual trajectory. Each wave function corresponds to an individual trajectory of the system’s
evolution. Rather than solving for the full density matrix directly, this method simulates
the evolution of pure states under continuous measurement. Importantly, transitioning from
the Lindblad equation to the stochastic Schréodinger equation does not involve any approx-
imations. It is simply a different way of expressing the mixed state p(t) as a collection of
pure states [¢(t)). 434

Each of these pure state trajectories evolves according to a stochastic Schrodinger equa-

tion. For a small time step dt, the change in the wave function [¢.(t)) for the specific
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trajectory c is given by:

o) = =it = 5 3 (£ha = (242 [l e 3 | B ooy e

In this equation, the first term represents the smooth, deterministic evolution of the wave
function. The second term represents the stochastic part, where the wave function undergoes
a sudden change, known as a quantum jump, with a certain probability. These jumps
are governed by the jump operators L, which describe processes such as excitations or
relaxations in the system. The symbol (-) denotes the expectation value with respect to the
current state of the system.

The term dNj is a random variable, it can be either 0 (no jump) or 1 (a jump happens)
based on the probability of a quantum jump. The probability that a quantum jump occurs

within a small time step dt is given by:

a \L Li|y(2))
k; GIT0) dt. (4.2)

This formula tells us how likely it is for a jump to happen. If a jump does occur, the state of
the system is updated using the operator L; associated with the jump. If a quantum jump

happens, the wave function (state of the system) changes. This new state is calculated as:

Laj(t)

) = L)

(4.3)

where L; is randomly chosen from the set of possible jump operators, based on the following

probability:

= WOILLII0) o

> (W (O)ILLLild(t)

k=1

After a jump, we need to normalize the new state, so that it remains a valid quantum state.
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The normalized state is:

oy = i)
O = o) (4

where j refers to the specific trajectory.
Finally, to solve the original Lindblad master equation, we use all the individual trajec-
tories to reconstruct the full density matrix. The density matrix is just an average of the

outer products of each pure state in the ensemble:

D=L wewel (1.6

J=1

where n is the number of trajectories. The more trajectories we include, the more accurately
this method describes the evolution of the system.

The Python code simulates quantum system dynamics using a time-stepping algorithm
that alternates between deterministic evolution and stochastic quantum jumps. The system
evolves deterministically via the effective Hamiltonian until a jump event, determined prob-
abilistically using Lindblad operators, occurs. Upon a jump, a quantum jump operator is
randomly selected using numpy.random to update the state of the system, and the ansatz
parameters are reset accordingly. Because the seed changes between runs, slight variations
can appear in the final output. The algorithm records the state, parameters, and jump
events over time, capturing the interplay between continuous deterministic evolution and

jump-induced quantum transitions.

4.2 Simulation Procedure for Stochastic Evolution

The simulation of SSE begins by preprocessing the input Hamiltonian and Lindblad opera-
tors, described in Script S.7.1. These components are decomposed into their Hermitian and
anti-Hermitian parts, similar to as discussed in Section 4.1. However, in this approach it
is not vectorized so the number of qubit requirements is not be doubled. The Hermitian

part drives the system’s deterministic evolution, while the anti-Hermitian component incor-

18



porates the environmental effects introduced by the Lindblad operators. In this step, the
Hamiltonian terms are summed to form the Hermitian part, while the anti-Hermitian part
is derived from the products of the Lindblad operators and their conjugates.

Next, each trajectory follows the quantum jump algorithm described in Section 4.1. At
each time step, the algorithm applies a deterministic evolution unless a quantum jump occurs,
at which point a jump operator is applied to the system’s state. After every jump, the ansatz
parameters are adaptively updated according to the procedure outlined in Section 3.2 and
Section 3.3. In Section 3.2, we introduced an unrestricted adaptive procedure that leverages
McLachlan’s variational principle to tune the parameters of the quantum circuit ansatz at
each time step. This ansatz is designed to approximate the evolving quantum state through
a series of unitary gates parameterized by the angles 6,(¢), with the goal of minimizing the
McLachlan distance, as shown in Eqgs. (3.8) and (3.9). Additionally, Section 3.3 details the
construction of the ansatz using a pool of operators. This pool, composed of Pauli operators,
allows the algorithm to heuristically select the most appropriate operator to append to the
circuit, ensuring accurate modeling of the state while keeping the McLachlan distance below
a threshold. These updates to the ansatz at each timestep enable the system to continuously
adapt to the noise effects and the stochastic quantum jumps, thereby capturing the system’s
dynamic evolution effectively.

Once all trajectories are simulated, the final result is obtained by averaging the behav-
ior across all individual trajectories. Averaging over multiple trajectories accounts for the
probabilistic nature of quantum jumps, ensuring a comprehensive representation of the sys-
tem’s dynamics by reflecting both the typical evolution and the rare stochastic deviations.
This ensemble averaging smooths out random fluctuations, highlighting underlying physical
trends in system properties such as energy, population, and coherence. By incorporating the
effects of quantum jumps and dissipative interactions, the final averaged result provides a
detailed and accurate picture of the open quantum system’s overall evolution.

