
30 January 2026

QFlux: An Open-Source Toolkit for Quantum Dynamics

Simulations on Quantum Computers. Part V - Adaptive

Variational Quantum Algorithms for Open Quantum

Systems

Saurabh Shivpuje1, Alexander V Soudackov2, Xiaohan Dan2, Yuchen Wang1, Brandon C Allen2, Delmar G

A Cabral2, Zixuan Hu1, Ningyi Lyu2, Eitan Geva3, Victor S Batista2,4, Sabre Kais5

1. Department of Chemistry Purdue University

2. Department of Chemistry Yale University

3. Department of Chemistry University of Michigan

4. Yale Quantum Institute Yale University

5. Department of Electrical and Computer Engineering North Carolina State University

Abstract

Simulating open quantum systems remains one of the most demanding problems in quantum dynamics,

as environmental interactions lead to non-unitary evolution that challenges standard quantum simulation

techniques. Variational quantum algorithms (VQAs) offer a practical way forward by combining classical

optimization with quantum hardware, making them well suited for near-term devices. Here, in Part V of

the QFlux implementation series, we introduce adaptive variational-ansatz methods for solving the Lindblad

master equation. This tutorial presents the Python-based qmad module of the QFlux toolkit, which is designed

to help students and researchers easily build and explore adaptive VQA strategies. The tutorial walks through

each step of the workflow and applies the methods to two illustrative examples. The first is the amplitude-

damping channel, which models spontaneous emission in a two-level system. The second is the Fenna-

Matthews-Olson (FMO) complex, a prominent model for excitonic energy transfer in photosynthesis. The

two workflows utilizing adaptive variational approaches implemented here are the unrestricted adaptive

variational quantum dynamics (UAVQD) scheme and the stochastic Schrödinger equation (SSE) based

Posted on 30 January 2026 — CC-BY 4.0 — This is a preprint and has not been peer reviewed. Data may be preliminary. — https://

doi.org/10.26434/chemrxiv.10001769/v1

trajectory method. By working through these examples, readers gain both intuition and hands-on experience

with variational techniques for simulating dissipative quantum dynamics.

Posted on 30 January 2026 — CC-BY 4.0 — This is a preprint and has not been peer reviewed. Data may be preliminary. — https://

doi.org/10.26434/chemrxiv.10001769/v1

QFlux: An Open-Source Toolkit for Quantum

Dynamics Simulations on Quantum Computers.

Part V - Adaptive Variational Quantum

Algorithms for Open Quantum Systems

Saurabh Shivpuje,† Alexander V. Soudackov,‡ Xiaohan Dan,‡ Yuchen Wang,†

Brandon C. Allen,‡ Delmar G. A. Cabral,‡ Zixuan Hu,† Ningyi Lyu,‡ Eitan

Geva,¶ Victor S. Batista,∗,‡,§ and Sabre Kais∗,∥

†Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, USA

‡Department of Chemistry, Yale University, New Haven, CT 06520, USA

¶Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA

§Yale Quantum Institute, Yale University, New Haven, CT 06511, USA

∥Department of Electrical and Computer Engineering, Department of Chemistry , North

Carolina State University, Raleigh, North Carolina 27606, USA

E-mail: victor.batista@yale.edu; skais@ncsu.edu

Abstract

Simulating open quantum systems remains one of the most demanding problems in

quantum dynamics, as environmental interactions lead to non-unitary evolution that

challenges standard quantum simulation techniques. Variational quantum algorithms

(VQAs) offer a practical way forward by combining classical optimization with quan-

tum hardware, making them well suited for near-term devices. Here, in Part V of the

1

victor.batista@yale.edu
skais@ncsu.edu

QFlux implementation series, we introduce adaptive variational-ansatz methods for

solving the Lindblad master equation. This tutorial presents the Python-based qmad

module of the QFlux toolkit, which is designed to help students and researchers easily

build and explore adaptive VQA strategies. The tutorial walks through each step of

the workflow and applies the methods to two illustrative examples. The first is the

amplitude-damping channel, which models spontaneous emission in a two-level sys-

tem. The second is the Fenna–Matthews–Olson (FMO) complex, a prominent model

for excitonic energy transfer in photosynthesis. The two workflows utilizing adap-

tive variational approaches implemented here are the unrestricted adaptive variational

quantum dynamics (UAVQD) scheme and the stochastic Schrödinger equation (SSE)

based trajectory method. By working through these examples, readers gain both in-

tuition and hands-on experience with variational techniques for simulating dissipative

quantum dynamics.

1 Introduction

Open quantum systems introduce an additional layer of complexity beyond that encountered

in isolated, closed systems, primarily due to interactions between a system and its surround-

ing environment. Unlike closed quantum systems, which evolve only through their internal

Hamiltonian, open quantum systems interact with their surroundings. These external influ-

ences cause dissipation, decoherence, and time evolution that is no longer unitary. These

effects complicate the design of efficient quantum algorithms,1–6 yet they are unavoidable in

realistic physical settings. Indeed, many systems of interest in chemistry and physics operate

inherently as open systems,7–10 making the development of practical simulation strategies

for open-system dynamics an essential goal of quantum computing research.

Quantum computing has emerged as a powerful computational paradigm with potential

applications across a wide range of disciplines, including the simulation of open quantum

systems.1–4,11–16 Earlier installments of the QFlux17 tutorial series introduced the Lindblad

2

master equation and its simulation using dilation-based approaches.1 In this part, we shift

focus to variational quantum algorithms for open quantum systems by formulating trans-

formed representations of the Lindblad master equation that are amenable to variational

treatment on quantum hardware.

A central challenge in simulating open quantum dynamics is its fundamentally non-

unitary nature. This presents a significant obstacle, since the elementary operations avail-

able on quantum hardware are inherently unitary.1,2,12,18 To address this mismatch, a grow-

ing family of hybrid quantum-classical methods known as variational quantum algorithms

(VQAs) has been developed.4,19,20 These approaches draw inspiration from classical varia-

tional techniques long used to approximate the dynamics of complex many-body systems.21,22

In the context of noisy intermediate-scale quantum (NISQ) devices, VQAs are particularly

attractive because they rely on shallow circuits and parametrized ansätze optimized through

classical feedback loops.21,23 While VQAs were initially developed for energy minimization

and unitary dynamics, they have recently been extended to simulate dissipative and open-

system processes.4,20

Early implementations of the Variational Quantum Eigensolver (VQE) typically relied

on fixed-form ansätze, such as the unitary coupled-cluster construction. Although success-

ful for small systems, these approaches often suffer from limited accuracy and unfavorable

scaling, requiring a polynomial increase in both circuit depth and the number of variational

parameters as system size grows.24,25 To overcome these limitations, adaptive VQE methods

have been introduced, in which the ansatz is constructed dynamically in response to the

problem at hand.5 By tailoring the ansatz to the evolving system state, adaptive approaches

can achieve higher accuracy with significantly shallower circuits.

In this work, we will discuss two distinct approaches which utilize adaptive ansatz: the

first is an unrestricted, vectorized adaptive variational quantum dynamics (AVQD) scheme,

which iteratively appends operators from a predefined pool to ensure that the McLachlan

distance remains below a prescribed threshold during time evolution. The second approach

3

is based on a stochastic Schrödinger equation (SSE) formulation, which avoids vectorization

and preserves the original system qubit count. This trajectory-based method is therefore

more suitable for NISQ devices, while reproducing Lindblad dynamics through ensembles of

pure-state evolutions.20

Although adaptive ansatz frameworks have been proposed in several recent studies, their

practical implementation often remains challenging. Many works provide detailed theoretical

descriptions or pseudo-algorithms, but the absence of readily executable code poses a barrier

for researchers seeking to apply these methods in practice.20,26,27 While robust quantum

optics and open-system packages exist in languages such as Julia,28 much of the quantum

computing community relies on Python-based software development kits.29–32

To address this gap, we introduce the qmad module within the QFlux framework (avail-

able via pip install qflux), a Python-based33 toolkit designed to support adaptive vari-

ational quantum algorithms for open-system dynamics. qmad module provides a unified and

accessible implementation of the methods developed in this work, enabling users to incor-

porate adaptive variational techniques directly into their simulation workflows. The module

exposes the core algorithmic components discussed throughout this paper and allows users

to explore different adaptive ansatz constructions across a broad range of quantum systems.

To illustrate these methods, we consider two representative examples. The first is the

amplitude-damping channel, which models spontaneous emission in a two-level system.1,9

The second example is the Fenna–Matthews–Olson (FMO) complex, a chemically realistic

system widely studied in the context of light-harvesting and energy transfer in photosyn-

thetic bacteria.9,10 For both cases, Lindblad dynamics are first simulated using the QuTiP

framework to establish classical reference results.32 We then apply the unrestricted adaptive

variational quantum dynamics (UAVQD) approach to the amplitude-damping model,9,20 fol-

lowed by the SSE-based variational trajectory method for the FMO complex.4,9 Together,

these examples demonstrate how adaptive variational algorithms can be used to simulate

realistic open-system dynamics within the QFlux framework.

4

Finally, while adaptive variational frameworks can, in principle, be extended to treat non-

Markovian dynamics, the methods implemented in this installment focus on Lindblad-form

generators and therefore describe Markovian open-system evolution.

In the following section, we first establish classical reference simulations of Lindblad

dynamics, which serve as benchmarks for the adaptive variational quantum algorithms in-

troduced thereafter.

2 Numerical Simulations on Classical Computers

Before delving into the key quantum algorithms in this work, it is crucial to first become

acquainted with the numerical simulations that can be performed on classical computers. It

is a best practice to run simpler trial examples using numerical simulations before testing

quantum algorithms on quantum computers. The results obtained from such simulations,

often referred to as “exact results”, serve as a benchmark for evaluating the accuracy of

quantum algorithms and quantum computers.

In this section, we demonstrate the simulation of the Lindblad master equation32,34

∂ρ(t)
∂t

= − i
ℏ

[H, ρ(t)] +
∑

n

1
2γn[2Lnρ(t)L†

n − ρ(t)L†
nLn − L†

nLnρ(t)]. (2.1)

This equation describes the time-evolution of the density matrix ρ(t) for an open quan-

tum system, accounting for both unitary evolution and dissipative effects. The first term,

− i
ℏ [H, ρ(t)], represents the system’s Hamiltonian evolution, while the second term includes

Lindblad operators Ln with rate coefficients γn, modeling environmental interactions like dis-

sipation or decoherence. Together, they form the Lindblad master equation, a fundamental

tool in quantum dynamics for describing systems that interact with external environments.

To illustrate this equation and introduce the examples presented in this work, we simulate

the dynamics of an amplitude-damping channel and then proceed to simulate the dynamics

of an FMO complex system.

5

2.1 for the Lindblad master equation

An effective way to obtain numerically exact solutions of the Lindblad master equation is to

use a dedicated , such as QuTiP.32,34 QuTiP provides a built-in Lindblad solver, mesolve,

which relies on SciPy’s complex-valued VODE (“zvode”) integrator.35 The integrator offers

two main methods: Adams, a variable-step predictor–corrector scheme suited for non-stiff

problems, and BDF, a backward differentiation formula appropriate for stiff systems. Users

need only specify the system parameters and desired outputs; the software handles the

numerical integration and returns the computed dynamics.

When using mesolve as shown in Script S.1.1, key components must be provided: the

system Hamiltonian H, the initial density matrix ρ(0), a list of times for dynamic simulation,

and collapse operators c_ops, defined as √
γnLn. If no collapse operators are given, the solver

propagates the Liouville equation of the pure system. Additionally, users must specify the

output instructions, particularly the operators e_ops whose expectation values are to be

calculated. With these quantities defined, mesolve generates time-dependent expectation

values for the given operators by propagating either the Liouville equation or the Lindblad

master equation.

2.2 Amplitude Damping Channel

The amplitude-damping channel illustrated here models spontaneous emission and energy

dissipation, which are among the dominant noise processes affecting quantum systems. This

process is ideally suited for benchmarking numerica solutions since it can be solved analyti-

cally as shown in Section S.2.1 of the Supporting Information.

The amplitude damping dynamics is governed by a decay rate γ, which determines how

rapidly the system transitions from the excited state |1⟩ to the ground state |0⟩. Throughout

this work, we adopt the computational basis ordering commonly used in quantum optics.

Accordingly, in Script S.2.1, the lowering operator is defined as σ− = |0⟩⟨1| and implemented

as sm, which induces the “downward” transition from |1⟩ to |0⟩ and models the decay of

6

population from the excited to the ground state.

The initial state, defined as a superposition of |0⟩ and |1⟩ and normalized for proper

behavior, is converted to a density matrix rho0 to allow for compatibility with the master

equation solver. To capture the dynamics of energy dissipation, a collapse operator c_ops is

constructed by scaling the lowering operator with √
γ, thus modeling the amplitude damping

at rate γ.

For the time-evolution, the code utilizes QuTiP’s mesolve function to simulate the sys-

tem’s behavior over a specified time array, ‘times’, with each time step set at dt = 0.1 ps,

culminating at a final time tf = 1000 ps. The solver computes the evolution of rho0 under

the influence of c_ops, providing a realistic model of energy dissipation. To observe the

population dynamics, two projectors, proj_ground and proj_excited, are defined to ex-

tract the populations of the ground and excited states at each time step. These populations

are then plotted to reveal the behavior of the system as it undergoes amplitude damping,

offering valuable insights into the effects of spontaneous emission on a simple two-level quan-

tum system, an essential foundation for understanding quantum noise and the challenges of

mitigating decoherence in quantum computing applications.

Figure 1 depicts the temporal evolution of state populations in a two-level quantum

system undergoing amplitude damping. At the initial time, the system exhibits a dominant

population in the excited state, indicating a higher occupancy of |1⟩. As time advances,

a continuous relaxation process is observed, characterized by the progressive transfer of

population from the excited state to the ground state.

This behavior reflects the amplitude damping process, where the population in the ex-

cited state |1⟩ dissipates over time due to energy loss (spontaneous emission), resulting in an

increase in the ground state |0⟩ population. By the end of the simulation (at around 1000 ps),

the ground state population approaches a higher value, while the excited state population

diminishes, demonstrating the effect of continuous decay. This trend aligns with the charac-

teristics of amplitude damping, as the system loses energy and stabilizes predominantly in

7

Figure 1: Population dynamics of a two-level quantum system under amplitude damping.
The blue curve illustrates the population of the ground state |0⟩, while the orange curve
represents the excited state |1⟩. Initially excited, the system relaxes to the ground state via
damping.

its ground state, highlighting the impact of noise on quantum states over time.