An additional advantage of this approach is that each trajectory can be evolved indepen-
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dently, making the simulation highly suitable for parallelization. This method’s structure
naturally lends itself to parallel processing, particularly useful on multi-core systems. By
utilizing Python’s built-in multiprocessing package, the evolution of different trajectories
can be executed concurrently, significantly improving computational efficiency. This can be
achieved by distributing the workload across multiple processors, depending on the user’s
hardware and operating system. For instance, Python’s multiprocessing library allows the
execution of trajectories in parallel, as demonstrated in the provided example, Script S.8.1,
where multiple quantum trajectories are evolved simultaneously using parallel processes.
Users may modify the script and implement parallelization using preferred parallel comput-
ing frameworks. This approach can drastically reduce the simulation time, especially when

a large number of trajectories are required to obtain statistically accurate results.

4.3 Simulation of the FMO Complex

In Section 2.3, we introduced and discussed the FMO complex example. In this section, we
utilize the same example to showcase simulations using a Stochastic Schrodinger Equation
(SSE) based method. While we will use the same parameters as before, there is a slight
difference in implementation: previously, we initialized every parameter as a QuTiP object,
whereas in this Python-based code, we will utilize NumPy arrays.

It’s important to note that we pad the arrays to the nearest power of two dimensions
suitable for qubit representation. As described in Script S.9.1, the Hamiltonian will be
padded from 5 x 5 to 8 x 8 and the initial state vector will expand from 5 x 1 to 8 x 1.

Once all input parameters have been correctly initialized, you can begin the simulation
by submitting the simulation details. To do this, simply import the predefined functions
from the gmad module. Script S.9.2 is a sample code snippet to illustrate this process. This
code sets up the necessary parameters and runs the parallel trajectories for your simulation.

Now that we have completed the preprocessing and processing stages, we will move on to

the post-processing phase. As discussed earlier, this quantum simulation approach involves
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running simulations over multiple trajectories, each exhibiting distinct stochastic behavior.
To obtain the final results, we take the average of the outputs of interest.

The Script S.9.3 illustrates the post-processing procedure for the FMO example, whose
results are shown in the corresponding figure. Since high-precision reference dynamics have
already been obtained using QuTiP, we directly compare them with the results produced
by our method. Overall, the agreement is excellent. As shown in Fig. 4, the stochastic
Schrodinger equation (SSE)-based variational simulations closely reproduce the exact QuTiP
population dynamics for all five quantum states of the FMO complex, thereby validating the
trajectory-based approach.

The small discrepancies that remain originate from controlled numerical and variational
approximations, including finite time-step integration, a limited number of stochastic trajec-
tories, truncation of the Ansatz operator pool, and the use of a nonzero threshold parameter
in the variational selection. These differences can be systematically reduced by refining these

parameters, at the cost of increased computational effort.

5 Conclusions

The simulation of open quantum systems remains a central challenge in quantum computing,
particularly in the presence of dissipation, decoherence, and non-unitary dynamics that arise
from system-environment interactions. In this installment of the QFlux tutorial series,
we focused on adaptive variational quantum algorithms as practical and flexible tools for
simulating open-system dynamics on near-term quantum hardware.

By introducing gmad module to QFlux, we have provided researchers with a simplified
toolkit that facilitates the implementation and customization of adaptive variational ap-
proaches. The adaptive ansatz methods employed in this work, particularly the unrestricted
adaptive variational quantum dynamics (UAVQD) and the stochastic Schrodinger-based

algorithm, allow for efficient, flexible circuit structures that can be tailored to the spe-
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Figure 4: Comparison between exact results obtained using QuTiP (solid lines) and stochas-
tic Schrodinger equation (SSE) based simulations (markers: *) for the population dynamics
of five distinct quantum states. Each state’s population is represented by a uniquely colored
curve.

cific requirements of dissipative processes. Together, these methods illustrate how adaptive
strategies can accommodate the diverse requirements of dissipative quantum processes.

All algorithms were implemented within the gmad module of the QFlux platform, pro-
viding an accessible and extensible Python-based environment for adaptive variational simu-
lations. Through representative examples, including the amplitude-damping channel and the
Fenna-Matthews-Olson (FMO) complex, we demonstrated that adaptive variational meth-
ods can accurately reproduce open-system dynamics while remaining compatible with the
constraints of noisy intermediate-scale quantum devices. Benchmarking against exact ref-
erence solutions obtained with the QuTiP framework further validated the accuracy and
scalability of the proposed approaches.

By translating recent theoretical advances in adaptive variational algorithms into a uni-
fied, executable framework, this work lowers the barrier to applying these methods in prac-

tice. Together with the preceding parts of the series and the non-Markovian methods de-
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veloped in Part VI, this installment establishes adaptive variational quantum algorithms as
a key component of the QFlux workflow for simulating realistic open quantum dynamics

across a wide range of physical systems.