2.3 FMO Complex

Another example of using numerical calculations to study a real-world system36 is the Fenna-

Matthews-Olson (FMO) complex, a well-studied pigment-protein complex (PPC), prominent

in quantum computations. Found in green sulfur bacteria, the FMO complex facilitates ex-

citonic energy transfer (EET) between chromophores.37 Within its intricate protein scaffold

structure, chromophores are optimally packed, enabling highly efficient energy transfer be-

tween excitations.38,39

In every FMO complex entity, there are seven chromophore sites. The reaction center

is located near site 3, while photoexcitation typically occurs at either site 1 or site 6.15,40,41

The excited state energy from site 1 or 6 is then transferred to the reaction center through

interactions with neighboring sites. This efficient energy transfer is facilitated by the close

proximity and optimal arrangement of the chromophores within the complex.38

8

To study this quantum mechanical process, we will consider only one of the multiple

pathways of excitation, i.e. excitation starting from site 1 and traveling to the reaction

center via site 3. This brings the total number of possible states to 5: 3 chromophore states

in the pathway, including ground and sink states. Hamiltonian for this considered pathway

is:

H =
4∑

i=0
εiσ

+
i σ

−
i +

∑
i̸=j

Jij(σ+
i σ

−
j + σ+

j σ
−
i). (2.2)

In the above Hamiltonian equation, σ+
i and σ−

i are Pauli raising and lowering operators,

respectively, for the state i. εi denotes their creation and annihilation energy, and Jij denote

the coupling strength between the two states i, j. For calculations here, we utilize the

Hamiltonian matrix as provided by Hu et al.10 and mentioned in the accompanying code

(Script S.3.1).

The Lindblad master equation to simulate the FMO complex excitation pathway is given

as:

∂ρtot(t)
∂t

= −i[H, ρtot(t)] +
∑

n

(Lnρtot(t)L†
n − 1

2L
†
nLnρtot(t) − 1

2ρtot(t)L†
nLn). (2.3)

where ρtot refers to the density matrix encompassing the populations and correlations be-

tween the system (ground state and excited states) and the reaction center (sink state). The

operators Ln are the jump operators, which account for the 7 dissipation channels present

in the pathway. One must note that the rate constants for the 7 different channels are

wrapped within Ln as
√

rate constant × Ln → Ln. These channels include the dephasing

rate parameter, denoted as α, applied to sites 1 through 3. The dissipation rate parameter,

β, also pertains to sites 1 through 3 and describes transitions from these chromophores to

the ground state. Additionally, γ represents the dissipation rate from site 3 to the sink

state 4. These parameters are crucial for modeling jump operators as shown in the code

(Script S.3.1) and understanding the energy transfer dynamics within the FMO complex.

Now, each site’s population is studied using the diagonal elements of the density matrix,

9

which are obtained through projection measurements in the computational subspace. This

procedure is detailed in Script S.3.2, which also includes the code to plot the results. In

Fig. 2, the population change over time among all five states is illustrated. Observing how

the populations transfer among the states as time progresses provides valuable insights.

Figure 2: Time-evolution of populations for chromophore sites in Fenna-Matthews-Olson
(FMO) complex during energy transfer.

Figure 2 shows that following initialization at site 1 of the FMO complex, the excitation

is coherently redistributed among the intermediate chromophore sites before being funneled

toward site 3 and subsequently transferred to the sink state, which represents the reaction

center. The gradual depletion of population from the excited sites, together with the ac-

cumulation in the sink state, reflects the combined effects of coherent coupling, dephasing,

and irreversible dissipation encoded in the Lindblad operators. This behavior is consistent

with the role of the FMO complex as an efficient energy-transfer conduit in photosynthetic

systems.

Having established reliable classical benchmarks for the Lindblad dynamics using nu-

merical simulations, we now turn to variational quantum approaches for simulating open

10

quantum systems. In the following section, we introduce adaptive variational quantum dy-

namics methods that leverage parametrized quantum circuits to approximate non-unitary

time evolution, using the amplitude-damping channel as a representative example.

3 Variational Simulations of Lindblad Dynamics

Adaptive Variational Quantum Dynamics Simulations (AVQDS), which fall under the cat-

egory of variational simulations, offer a method for leveraging an ongoing improvements of

quantum hardware that offer scalability and reduced noise to address systems governed by

open quantum dynamics.20 Here, we focus on the unrestricted and vectorized variation of

AVQDS, which is particularly useful for simulating systems that can evolve in many possible

pathways in a non-unitary manner. In this work, we will limit our discussion to introduc-

ing this method for a relatively simple example. We begin by discussing the fundamental

principles of unrestricted-vectorization variant of AVQDS and its uniqueness.9

Next, we provide an example involving an amplitude damping channel. This example

showcases the development of an expressible ansatz, which is a critical component in the

AVQDS framework. The ansatz unitary serves as a trial solution, which is iteratively im-

proved to approximate the desired quantum state evolution. Additionally, we delve into

the creation of the associated operator pool, which consists of various quantum operations

(gates) that can be applied to the system. This operator pool is essential for the adaptive

nature of the algorithm, allowing it to dynamically adjust and refine the ansatz unitary

based on the system’s specific needs.

3.1 Vectorized Effective Hamiltonian

The initial step in developing a computational framework for this method involves converting

the conventional Lindblad Master equation (Eq. (2.1)) into an effective Schrodinger equa-

tion. The reformulated effective Hamiltonian based evolution equation in AVQDS method

11

is presented as follows:
∂ |νρ(t)⟩
∂t

= −iHeff(t)|νρ(t)⟩, (3.1)

where,

ρ → |νρ⟩ = [ρ11, . . . , ρ1N , ρ21, . . . , ρ2N , . . . , ρN1, . . . , ρNN]T , (3.2)

Heff = [I ⊗H −HT ⊗ I] + i
∑

n

[
L∗

n ⊗ Ln − 1
2(I ⊗ L†

nLn + LT
nL

∗
n ⊗ I)

]
. (3.3)

Here, the Lindblad operator Ln embodies γn as √
γnLn → Ln.

The effective Hamiltonian is further split based on hermicity, into a Hermitian and an

anti-Hermitian components as described next:

Heff = He − iHa (3.4)

The components after the decomposition are defined as follows:

He = I ⊗H −HT ⊗ I, (3.5)

and

Ha = −i
∑

n

[
L∗

n ⊗ Ln − 1
2(I ⊗ L†

nLn + LT
nL

∗
n ⊗ I)

]
. (3.6)

The python functions responsible for this vectorization process and the decomposition of

the effective Hamiltonian are provided in Script S.4.1.

3.2 Unrestricted adaptive procedure and system evolution

Following the vectorization of the density matrix and the determination of an effective Hamil-

tonian, we arrive at the core of this method: developing a quantum circuit (ansatz) that

accurately describes the evolving quantum state of the system. To achieve a close approx-

imation, the quantum circuit is parameterized for each timestep according to the following

relation:

12

|νρ(t)⟩ ≈ |ϕ(t)⟩ =
k∏

l=1
e−iθl(t)Ol |ψi⟩ , (3.7)

where |ϕ(t)⟩ is an approximated state obtained by applying unitary gates e−iθl(t)Ol to the

initial state |ψi⟩. The operators Ol represent the ansatz operators added adaptively to the

lth layer of the circuit (discussed in detail in the next subsection) and θl(t) are real tunable

parameters. The evolution of the state is achieved by tuning the parameters θl(t) such that

the distance between the ideal evolution and the evolution induced by θl(t) is minimized.

This is suggested by the McLachlan’s variational principle42 expressed as

δ

∥∥∥∥∥∂ |ϕ(θ(t))⟩
∂t

+ iHeff |ϕ(θ(t))⟩
∥∥∥∥∥

2

= 0. (3.8)

The solution to the above equation is given by:

M(t)θ̇(t) = V(t), (3.9)

where the elements of the matrix M and components of the vector V are given by the

following expressions:

Mkj(t) = 2 Re
[
∂⟨ϕ(θ(t))|
∂θk(t)

∂|ϕ(θ(t))⟩
∂θj(t)

+ ⟨ϕ(t)| ∂|ϕ(θ(t))⟩
∂θk(t) ⟨ϕ(t)|∂|ϕ(θ(t))⟩

∂θj(t)

]
(3.10)

Vk(t) = 2 Im
[
⟨Heff⟩⟨ϕ(θ(t))|∂|ϕ(θ(t))⟩

∂θk(t) + ∂⟨ϕ(θ(t))|
∂θk(t) Heff |ϕ(t)⟩

]
(3.11)

The calculations are performed at every timestep to determine the evolution trajectory of

the system over a given interval of time. In addition to the parameter tuning in the adaptive

procedure, the ansatz is updated by adding an operator from an operator pool to maintain

the McLachlan distance below a specified limit. However, this lower bound distance is not

always known a priori. This is where the unrestricted flavor of AVQDS was introduced.20

Instead of fixing the threshold to a specific value, an operator is appended to the circuit

13

at each timestep such that it lowers the McLachlan distance below a relative threshold.