Supporting Information

Detailed code snippets are available in the Supporting Information and corresponding Google

Colab notebook as well as through the QFlux Documentation site.
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S.1 Linear Solver for the Lindblad Master Equation

Open quantum systems are often described by the Lindblad master equation, a formalism
that captures both coherent evolution generated by a Hamiltonian and incoherent processes
induced by the environment. QuTiP provides the mesolve function that can be used to
integrate the Lindblad equation by efficient implementation of a linear solver. To streamline
repeated use of this solver throughout the tutorial, we introduce the function qutip_prop
that is a convenient wrapper.

qutip_prop takes as input the system Hamiltonian, an initial density matrix, a time
array for the evolution, a list of collapse operators that specify dissipative processes, and a
list of observables to be monitored. It then returns the expectation values of the specified
observables as functions of time. This modular structure allows us to compare exact Lindblad

dynamics with the variational and stochastic methods presented in later sections.

Script S.1.1: Linear Solver for Exact Solutions ]

from qutip import mesolve, Qobj

def qutip_prop(H, rhoO, time_arr, c_ops, observable):
i
First import the mesolve function, which is used to solve master equations, and
the Qobj class, which is used to represent quantum objects, from the QuTiP
library.
- H: Hamiltonian of the system (Qobj).
- rho0: Initial density matrix (Qobj).
- time_arr: Time array for dynamic simulation (array) .
- c_ops: List of collapse operators (list of Qobj), can be empty for Liouville
equation.
- observable: Operator for which the expectation value is to be calculated (Qobj) .
Returns:
- expec_vals: List of expectation values of the observable over time.
i
result = mesolve(H, rhoO, time_arr, c_ops, e_ops=observable)
return result.expect
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S.2 Amplitude Damping Channel

The amplitude damping channel is a standard model of irreversible decay from an excited
state into a ground state, such as spontaneous emission in a two-level atom. It provides
an ideal test case for benchmarking dissipative quantum dynamics since it can be solved

analytically as shown in the following subsection.

S.2.1 Analytic solution of the Lindblad equation

This section shows, step by step, how to solve the amplitude-damping (energy-relaxation)
dynamics analytically by finding an analytic solution of the Lindblad master equation, and

how the result maps to the familiar Kraus (operator-sum) form.

1. Choose the Lindblad model (zero-temperature relaxation). Amplitude damping
describes an excited state |1) irreversibly relaxing to the ground state |0). In the Markovian

limit this is captured by a single jump operator
L =o_ =[0)(1],

with rate v > 0. The Lindblad equation reads

Op(t 1 1
O L 0] 47 (o0 — SHor0 001} s 1)
where oy = [1)(0] and {-,-} is the anticommutator. For the standard amplitude-damping

channel, one often sets H = 0 (pure dissipation), or takes H = %Z (unitary precession plus

damping). We solve both in a way that makes the dissipative part transparent.
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2. Write the density matrix in the computational basis. Let

p(t) = oo(E) " pr(®) ) p1o(t) = por(t)",  poo(t) + pui(t) = 1.

pro(t) pui(t)

We will derive coupled ODEs for the matrix elements.

3. Evaluate the dissipator element-by-element. Use the identities
oro_ = |1)(1],  o_poy=pi1[0)(0].
Plugging into the dissipative term
1
Dlp] = (7-po = A1 1}

and reading off components gives

- Population of the excited state:

p11(t) = —vpu(t). (5.2)
- Population of the ground state (by trace preservation or directly):

poo(t) = +rpn(t). (S.3)

- Coherences:

poul) = —Spoi(®). prolt) = =S puolt). (5.4)

If you also include H = %Z , the commutator contributes a phase rotation:
_ﬁ[H7p] = por(t) = —iwpoi(t), pio(t) = +iw p1o(t),
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while leaving pgg, p11 unchanged.

4. Solve the ODEs (closed-form solution). From Eq. Eq. (S.2),
pri(t) = pr(0) e "
Then Eq. Eq. (S.3) and pgo = 1 — p11 give
poo(t) =1 — p11(0) €™ = poo(0) + p11(0) (1 - eﬂt) .
From Eq. Eq. (S.4),
por () = por(0) 72, pig(t) = pro(0) e 7.

Including the Hamiltonian H = %Z simply adds oscillation:

Po1 (t) = po1 (0) e*(’?/2)t efiwt7 /)10(15) _ p10<0) e*(’Y/Q)t etiwt

So the analytic amplitude-damping evolution is

poo(0) + pui(0) (1 — ™) por(0) e O72 it

plO(O) e—(7/2)t e—i—iwt p11(0> et

p(t) =

(S.9)

5. Connect to the Kraus (channel) form and identify A(¢). The standard amplitude-

damping channel is written as

1 0 0 VX

1
5)\<p) = Z MkleI? MO - ) Ml -
k=0 0 v1—2A\ 0 O
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q
Applying this map to p(0) = yields

o(t) = p+(l—=pA  g/1-2A
¢FvViI=X (1-p)(1-2])

Match this to the Lindblad solution (S.9) with p = pgo(0) and 1 — p = p11(0):

1-\t)=e" = At)y=1—e

and the coherence factor becomes

1= X\(t) =Vet = e /2t

exactly as in the analytic ODE solution. This is the cleanest way to see that the Kraus

parameter A is simply the time-dependent decay probability induced by the Lindblad rate

Y-

6. Physical interpretation (what the formulas mean). The solution shows two

hallmark features of amplitude damping:

« Population relaxation: the excited-state population decays exponentially, p1(t) =

p11(0)e™ 7" transferring weight to |0).

« Coherence decay: off-diagonal terms shrink as e~(/?" (and rotate at frequency w if

Hox Z).

At long times t — oo, p(t) — [0)(0] regardless of the initial state, as expected for zero-

temperature relaxation.
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S.2.2 Numerical Solution

In this section, we solve the resulting Lindblad master equation using QuTiP, after construct-
ing the lowering operator, specifying a Hamiltonian, defining a normalized initial state, and
assembling the collapse operators representing the amplitude damping process.

By monitoring the populations of the ground and excited states, we observe the charac-
teristic exponential relaxation toward the ground state, discussed in Sec. S.2.1. These exact
results will later serve as a benchmark for the variational solver and the stochastic unraveling
methods.

Script S.2.1 simulates the time evolution of a two level quantum system under amplitude
damping using the Lindblad master equation formalism in QuTiP. It defines the system
Hamiltonian, collapse operator, initial quantum state, and then numerically solves the open
system dynamics over a specified time range. Finally, it extracts and plots the ground and

excited state populations as functions of time to visualize relaxation due to damping.

Script S.2.1: Amplitude Damping Channel (Linear Solver) 2

import numpy as np
import matplotlib.pyplot as plt
from qutip import *

# Pauli matrices and lowering operator

sx = np.array([[0, 11, [1, 011)

sy = np.array([[0, -1j], [1j, 0]11)

sp=(sx+1j *sy) /2

sm = Qobj(sp) # collapse operator for amplitude damping

# Identity Hamiltonian (trivial in this case)
H = Qobj(np.eye(2, dtype=np.complex128))

# Time scale

tf = 1000e-12 # final time

dt = 1e-12 # time step

qt_times = np.arange(0, tf, dt) # time array

# Amplitude damping rate
gamma = 1.52e9 # damping rate
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# Initial state (normalize if necessary)

u0 = np.array([1 / 2, np.sqrt(3) / 2], dtype=np.complex128)
u0 = u0 / np.linalg.norm(u0) # normalize the state

psiO = Qobj(u0) # initial state as @obj

rho0 = psiO * psiO.dag()

# Collapse operators
c_ops = [np.sqrt(gamma) * sm] # amplitude damping

# Define projectors for ground and excited states
proj_excited = basis(2, 1) * basis(2, 1).dag() # [1><1/
proj_ground = basis(2, 0) * basis(2, 0).dag() # /0><0/

# Solve the master equation using mesolve
result = qutip_prop(H, rhoO, qt_times, c_ops, [proj_ground, proj_excited])

# Extract ground and excited state populations
ground_population = result[0] # <0/rho/0> (ground state population)
excited_population = result[1] # <I/rho/1> (exzcited state population)

# Plotting results

linel = plt.plot(qt_times * lel2, ground_population, linewidth=2, label="Ground
State Population (QuTiP)")

line2 = plt.plot(qt_times * lel2, excited_population, linewidth=2, label="Excited
State Population (QuTiP)")

# Extract colors from the lines
colorl = linel[0].get_color()
color2 = 1line2[0] .get_color()

# Add points every 100 ps

point_indices = range(0, len(qt_times), 100)

#plt.scatter(qt_times[point_indices] * lel2, ground_population/[point_indices],
color=colorl, s=20, zorder=5)

#plt.scatter(qt_times[point_indices] * lel2, excited population[point_indices],
color=color2, s=20, zorder=5)

# Add grid lines every 100 ps on z—azis and every 0.1 on y—azis
plt.xticks(np.arange(0, 1100, 100))

plt.yticks(np.arange(0.1, 0.9, 0.1))

plt.grid(True, which="major’, linestyle=’-’, linewidth=0.5, alpha=0.7)

plt.xlabel(’Time (ps)’)

plt.ylabel (’Population’)

plt.legend(loc=’center right’)

plt.title(’Exact Evolution of Ground and Excited State Populations’)
plt.show()
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S.3 FMO Complex

The Fenna-Matthews-Olson (FMO) complex is an important model system in studies of
excitonic energy transfer, particularly in the context of quantum biology. It consists of sev-
eral coupled chromophoric sites through which an excitation migrates before being funneled
toward a reaction center. The transport dynamics arise from the interplay of coherent cou-
plings between sites and environmental interactions such as dephasing and irreversible decay.
Here, we construct a reduced five-site Hamiltonian for the FMO complex and a correspond-
ing set of Lindblad operators representing various environmental effects. These operators
include site-dependent dephasing and an irreversible sink, both of which are crucial for mod-
eling realistic transport pathways. Once the Hamiltonian and dissipators are defined, we
evaluate the population dynamics across the network by computing expectation values of
projectors onto each site. This allows us to visualize transport processes as a function of
time.

This script defines the Hamiltonian and environmental interaction parameters for a five
site FMO like quantum system using QuTiP objects. It specifies three types of Lindblad
operators corresponding to different dissipation and transfer processes, controlled by the rates
alpha, beta, and gamma. Together, these operators characterize how energy relaxation, site

dependent noise, and irreversible population transfer affect the system dynamics.