This approach ensures that the distance attains the lowest possible value of the McLachlan

distance. All these calculations are implemented through various Python functions. It is

recommended to initially overlook these functions and run the codes as described in the

following section, examining these functions only if modifications are needed.

3.3 Defining a Pool of Operators

As previously discussed, it is crucial for the algorithm to have a specified pool of operators

from which it can heuristically select the appropriate candidate for the ansatz. The choice

of the operator pool is specific to the system of interest. For a simple example such as the

amplitude damping benchmark, a basic pool of one- and two-qubit Pauli/identity operators

is chosen as these operators form a complete basis for the vectorized density matrix of the

two-level system.

The actual implementation involves defining a function to build the operator pool and

another function to create the ansatz with these operators. Script S.5.1 provides the code for

defining a pool of operators. The function build_pool generates a pool of Pauli operators

by iterating over combinations of qubit indices and Pauli operators for systems that involve

multiple qubits. The ansatz function then uses this pool to construct the ansatz for the

given initial state. This setup allows the algorithm to dynamically select and apply the most

suitable operators from the pool to accurately model the evolving quantum state.

3.4 Amplitude Damping Channel

To illustrate the AVQDS scheme, we present a simulation of the two-level amplitude damping

channel as a benchmark implementation. For this system, we need to predefine a pool of

operators to be used in building an ansatz. This pool includes both single-qubit and two-

qubit Pauli operators. Specifically, the single-qubit Pauli operators involve rotations around

the X, Y , and Z axes, parameterized by the angle θ(t). To capture entanglement and

14

correlation, for example with an ancilla qubit, the two-qubit operators are introduced from

the pool of combinations given by Ptwo = e−
iθPi⊗Pj

2 , where Pi, Pj ∈ {Xi, Yi, Zi}. This selection

allows for dynamic evolution and accurately captures the entanglement and correlations in

the system. The relevant code, showcased in Scripts S.5.1 and S.6.1, demonstrates how to

provide inputs for the system to execute the code. It is important to note that these are

just snippets of the complete code. The functions mentioned in the following script, such

as Ansatz and solve_avq, which perform the ansatz construction and simulation process

respectively, consist of relatively long lines of code with many supporting functions. For a

detailed view, one can refer to the QFlux documentation.17

Figure 3 compares the approximate population dynamics obtained from the unrestricted

adaptive variational quantum dynamics (UAVQD) method with the exact Lindblad solution

computed using QuTiP which agrees with the analytical solution. The close agreement be-

tween the two results demonstrates that the adaptive variational ansatz accurately captures

the dissipative dynamics of the amplitude-damping channel.

Figure 3: Time evolution of the populations of states |0⟩ and |1⟩ for the amplitude-damping
model. Solid lines correspond to the exact QuTiP solution, while star markers denote the
results obtained using the UAVQD method.

15

4 Stochastic Schrödinger Equation Based Variational

Approach

The algorithm, showcased in the previous section, uses a vectorized Hamiltonian, is very

efficient for simulating the full density matrix of systems with local interactions. However,

it has a significant drawback – it requires twice as many qubits. For the near-term devices,

the approach discussed in this section is advantageous for the two key reasons. First, the

number of qubits needed is the same as the number of qubits required to describe the system’s

state itself, meaning no extra qubits are necessary. Second, increasing the number of qubits

typically demands more entangling gates to form a sufficiently expressive ansatz, which raises

the overall gate count and hardware connectivity requirements. In light of these challenges,

we showcase an alternative variational algorithm based on the SSE, which offers a way to

simulate quantum trajectories more efficiently on near-term quantum hardware.4,20

4.1 Stochastic Schrödinger Equation

In the framework of the quantum stochastic Schrödinger equation, the density matrix ρ,

which is typically described by the Lindblad master equation, is instead represented by an

ensemble of randomly evolving wave functions ψc(t), each describing the state of an individ-

ual trajectory. Each wave function corresponds to an individual trajectory of the system’s

evolution. Rather than solving for the full density matrix directly, this method simulates

the evolution of pure states under continuous measurement. Importantly, transitioning from

the Lindblad equation to the stochastic Schrödinger equation does not involve any approx-

imations. It is simply a different way of expressing the mixed state ρ(t) as a collection of

pure states |ψ(t)⟩.43,44

Each of these pure state trajectories evolves according to a stochastic Schrödinger equa-

tion. For a small time step dt, the change in the wave function |ψc(t)⟩ for the specific

16

trajectory c is given by:

d|ψc(t)⟩ =
[
−iH − 1

2
∑

k

(
L†

kLk − ⟨L†
kLk⟩

)]
|ψc(t)⟩ dt+

∑
k

[
Lk|ψc(t)⟩
⟨L†

kLk⟩
− |ψc(t)⟩

]
dNk , (4.1)

In this equation, the first term represents the smooth, deterministic evolution of the wave

function. The second term represents the stochastic part, where the wave function undergoes

a sudden change, known as a quantum jump, with a certain probability. These jumps

are governed by the jump operators Lk, which describe processes such as excitations or

relaxations in the system. The symbol ⟨·⟩ denotes the expectation value with respect to the

current state of the system.

The term dNk is a random variable, it can be either 0 (no jump) or 1 (a jump happens)

based on the probability of a quantum jump. The probability that a quantum jump occurs

within a small time step dt is given by:

dp =
K∑

k=1

⟨ψ(t)|L†
kLk|ψ(t)⟩

⟨ψ(t)|ψ(t)⟩ dt . (4.2)

This formula tells us how likely it is for a jump to happen. If a jump does occur, the state of

the system is updated using the operator Li associated with the jump. If a quantum jump

happens, the wave function (state of the system) changes. This new state is calculated as:

ψ̃(t+ dt) = Liψ̃(t)
⟨ψ̃(t)|L†

iLi|ψ̃(t)⟩
, (4.3)

where Li is randomly chosen from the set of possible jump operators, based on the following

probability:

pi = ⟨ψ̃(t)|L†
iLi|ψ̃(t)⟩

K∑
k=1

⟨ψ̃(t)|L†
kLk|ψ̃(t)⟩

. (4.4)

After a jump, we need to normalize the new state, so that it remains a valid quantum state.

17

The normalized state is:

|ψj(t)⟩ = ψ̃j(t)
⟨ψ̃j(t)|ψ̃j(t)⟩

, (4.5)

where j refers to the specific trajectory.

Finally, to solve the original Lindblad master equation, we use all the individual trajec-

tories to reconstruct the full density matrix. The density matrix is just an average of the

outer products of each pure state in the ensemble:

ρ(t) = 1
n

n∑
j=1

|ψj(t)⟩⟨ψj(t)|, (4.6)

where n is the number of trajectories. The more trajectories we include, the more accurately

this method describes the evolution of the system.

The Python code simulates quantum system dynamics using a time-stepping algorithm

that alternates between deterministic evolution and stochastic quantum jumps. The system

evolves deterministically via the effective Hamiltonian until a jump event, determined prob-

abilistically using Lindblad operators, occurs. Upon a jump, a quantum jump operator is

randomly selected using numpy.random to update the state of the system, and the ansatz

parameters are reset accordingly. Because the seed changes between runs, slight variations

can appear in the final output. The algorithm records the state, parameters, and jump

events over time, capturing the interplay between continuous deterministic evolution and

jump-induced quantum transitions.