Script S.3.1: FMO Complex parameters 2

from qutip import Qobj

import numpy as np

# Hamiltonian (Untit: eV)

H = Qobj ([
[0, 0, 0, 0, O],
[0, 0.0267, -0.0129, 0.000632, 0],
[0, -0.0129, 0.0273, 0.00404, 0],
[0, 0.000632, 0.00404, 0, 0],
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(o, 0, 0, 0, 0l,
D

alpha, beta, gamma = 3e-3, 5e-7, 6.28e-3 #Unit: fs (femtosecond)

# Define the alpha operators
Llist_f = [Qobj(np.diag([0] * i + [np.sqrt(alpha)] + [0] * (4 - i))) for i in
range(1, 4)]

# Define the beta operators
Llist_f += [Qobj(np.array([[np.sqrt(beta) if i == 0 and j == k else 0 for j in
range(5)] for i in range(5)])) for k in range(1, 4)]

# Define the gamma operator
L_temp = np.zeros((5, 5))
L_temp[4, 3] = np.sqrt(gamma)
Llist_f.append(Qobj(L_temp))

Following code defines measurement operators to track the population of each site, the

ground state, and the sink state in a five level quantum system. It initializes the system

in the second excited site and propagates the state in time using the previously defined

Hamiltonian and Lindblad operators. Finally, it plots the time dependent populations to

visualize how excitation energy redistributes and decays across the system.

Script S.3.2: FMO Complex plot

# Measurement operators

Mexp_f = [
Qobj (np.diag([0, 1, 0, 0, 0])),
Qobj(np.diag([0, 0, 1, 0, 0])),
Qobj(np.diag([0, 0, 0, 1, 01)),
Qobj (np.diag([1, 0, 0, 0, 01)),
Qobj(np.diag([0, 0, 0, 0, 11))

# Time evolution
times = np.linspace(0.0, 450.0, 2000)
psiO_f = Qobj([[0], [1]1, [ol, [0], [011)

# Using qutip_propagation function
population = qutip_prop(H, psiO_f, times, Llist_f, Mexp_f)
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# Plotting the results
import matplotlib.pyplot as plt

fig, ax = plt.subplots()
labels = ["State 1", "State 2", "State 3", "Ground State", "Sink State"]
for expec, label in zip(population, labels):
ax.plot(times, expec, label=label)
ax.set_xlabel (’Time(fs)’)
ax.set_ylabel (’Population’)
ax.legend ()
plt.show()

S.4 Vectorized Effective Hamiltonian

Variational methods for open quantum systems frequently operate in the Liouville-space
formalism, where density matrices are vectorized and the master equation becomes a linear
differential equation. In this representation, the Liouvillian superoperator acts as an ef-
fective non-Hermitian Hamiltonian, combining coherent dynamics generated by the system
Hamiltonian with dissipative effects arising from Lindblad operators.

To construct this Liouville-space object, we begin by defining a routine that vectorizes
the commutator with a given Hamiltonian. We then build the full effective operator by
incorporating the dissipative contributions of the Lindblad terms. The resulting structure is
essential for the QMAD variational algorithm, which approximates time evolution in Liouville
space using parametrized ansétze.

This script constructs a vectorized representation of an effective Hamiltonian acting in
Liouville space by transforming commutators into Kronecker products. It combines the
coherent Hamiltonian contribution with dissipative Lindblad terms scaled by the decay rate
gamma to form a superoperator acting on vectorized density matrices. The result is packaged
into a class that separately stores the Hamiltonian and dissipation components for later use

in open system simulations.
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Script S.4.1: Vectorized Effective Hamiltonian

def vectorize_comm(A):
# Create an tdentity matriz with the same dimension as A
iden = np.eye(A.shape[0])
# Compute the vectorized commutator [4, .] as the Kronecker product
return np.kron(iden, A) - np.kron(A.T, iden)

class VectorizedEffectiveHamiltonian_class:
def __init__(self, He, Ha):
self.He = He
self .Ha = Ha

def VectorizedEffectiveHamiltonian(H, gamma, 1ind) :
# Create an identity matrixz with the same dimension as H
iden = np.eye(H.shape[0])
d = H.shape[0]
# Compute the vectorized commutator for the Hamiltonian H
vec_H = vectorize_comm(H)
# Initialize the result matriz with zeros (complex type)
res = np.zeros((d**2, d**2), dtype=np.complex128)
# Compute the conjugate of the Lindblad operator
L_conj = lind.conj()
L_dagger L = L_conj.T @ 1ind
# Compute the Lindblad contribution to the effective Hamiltonian
res -= gamma * (np.kron(L_conj, lind) - (np.kron(iden, L_dagger_L) +
np.kron(L_dagger L.T, iden)) / 2)
# Return an instance of the VectorizedEffectiveHamiltonian_class with vec_H and
res
return VectorizedEffectiveHamiltonian_class(vec_H, res)

S.5 Operator Pool for Amplitude Damping Channel

Variational algorithms require a flexible and expressive pool of operators from which trial
updates to the quantum state or density matrix can be constructed. In the context of the
QMAD approach, we build this pool from tensor products of Pauli operators acting on
different subsets of qubits. These operators serve as the building blocks of anséitze used to
approximate the evolution of vectorized density matrices.

The code below defines a function that generates such an operator pool, systematically

exploring combinations of qubit indices and Pauli matrices. We also provide an Ansatz
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constructor that assembles the initial state, vectorizes the density matrix, and packages the

operator pool for use by the variational solver.

Script S.5.1: Defining pool of operators/gates L]

from itertools import combinations, product
from gqflux.variational_methods.gmad.ansatz import PauliOperator

# Define Pauli matrices

sx = np.array([[0, 11, [1, 0]11)

sy = np.array([[0, -1j1, [1j, 011)
sz = np.array([[1, 0], [0, 0]11)

def build_pool(ngbit):
pauliStr = ["sx", "sz", "sy"]
res = []
# Iterate over combinations of qubit indices and Pault operators
for order in range(1l, 3):
for idx in combinations(range(1l, ngbit + 1), order):
for op in product(pauliStr, repeat=order):
res.append(PauliOperator (op, 1list(idx), 1, ngbit))
return res

S.6 Variational Simulation of Amplitude Damping

Having established the exact amplitude damping dynamics using a linear solver, we now ap-
ply the QMAD variational algorithm to approximate the same evolution in Liouville space.
This method represents the density matrix as a vector and simulates its trajectory using
a parametrized ansatz. The variational parameters are updated by minimizing the resid-
ual of the vectorized master equation, enabling an efficient approximation of open-system
dynamics.

We construct in this script the vectorized effective Hamiltonian for the amplitude damp-

ing channel and initialize a suitable ansatz based on the operator pool defined earlier. We
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propagate the system over time using the QMAD solver and directly compare the varia-
tional dynamics against the numerically exact results obtained with QuTiP. This compari-
son highlights both the accuracy and the potential computational advantages of variational

approaches for simulating dissipative quantum processes.

Script S.6.1: Amplitude Damping Channel (UAVQDS) ]

import numpy as np

from gflux.variational_methods.gmad.solver import solve_avq_vect

from gqflux.variational_methods.qmad.effh import VectorizedEffectiveHamiltonian
from gqflux.variational_methods.qgmad.ansatz import Ansatz

import matplotlib.pyplot as plt

sx = np.array([[0, 1], [1, 011)

sy = np.array([[0, -1j], [1j, 011)
sp=(sx+1j*sy) /2

Id = np.eye(2, dtype=np.complex128)

#-— build effective Hamiltonian for the vectorized density matriz
H = np.eye(2, dtype=np.complex128)

gamma = 1.52e9

lind = sp

H = VectorizedEffectiveHamiltonian(H, gamma, 1lind)

#-- initial state to build the initial pure state density matriz
u0 = np.array([1 / 2, np.sqrt(3) / 2], dtype=np.complex128) #it should be normalized
inttial state with 2™n length

#-- simulation time (tf) and time step (dt) (in seconds)
tf 1000e-12
dt 10e-12

#-—- Initialize the ansatz and propagate the variational parameters and density matriz
ansatz = Ansatz(u0, relrcut=1e-6, vectorized=True)
res = solve_avq_vect(H, ansatz, [0, tf], dt, rk45=False)

#-- Print the optimized ansatz at the end of simulation
print ("=" * 60)

print (f"Simulation time: {tf*1el2} ps")

print (£"Time step: {dt*1lel2} ps")

print ("=" * 60)

print("Final Optimized Ansatz")
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print ("=" * 60)

print (f"Number of gates in final ansatz: {len(res.A[-1])}")
#print (f"Final ansatz gates: {res.A[-1]}")

print (f"Number of time steps: {len(res.t)}")

print ("=" * 60)

#-- Eztract diagonal elements from density matrices at each time step
excited = np.array([res.ul[i][1, 1].real for i in range(len(res.u))])
ground = np.array([res.ul[i] [0, 0] .real for i in range(len(res.u))])
times = np.array(res.t)

line_qgt_1 = plt.plot(qt_times * lel2, ground_population, label="Ground State
(QuTiP)", linewidth=2, color=’tab:blue’)

line_qt_2 = plt.plot(qt_times * lel2, excited_population, label="Excited State
(QuTiP)", linewidth=2, color=’tab:orange’)

color_qt_1 = line_qt_1[0].get_color()

color_qt_2 = line_qt_2[0].get_color()

point_indices_qt = range(0, len(qt_times), 100)

#plt.scatter(qt_times[point_indices_qt] * lel2,
ground_population[point_indices_qt], color=color_qt_1, s=20, zorder=>5)

#plt.scatter(qt_times[point_tindices_qt] * lel2,
excited_population[point_indices_qt], color=color_qt_2, s=20, zorder=5)

point_indices = range(0, len(times), 10)

plt.scatter(times[point_indices] * lel2, ground[point_indices], color=color_qt_1,
label="Ground State (UAVQDS)", s=75, marker=’*’, zorder=5)

plt.scatter(times[point_indices] * 1lel2, excited[point_indices], color=color_qt_2,
label="Excited State (UAVQDS)", s=75, marker=’*’, zorder=5)

plt.xlabel("Time (ps)")

plt.ylabel("Amplitude")

plt.grid(True, which="major’, linestyle=’-’, linewidth=0.5, alpha=0.7)
plt.gca() .xaxis.set_major_locator(plt.matplotlib.ticker.MultipleLocator(200))
plt.gca() .yaxis.set_major_locator(plt.matplotlib.ticker.MultipleLocator(0.1))
plt.legend()

plt.show()