4.2 Simulation Procedure for Stochastic Evolution

The simulation of SSE begins by preprocessing the input Hamiltonian and Lindblad opera-

tors, described in Script S.7.1. These components are decomposed into their Hermitian and

anti-Hermitian parts, similar to as discussed in Section 4.1. However, in this approach it

is not vectorized so the number of qubit requirements is not be doubled. The Hermitian

part drives the system’s deterministic evolution, while the anti-Hermitian component incor-

18

porates the environmental effects introduced by the Lindblad operators. In this step, the

Hamiltonian terms are summed to form the Hermitian part, while the anti-Hermitian part

is derived from the products of the Lindblad operators and their conjugates.

Next, each trajectory follows the quantum jump algorithm described in Section 4.1. At

each time step, the algorithm applies a deterministic evolution unless a quantum jump occurs,

at which point a jump operator is applied to the system’s state. After every jump, the ansatz

parameters are adaptively updated according to the procedure outlined in Section 3.2 and

Section 3.3. In Section 3.2, we introduced an unrestricted adaptive procedure that leverages

McLachlan’s variational principle to tune the parameters of the quantum circuit ansatz at

each time step. This ansatz is designed to approximate the evolving quantum state through

a series of unitary gates parameterized by the angles θl(t), with the goal of minimizing the

McLachlan distance, as shown in Eqs. (3.8) and (3.9). Additionally, Section 3.3 details the

construction of the ansatz using a pool of operators. This pool, composed of Pauli operators,

allows the algorithm to heuristically select the most appropriate operator to append to the

circuit, ensuring accurate modeling of the state while keeping the McLachlan distance below

a threshold. These updates to the ansatz at each timestep enable the system to continuously

adapt to the noise effects and the stochastic quantum jumps, thereby capturing the system’s

dynamic evolution effectively.

Once all trajectories are simulated, the final result is obtained by averaging the behav-

ior across all individual trajectories. Averaging over multiple trajectories accounts for the

probabilistic nature of quantum jumps, ensuring a comprehensive representation of the sys-

tem’s dynamics by reflecting both the typical evolution and the rare stochastic deviations.

This ensemble averaging smooths out random fluctuations, highlighting underlying physical

trends in system properties such as energy, population, and coherence. By incorporating the

effects of quantum jumps and dissipative interactions, the final averaged result provides a

detailed and accurate picture of the open quantum system’s overall evolution.

An additional advantage of this approach is that each trajectory can be evolved indepen-

19

dently, making the simulation highly suitable for parallelization. This method’s structure

naturally lends itself to parallel processing, particularly useful on multi-core systems. By

utilizing Python’s built-in multiprocessing package, the evolution of different trajectories

can be executed concurrently, significantly improving computational efficiency. This can be

achieved by distributing the workload across multiple processors, depending on the user’s

hardware and operating system. For instance, Python’s multiprocessing library allows the

execution of trajectories in parallel, as demonstrated in the provided example, Script S.8.1,

where multiple quantum trajectories are evolved simultaneously using parallel processes.

Users may modify the script and implement parallelization using preferred parallel comput-

ing frameworks. This approach can drastically reduce the simulation time, especially when

a large number of trajectories are required to obtain statistically accurate results.

4.3 Simulation of the FMO Complex

In Section 2.3, we introduced and discussed the FMO complex example. In this section, we

utilize the same example to showcase simulations using a Stochastic Schrödinger Equation

(SSE) based method. While we will use the same parameters as before, there is a slight

difference in implementation: previously, we initialized every parameter as a QuTiP object,

whereas in this Python-based code, we will utilize NumPy arrays.

It’s important to note that we pad the arrays to the nearest power of two dimensions

suitable for qubit representation. As described in Script S.9.1, the Hamiltonian will be

padded from 5 × 5 to 8 × 8 and the initial state vector will expand from 5 × 1 to 8 × 1.

Once all input parameters have been correctly initialized, you can begin the simulation

by submitting the simulation details. To do this, simply import the predefined functions

from the qmad module. Script S.9.2 is a sample code snippet to illustrate this process. This

code sets up the necessary parameters and runs the parallel trajectories for your simulation.

Now that we have completed the preprocessing and processing stages, we will move on to

the post-processing phase. As discussed earlier, this quantum simulation approach involves

20

running simulations over multiple trajectories, each exhibiting distinct stochastic behavior.

To obtain the final results, we take the average of the outputs of interest.

The Script S.9.3 illustrates the post-processing procedure for the FMO example, whose

results are shown in the corresponding figure. Since high-precision reference dynamics have

already been obtained using QuTiP, we directly compare them with the results produced

by our method. Overall, the agreement is excellent. As shown in Fig. 4, the stochastic

Schrödinger equation (SSE)-based variational simulations closely reproduce the exact QuTiP

population dynamics for all five quantum states of the FMO complex, thereby validating the

trajectory-based approach.

The small discrepancies that remain originate from controlled numerical and variational

approximations, including finite time-step integration, a limited number of stochastic trajec-

tories, truncation of the Ansatz operator pool, and the use of a nonzero threshold parameter

in the variational selection. These differences can be systematically reduced by refining these

parameters, at the cost of increased computational effort.

5 Conclusions

The simulation of open quantum systems remains a central challenge in quantum computing,

particularly in the presence of dissipation, decoherence, and non-unitary dynamics that arise

from system-environment interactions. In this installment of the QFlux tutorial series,

we focused on adaptive variational quantum algorithms as practical and flexible tools for

simulating open-system dynamics on near-term quantum hardware.

By introducing qmad module to QFlux, we have provided researchers with a simplified

toolkit that facilitates the implementation and customization of adaptive variational ap-

proaches. The adaptive ansatz methods employed in this work, particularly the unrestricted

adaptive variational quantum dynamics (UAVQD) and the stochastic Schrödinger-based

algorithm, allow for efficient, flexible circuit structures that can be tailored to the spe-

21

Figure 4: Comparison between exact results obtained using QuTiP (solid lines) and stochas-
tic Schrödinger equation (SSE) based simulations (markers: *) for the population dynamics
of five distinct quantum states. Each state’s population is represented by a uniquely colored
curve.

cific requirements of dissipative processes. Together, these methods illustrate how adaptive

strategies can accommodate the diverse requirements of dissipative quantum processes.

All algorithms were implemented within the qmad module of the QFlux platform, pro-

viding an accessible and extensible Python-based environment for adaptive variational simu-

lations. Through representative examples, including the amplitude-damping channel and the

Fenna-Matthews-Olson (FMO) complex, we demonstrated that adaptive variational meth-

ods can accurately reproduce open-system dynamics while remaining compatible with the

constraints of noisy intermediate-scale quantum devices. Benchmarking against exact ref-

erence solutions obtained with the QuTiP framework further validated the accuracy and

scalability of the proposed approaches.

By translating recent theoretical advances in adaptive variational algorithms into a uni-

fied, executable framework, this work lowers the barrier to applying these methods in prac-

tice. Together with the preceding parts of the series and the non-Markovian methods de-

22

veloped in Part VI, this installment establishes adaptive variational quantum algorithms as

a key component of the QFlux workflow for simulating realistic open quantum dynamics

across a wide range of physical systems.

Supporting Information

Detailed code snippets are available in the Supporting Information and corresponding Google

Colab notebook as well as through the QFlux Documentation site.

Acknowledgements

This work was supported by the National Science Foundation under Award No. 2124511 (CCI

Phase I: NSF Center for Quantum Dynamics on Modular Quantum Devices, CQD-MQD) and

Award No. 2302908 (Engines Development Award: Advancing Quantum Technologies, CT).

The authors also acknowledge the use of IBM Quantum services and open-source software

packages, including Qiskit, Bosonic Qiskit, Strawberry Fields, QuTiP, and MPSQD.