S.7 Preprocessing Hamiltonians for the SSE Approach

The stochastic Schrodinger equation (SSE) unravels Lindblad dynamics into an ensemble of

pure-state trajectories, whose average reproduces the density-matrix evolution. To employ

this approach efficiently, it is helpful to separate the generator into its Hermitian (coherent)
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and anti-Hermitian (dissipative) parts and to precompute terms like L'L that appear in the
non-unitary evolution between quantum jumps.

The routine below builds a compact data structure containing: (i) the total Hermitian
part, (ii) the effective anti-Hermitian contribution proportional to the sum of LTL, (iii) the
full list of Lindblad operators, and (iv) the corresponding LTL factors. This object is then

passed to the trajectory solver to define both drift and jump processes.

Script S.7.1: Preprocessing Hamiltonian for SSE approach 2

class EffectiveHamiltonian_class:
def __init__(self, He, Ha, Llist, LdL):
self .He = He # Hermitian part
self.Ha = Ha # Anti-Hermitian part
self.Llist = Llist # Ltst of Lindblad operators
self .LdL = LdL # List of L \dagger L

def EffectiveHamiltonian( mats, Llist):
nun
Create an EffectiveHamiltonian object based on provided parameters.
:param mats: List of matrices (Hamiltonian terms).
:param Llist: List of lists of Lindblad operators.
:return: An instance of EffectiveHamiltonian_class.
nun
He = sum(mats) # Sum of Hamiltonian terms as Hermitian part
Ha = 0.0 # Inttialize anti-Hermitian part
LdL = [] # Initialize the list for Lindblad operator products

for LL in Llist:
for L in LL:
L_dagger L = (L.conj().T @ L)
LdL.append(L_dagger L) # Append to LdL list
Ha += L_dagger_L # Sum for the anti-Hermitian part

# Return the Effective Hamiltonian object
return EffectiveHamiltonian_class(He, 0.5 * Ha, [L for LL in Llist for L in LL],
LdL)
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S.8 Parallel Processing of Trajectories

Each SSE trajectory is statistically independent, which makes the method embarrassingly
parallel. By distributing trajectory computations across CPU cores, one can reduce wall-
clock time and obtain accurate ensemble averages with large sample sizes. The helper func-
tion below launches a pool of workers to compute batches of trajectories concurrently and
then collects the results. This strategy is particularly useful for realistic models that require
hundreds or thousands of trajectories for convergence.

This script defines a helper function to run multiple independent quantum trajectories
with identical parameters. It uses Python’s multiprocessing Pool to distribute the trajectory
simulations across available CPU cores in parallel. The results from all trajectories are

collected and returned as a single list for further averaging or analysis.

Script S.8.1: Parallel processing of trajectories 2

from multiprocessing import Pool

def run_trajectories(num_trajectory, H, ansatz, tf, dt):
# Create a list of tuples with the required parameters for each trajectory
param_list = [(H, ansatz, tf, dt) for _ in range(num_trajectory)]

with Pool() as pool:
results = pool.starmap(solve_avq_trajectory, param_list)

return results

S.9 SSE Simulations of the FMO Complex

We now apply the SSE-based QMAD approach to the FMO complex introduced earlier.
To accommodate the variational solver’s Hilbert-space requirements, we first pad the FMO
Hamiltonian and Lindblad operators to a higher-dimensional space. We then prepare an

initial excitation localized on a selected site. This setup allows the algorithm to simulate
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dissipative energy transfer using an ensemble of quantum trajectories.

This script prepares the Hamiltonian and dissipation operators for an FMO complex by

embedding the original five site system into a larger eight dimensional Hilbert space. It

defines multiple Lindblad operators corresponding to different physical processes using the

parameters alpha, beta, and gamma, and pads them to match the extended system size.

Finally, it initializes the quantum state with a single excitation localized on the second site

of the FMO complex.

Script S.9.1: Setting up parameters for FMO Complex L]

#Hamz ltonian
H=[
[o, o, 0, 0, O],
[0, 0.0267, -0.0129, 0.000632, 0],
[0, -0.0129, 0.0273, 0.00404, 0],
[0, 0.000632, 0.00404, 0, 0],
[o, o, 0, 0, O],
]
H_fmo= np.pad(H, ((0, 3), (0, 3)), mode=’constant’)

alpha, beta, gamma = 3e-3, 5e-7, 6.28e-3

# Define the alpha operators
Llist_f = [(np.diag([0] * i + [np.sqrt(alpha)] + [0] * (4 - 1))) for i in range(l, 4)]

# Define the beta operators
Llist_f += [(np.array([[np.sqrt(beta) if i == 0 and j == k else O for j in range(5)]
for i in range(5)])) for k in range(1, 4)]

# Define the gamma operator

L_temp = np.zeros((5, 5))

L_temp[4, 3] = np.sqrt(gamma)

Llist_f.append(L_temp)

Llist_f_padded = [np.pad(matrix, ((0, 3), (0, 3)), mode=’constant’) for matrix in
Llist_f]

#initial state
u0_fmo = np.zeros(8,dtype=np.complex128)
u0_fmo[1] =1
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Following script configures and runs a trajectory based variational quantum dynamics
simulation for the FMO complex. It sets the time parameters and number of stochastic
trajectories, constructs the effective Hamiltonian from the system Hamiltonian and Lind-
blad operators, and initializes the variational ansatz from the chosen initial state. Finally,
it launches multiple trajectories in parallel to generate an ensemble of quantum evolution

results.

Script S.9.2: Setting up parameters for trajectory method 2

from gflux.variational_methods.gmad.solver import solve_avq_trajectory
from gflux.variational_methods.qmad.effh import EffectiveHamiltonian
from gqflux.variational_methods.gmad.ansatz import Ansatz

# Guard for multiprocessing in Jupyter
n.

if __name__ == "__main

# Define your parameters (these are placeholders)

tf = 450 # Final time

dt =5 # Time step

num_trajectory = 200 # Number of trajectories
= EffectiveHamiltonian([H_fmo], [Llist_f_padded]) # Initialize the effective
Hamzltonian

ansatz = Ansatz(u0_fmo, relrcut=1e-5, vectorized=False) # Create an Ansatz
instance

# Running the parallel trajectories
results = run_trajectories(num_trajectory, H, ansatz, tf, dt)

To extract physical observables from these trajectories, we compute expectation values
of diagonal projectors corresponding to excitations on each of the FMO sites and the sink.
By averaging over all trajectories, we reconstruct the population dynamics predicted by the
Lindblad equation. The result provides insight into the flow of excitation energy across the

FMO network.
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Script S.9.3: Plot for FMO Complex simulation output

import numpy as np
import matplotlib.pyplot as plt

# Define the observables as diagonal matrices for expectation value calculations
Mexp_f = [

np.diag([0, 1, 0, 0, 0, O, 0, 0]), # Observable 1
np.diag([0, 0, 1, 0, O, O, O, 0]), # Observable 2
np.diag([0, 0, O, 1, 0, O, 0, 0]), # Observable 3
np.diag([1, 0, 0, 0, O, 0, 0, 0]), # Observable 4
np.diag([0, 0, 0, 0, 1, 0, 0, 0]) # Observable 5

# Inttialize a list to store the average expectation values
average_expectation_values = []

# Loop over each trajectory to accumulate expectation values
for j in range(num_trajectory):
# Loop over each observable defined in Mexp_f
for k, observable in enumerate(Mexp_f):
expectation_values = [] # List to hold ezpectation values for the current
observable

# Calculate expectation values for the current trajectory
for i, psi in enumerate(results[j].psi):
psi_dagger = np.conjugate(psi).T # Conjugate transpose of the wave
function
rho = np.outer(psi, psi_dagger) # Calculate the density matriz
expectation_value = np.trace(np.dot(rho, observable)) # Compute the
expectation value

# Store the real part of the expectation value
expectation_values.append(expectation_value.real)

# Accumulate expectation values for averaging later
if len(average_expectation_values) <= k:
average_expectation_values.append(np.array(expectation_values)) #
Initialize ©f not already done
else:
average_expectation_values[k] += np.array(expectation_values) # Sum the
values for this observable

# Convert time to femtoseconds for plotting (assuming results[0].t contains time
data)
results_t_converted = [t for t in results[0].t]

# Average the accumulated expectation values over all trajectories

average_expectation_values = [ev / num_trajectory for ev in
average_expectation_values]
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# QuT2P time evolution
qutip_times = np.linspace(0.0, 450.0, 2000)
qutip_population = population

labels ["State 1", "State 2", "State 3", "Ground State", "Sink State"]
colors = ["tab:blue", "tab:orange", "tab:green", "tab:red", "tab:purple"]

counter = 0

for expec, label in zip(population, labels):
plt.plot(qutip_times, expec, label=label, color=colors[counter])
counter += 1

sse_labels = ["State 1 (SSE)", "State 2 (SSE)", "State 3 (SSE)", "Ground State
(SSE)", "Sink State (SSE)"]

average_expectation_values = [np.asarray(arr) for arr in
average_expectation_values]

results_t_converted = np.asarray(results_t_converted)

point_indices = np.arange(0, len(results_t_converted), 3)

counter = 0

for expec, label in zip(average_expectation_values, sse_labels):
plt.plot(results_t_converted[point_indices], expec[point_indices], ’*’,
label=label, color=colors[counter])
counter += 1

plt.xlabel (’Time(£fs)’)

plt.ylabel(’Population’)

plt.xticks(np.arange(0, 450, 100))

plt.yticks(np.arange(0, 1.2, 0.2))

plt.grid(True, which="major’, linestyle=’-’, linewidth=0.5, alpha=0.7)

plt.legend(loc=’upper right’, ncol=2)

plt.ylim(0, 1.2)

plt.tight_layout ()

plt.show()
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