References

(1) Hu, Z.; Xia, R.; Kais, S. A Quantum Algorithm for Evolving Open Quantum Dynamics

on Quantum Computing Devices. Scientific Reports 2020, 10, 1–9.

(2) Han, J.; Cai, W.; Hu, L.; Mu, X.; Ma, Y.; Xu, Y.; Wang, W.; Wang, H.; Song, Y. P.;

Zou, C.-L.; Sun, L. Experimental Simulation of Open Quantum System Dynamics via

Trotterization. Physical Review Letters 2021, 127, 020504.

(3) Wang, H.; Ashhab, S.; Nori, F. Quantum algorithm for simulating the dynamics of an

open quantum system. Physical Review A 2011, 83, 062317.

23

https://colab.research.google.com/github/batistagroup/qflux/blob/master/demos/manuscript/SI_V.ipynb
https://colab.research.google.com/github/batistagroup/qflux/blob/master/demos/manuscript/SI_V.ipynb
https://qflux.batistalab.com

(4) Endo, S.; Sun, J.; Li, Y.; Benjamin, S. C.; Yuan, X. Variational Quantum Simulation

of General Processes. Physical Review Letters 2020, 125, 010501.

(5) Yao, Y.-X.; Gomes, N.; Zhang, F.; Wang, C.-Z.; Ho, K.-M.; Iadecola, T.; Orth, P. P.

Adaptive Variational Quantum Dynamics Simulations. PRX Quantum 2021, 2, 030307.

(6) Vu, N. P.; Dong, D.; Dan, X.; Lyu, N.; Batista, V.; Liu, Y. A Computational Frame-

work for Simulations of Dissipative Nonadiabatic Dynamics on Hybrid Oscillator-Qubit

Quantum Devices. Journal of Chemical Theory and Computation 2025, 21, 6258–6279.

(7) Wang, Y.; Mulvihill, E.; Hu, Z.; Lyu, N.; Shivpuje, S.; Liu, Y.; Soley, M. B.; Geva, E.;

Batista, V. S.; Kais, S. Simulating Open Quantum System Dynamics on NISQ Com-

puters with Generalized Quantum Master Equations. Journal of Chemical Theory and

Computation 2023, 19, 4851–4862.

(8) Schlimgen, A. W.; Head-Marsden, K.; Sager, L. M.; Narang, P.; Mazziotti, D. A.

Quantum Simulation of Open Quantum Systems Using a Unitary Decomposition of

Operators. Physical Review Letters 2021, 127, 270503.

(9) Shivpuje, S.; Sajjan, M.; Wang, Y.; Hu, Z.; Kais, S. Designing Variational Ansatz for

Quantum-Enabled Simulation of Non-Unitary Dynamical Evolution-An Excursion into

Dicke Superradiance. Advanced Quantum Technologies 2024, 2400088.

(10) Hu, Z.; Head-Marsden, K.; Mazziotti, D. A.; Narang, P.; Kais, S. A General Quan-

tum Algorithm for Open Quantum Dynamics Demonstrated with the Fenna-Matthews-

Olson Complex. Quantum 2022, 6, 726.

(11) Su, H.-Y.; Li, Y. Quantum algorithm for the simulation of open-system dynamics and

thermalization. Physical Review A 2020, 101, 012328.

(12) Suri, N.; Barreto, J.; Hadfield, S.; Wiebe, N.; Wudarski, F.; Marshall, J. Two-Unitary

24

Decomposition Algorithm and Open Quantum System Simulation. Quantum 2023, 7,

1002.

(13) Zhang, Y.; Hu, Z.; Wang, Y.; Kais, S. Quantum Simulation of the Radical Pair Dynam-

ics of the Avian Compass. Journal of Physical Chemistry Letters 2023, 14, 832–837.

(14) Benedetti, M.; Fiorentini, M.; Lubasch, M. Hardware-efficient variational quantum al-

gorithms for time evolution. Physical Review Research 2021, 3, 033083.

(15) Dan, X.; Geva, E.; Batista, V. S. Simulating Non-Markovian Quantum Dynamics on

NISQ Computers Using the Hierarchical Equations of Motion. Journal of Chemical

Theory and Computation 2025, 21, 1530–1546.

(16) Dutta, R.; Cabral, D. G. A.; Lyu, N.; Vu, N. P.; Wang, Y.; Allen, B.; Dan, X.; Cor-

tiñas, R. G.; Khazaei, P.; Schäfer, M.; Albornoz, A. C. C. d.; Smart, S. E.; Nie, S.;

Devoret, M. H.; Mazziotti, D. A.; Narang, P.; Wang, C.; Whitfield, J. D.; Wilson, A. K.;

Hendrickson, H. P.; Lidar, D. A.; Pérez-Bernal, F.; Santos, L. F.; Kais, S.; Geva, E.;

Batista, V. S. Simulating Chemistry on Bosonic Quantum Devices. Journal of Chemical

Theory and Computation 2024, 20, 6426–6441.

(17) Allen, B. C.; Batista, V. S.; Cabral, D. G. A.; Cianci, C.; Dan, X.; Dutta, R.; Geva, E.;

Hu, Z.; Kais, S.; Khazaei, P.; Lyu, N.; Mulvihill, E.; Shivpuje, S.; Soudackov, A. V.;

Vu, N. P.; Wang, Y.; Wilson, C. QFlux — An Open-Source Python Package for Quan-

tum Dynamics Simulations. https://qflux.batistalab.com, 2025; (accessed: 2025-

10-12).

(18) Chen, H.; Lidar, D. A. Hamiltonian open quantum system toolkit. Communications

Physics 2022, 5, 112.

(19) Leong, F. Y.; Ewe, W.-B.; Koh, D. E. Variational quantum evolution equation solver.

Scientific Reports 2022, 12, 10817.

25

https://qflux.batistalab.com

(20) Chen, H.; Gomes, N.; Niu, S.; Jong, W. A. d. Adaptive variational simulation for open

quantum systems. Quantum 2024, 8, 1252.

(21) Haegeman, J.; Cirac, J. I.; Osborne, T. J.; Pizorn, I.; Verschelde, H.; Verstraete, F.

Time-Dependent Variational Principle for Quantum Lattices. Phys. Rev. Lett. 2011,

107, 070601.

(22) Balian, R.; Veneroni, M. Static and dynamic variational principles for expectation

values of observables. Annals of Physics 1988, 187, 29–78.

(23) Preskill, J. Quantum computing in the NISQ era and beyond. Quantum 2018, 2, 79.

(24) Kandala, A.; Mezzacapo, A.; Temme, K.; Takita, M.; Brink, M.; Chow, J. M.; Gam-

betta, J. M. Hardware-efficient variational quantum eigensolver for small molecules and

quantum magnets. Nature 2017, 549, 242–246.

(25) McClean, J. R.; Romero, J.; Babbush, R.; Aspuru-Guzik, A. The theory of variational

hybrid quantum-classical algorithms. New Journal of Physics 2016, 18, 023023.

(26) Grimsley, H. R.; Economou, S. E.; Barnes, E.; Mayhall, N. J. An adaptive variational

algorithm for exact molecular simulations on a quantum computer. Nature communi-

cations 2019, 10, 3007.

(27) Tang, H. L.; Shkolnikov, V.; Barron, G. S.; Grimsley, H. R.; Mayhall, N. J.; Barnes, E.;

Economou, S. E. qubit-adapt-vqe: An adaptive algorithm for constructing hardware-

efficient ansätze on a quantum processor. PRX Quantum 2021, 2, 020310.

(28) Krämer, S.; Plankensteiner, D.; Ostermann, L.; Ritsch, H. QuantumOptics. jl: A Julia

framework for simulating open quantum systems. Computer Physics Communications

2018, 227, 109–116.

(29) Javadi-Abhari, A.; Treinish, M.; Krsulich, K.; Wood, C. J.; Lishman, J.; Gacon, J.;

26

Martiel, S.; Nation, P. D.; Bishop, L. S.; Cross, A. W.; Johnson, B. R.; Gambetta, J. M.

Quantum computing with Qiskit. 2024; https://arxiv.org/abs/2405.08810.

(30) Bergholm, V.; Izaac, J.; Schuld, M.; Gogolin, C.; Ahmed, S.; Ajith, V.; Alam, M. S.;

Alonso-Linaje, G.; AkashNarayanan, B.; Asadi, A.; others Pennylane: Automatic differ-

entiation of hybrid quantum-classical computations. arXiv preprint arXiv:1811.04968

2018,

(31) Cirq Developers Cirq. 2025; https://zenodo.org/doi/10.5281/zenodo.4062499.

(32) Johansson, J. R.; Nation, P. D.; Nori, F. QuTiP: An open-source Python framework

for the dynamics of open quantum systems. Computer Physics Communications 2012,

183, 1760–1772.

(33) van Rossum, G.; Fred L. Drake, J. Python 3 Reference Manual. Python Software Foun-

dation, 2023; Version 3.x.

(34) Johansson, J. R.; Nation, P. D.; Nori, F. QuTiP 2: A Python framework for the

dynamics of open quantum systems. Computer Physics Communications 2013, 184,

1234–1240.

(35) Virtanen, P.; Gommers, R.; Oliphant, T. E.; Haberland, M.; Reddy, T.; Courna-

peau, D.; Burovski, E.; Peterson, P.; Weckesser, W.; Bright, J.; van der Walt, S. J.;

Brett, M.; Wilson, J.; Millman, K. J.; Mayorov, N.; Nelson, A. R. J.; Jones, E.; Kern, R.;

Larson, E.; Carey, C. J.; Polat, İ.; Feng, Y.; Moore, E. W.; VanderPlas, J.; Lax-

alde, D.; Perktold, J.; Cimrman, R.; Henriksen, I.; Quintero, E. A.; Harris, C. R.;

Archibald, A. M.; Ribeiro, A. H.; Pedregosa, F.; van Mulbregt, P.; SciPy 1.0 Contrib-

utors SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature

Methods 2020, 17, 261–272.

(36) Blankenship, R. E. Molecular Mechanisms of Photosynthesis; Blackwell Science, 2002.

27

https://arxiv.org/abs/2405.08810
https://zenodo.org/doi/10.5281/zenodo.4062499

(37) Adolphs, J.; Renger, T. How proteins trigger excitation energy transfer in the FMO

complex of green sulfur bacteria. Biophysical Journal 2006, 91, 2778–2797.

(38) Skochdopole, N.; Mazziotti, D. A. Functional subsystems and quantum redundancy in

photosynthetic light harvesting. Journal of Physical Chemistry Letters 2011, 2, 2989–

2993.

(39) Valleau, S.; Studer, R. A.; Häse, F.; Kreisbeck, C.; Saer, R. G.; Blankenship, R. E.;

Shakhnovich, E. I.; Aspuru-Guzik, A. Absence of Selection for Quantum Coherence in

the Fenna–Matthews–Olson Complex: A Combined Evolutionary and Excitonic Study.

ACS Central Science 2017, 3, 1086–1095.

(40) Ishizaki, A.; Fleming, G. R. On the Adequacy of the Redfield Equation and Related

Approaches to the Study of Quantum Dynamics in Electronic Energy Transfer. Journal

of Chemical Physics 2009, 130, 234110.

(41) Moix, J.; Wu, J.; Huo, P.; Coker, D.; Cao, J. Efficient energy transfer in light-harvesting

systems, III: The influence of the eighth bacteriochlorophyll on the dynamics and effi-

ciency in FMO. Journal of Physical Chemistry Letters 2011, 2, 3045–3052.

(42) McLachlan, A. D. A variational solution of the time-dependent Schrodinger equation.

Molecular Physics 1964, 8, 39–44.

(43) Carmichael, H. J. Quantum trajectory theory for cascaded open systems. Physical Re-

view Letters 1993, 70, 2273.

(44) Yip, K. W.; Albash, T.; Lidar, D. A. Quantum trajectories for time-dependent adiabatic

master equations. Physical Review A 2018, 97, 022116.

28

Supporting Information for

QFlux: An Open-Source Toolkit for Quantum
Dynamics Simulations on Quantum Computers.

Part V – Adaptive Variational Quantum
Algorithms for Open Quantum Systems

Saurabh Shivpuje,† Alexander V. Soudackov,‡ Xiaohan Dan,‡ Yuchen Wang,† Delmar G.

A. Cabral,‡ Brandon C. Allen,‡ Zixuan Hu,† Ningyi Lyu,‡ Eitan Geva,§ Victor S.

Batista,∗,‡ Sabre Kais,∗,∥

†Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, USA

‡Department of Chemistry, Yale Quantum Institute, Yale University, New Haven, CT 06511, USA

§Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA

∥Department of Electrical and Computer Engineering, Department of Chemistry, North Carolina State

University, Raleigh, North Carolina 27606, USA

E-mail: victor.batista@yale.edu; s.kais@ncsu.edu

S1

Contents

S.1 Linear Solver for the Lindblad Master Equation S3

S.2 Amplitude Damping Channel S4

S.2.1 Analytic solution of the Lindblad equation S4

S.2.2 Numerical Solution . S8

S.3 FMO Complex S10

S.4 Vectorized Effective Hamiltonian S12

S.5 Operator Pool for Amplitude Damping Channel S13

S.6 Variational Simulation of Amplitude Damping S14

S.7 Preprocessing Hamiltonians for the SSE Approach S16

S.8 Parallel Processing of Trajectories S18

S.9 SSE Simulations of the FMO Complex S18

S2

S.1 Linear Solver for the Lindblad Master Equation

Open quantum systems are often described by the Lindblad master equation, a formalism

that captures both coherent evolution generated by a Hamiltonian and incoherent processes

induced by the environment. QuTiP provides the mesolve function that can be used to

integrate the Lindblad equation by efficient implementation of a linear solver. To streamline

repeated use of this solver throughout the tutorial, we introduce the function qutip_prop

that is a convenient wrapper.

qutip_prop takes as input the system Hamiltonian, an initial density matrix, a time

array for the evolution, a list of collapse operators that specify dissipative processes, and a

list of observables to be monitored. It then returns the expectation values of the specified

observables as functions of time. This modular structure allows us to compare exact Lindblad

dynamics with the variational and stochastic methods presented in later sections.

Script S.1.1: Linear Solver for Exact Solutions 2 3

from qutip import mesolve, Qobj

def qutip_prop(H, rho0, time_arr, c_ops, observable):
"""
First import the mesolve function, which is used to solve master equations, and
the Qobj class, which is used to represent quantum objects, from the QuTiP
library.

- H: Hamiltonian of the system (Qobj).
- rho0: Initial density matrix (Qobj).
- time_arr: Time array for dynamic simulation (array).
- c_ops: List of collapse operators (list of Qobj), can be empty for Liouville
equation.

- observable: Operator for which the expectation value is to be calculated (Qobj).
Returns:
- expec_vals: List of expectation values of the observable over time.
"""
result = mesolve(H, rho0, time_arr, c_ops, e_ops=observable)
return result.expect

S3

https://colab.research.google.com/github/batistagroup/qflux/blob/master/demos/manuscript/SI_V.ipynb

S.2 Amplitude Damping Channel

The amplitude damping channel is a standard model of irreversible decay from an excited

state into a ground state, such as spontaneous emission in a two-level atom. It provides

an ideal test case for benchmarking dissipative quantum dynamics since it can be solved

analytically as shown in the following subsection.

S.2.1 Analytic solution of the Lindblad equation

This section shows, step by step, how to solve the amplitude-damping (energy-relaxation)

dynamics analytically by finding an analytic solution of the Lindblad master equation, and

how the result maps to the familiar Kraus (operator-sum) form.

1. Choose the Lindblad model (zero-temperature relaxation). Amplitude damping

describes an excited state |1⟩ irreversibly relaxing to the ground state |0⟩. In the Markovian

limit this is captured by a single jump operator

L = σ− = |0⟩⟨1| ,

with rate γ ≥ 0. The Lindblad equation reads

∂ρ(t)
∂t

= − i

ℏ
[H, ρ(t)] + γ

(
σ−ρ(t)σ+ − 1

2{σ+σ−, ρ(t)}
)
, (S.1)

where σ+ = |1⟩⟨0| and {·, ·} is the anticommutator. For the standard amplitude-damping

channel, one often sets H = 0 (pure dissipation), or takes H = ℏω
2 Z (unitary precession plus

damping). We solve both in a way that makes the dissipative part transparent.

S4

2. Write the density matrix in the computational basis. Let

ρ(t) =

ρ00(t) ρ01(t)

ρ10(t) ρ11(t)

 , ρ10(t) = ρ01(t)∗, ρ00(t) + ρ11(t) = 1.

We will derive coupled ODEs for the matrix elements.

3. Evaluate the dissipator element-by-element. Use the identities

σ+σ− = |1⟩⟨1| , σ−ρ σ+ = ρ11 |0⟩⟨0| .

Plugging into the dissipative term

D[ρ] = γ
(
σ−ρσ+ − 1

2{|1⟩⟨1| , ρ}
)

and reading off components gives

- Population of the excited state:

ρ̇11(t) = −γρ11(t). (S.2)

- Population of the ground state (by trace preservation or directly):

ρ̇00(t) = +γρ11(t). (S.3)

- Coherences:

ρ̇01(t) = −γ

2ρ01(t), ρ̇10(t) = −γ

2ρ10(t). (S.4)

If you also include H = ℏω
2 Z, the commutator contributes a phase rotation:

− i

ℏ
[H, ρ] ⇒ ρ̇01(t) = −iω ρ01(t), ρ̇10(t) = +iω ρ10(t),

S5

while leaving ρ00, ρ11 unchanged.

4. Solve the ODEs (closed-form solution). From Eq. Eq. (S.2),

ρ11(t) = ρ11(0) e−γt. (S.5)

Then Eq. Eq. (S.3) and ρ00 = 1 − ρ11 give

ρ00(t) = 1 − ρ11(0) e−γt = ρ00(0) + ρ11(0)
(
1 − e−γt

)
. (S.6)

From Eq. Eq. (S.4),

ρ01(t) = ρ01(0) e−γt/2, ρ10(t) = ρ10(0) e−γt/2. (S.7)

Including the Hamiltonian H = ℏω
2 Z simply adds oscillation:

ρ01(t) = ρ01(0) e−(γ/2)t e−iωt, ρ10(t) = ρ10(0) e−(γ/2)t e+iωt. (S.8)

So the analytic amplitude-damping evolution is

ρ(t) =

ρ00(0) + ρ11(0) (1 − e−γt) ρ01(0) e−(γ/2)t e−iωt

ρ10(0) e−(γ/2)t e+iωt ρ11(0) e−γt

 . (S.9)

5. Connect to the Kraus (channel) form and identify λ(t). The standard amplitude-

damping channel is written as

Eλ(ρ) =
1∑

k=0
Mk ρM

†
k , M0 =

1 0

0
√

1 − λ

 , M1 =

0
√
λ

0 0

 .

S6

Applying this map to ρ(0) =

 p q

q∗ 1 − p

 yields

ρ(t) =

p+ (1 − p)λ q
√

1 − λ

q∗√1 − λ (1 − p)(1 − λ)

 .

Match this to the Lindblad solution (S.9) with p = ρ00(0) and 1 − p = ρ11(0):

1 − λ(t) = e−γt ⇒ λ(t) = 1 − e−γt

and the coherence factor becomes

√
1 − λ(t) =

√
e−γt = e−(γ/2)t,

exactly as in the analytic ODE solution. This is the cleanest way to see that the Kraus

parameter λ is simply the time-dependent decay probability induced by the Lindblad rate

γ.

6. Physical interpretation (what the formulas mean). The solution shows two

hallmark features of amplitude damping:

• Population relaxation: the excited-state population decays exponentially, ρ11(t) =

ρ11(0)e−γt, transferring weight to |0⟩.

• Coherence decay: off-diagonal terms shrink as e−(γ/2)t (and rotate at frequency ω if

H ∝ Z).

At long times t → ∞, ρ(t) → |0⟩⟨0| regardless of the initial state, as expected for zero-

temperature relaxation.

S7

S.2.2 Numerical Solution

In this section, we solve the resulting Lindblad master equation using QuTiP, after construct-

ing the lowering operator, specifying a Hamiltonian, defining a normalized initial state, and

assembling the collapse operators representing the amplitude damping process.

By monitoring the populations of the ground and excited states, we observe the charac-

teristic exponential relaxation toward the ground state, discussed in Sec. S.2.1. These exact

results will later serve as a benchmark for the variational solver and the stochastic unraveling

methods.

Script S.2.1 simulates the time evolution of a two level quantum system under amplitude

damping using the Lindblad master equation formalism in QuTiP. It defines the system

Hamiltonian, collapse operator, initial quantum state, and then numerically solves the open

system dynamics over a specified time range. Finally, it extracts and plots the ground and

excited state populations as functions of time to visualize relaxation due to damping.

Script S.2.1: Amplitude Damping Channel (Linear Solver) 2 3

import numpy as np
import matplotlib.pyplot as plt
from qutip import *

Pauli matrices and lowering operator
sx = np.array([[0, 1], [1, 0]])
sy = np.array([[0, -1j], [1j, 0]])
sp = (sx + 1j * sy) / 2
sm = Qobj(sp) # collapse operator for amplitude damping

Identity Hamiltonian (trivial in this case)
H = Qobj(np.eye(2, dtype=np.complex128))

Time scale
tf = 1000e-12 # final time
dt = 1e-12 # time step
qt_times = np.arange(0, tf, dt) # time array

Amplitude damping rate
gamma = 1.52e9 # damping rate

S8

https://colab.research.google.com/github/batistagroup/qflux/blob/master/demos/manuscript/SI_V.ipynb

Initial state (normalize if necessary)
u0 = np.array([1 / 2, np.sqrt(3) / 2], dtype=np.complex128)
u0 = u0 / np.linalg.norm(u0) # normalize the state
psi0 = Qobj(u0) # initial state as Qobj
rho0 = psi0 * psi0.dag()

Collapse operators
c_ops = [np.sqrt(gamma) * sm] # amplitude damping

Define projectors for ground and excited states
proj_excited = basis(2, 1) * basis(2, 1).dag() # |1><1|
proj_ground = basis(2, 0) * basis(2, 0).dag() # |0><0|

Solve the master equation using mesolve
result = qutip_prop(H, rho0, qt_times, c_ops, [proj_ground, proj_excited])

Extract ground and excited state populations
ground_population = result[0] # <0|rho|0> (ground state population)
excited_population = result[1] # <1|rho|1> (excited state population)

Plotting results
line1 = plt.plot(qt_times * 1e12, ground_population, linewidth=2, label="Ground

State Population (QuTiP)")
line2 = plt.plot(qt_times * 1e12, excited_population, linewidth=2, label="Excited

State Population (QuTiP)")

Extract colors from the lines
color1 = line1[0].get_color()
color2 = line2[0].get_color()

Add points every 100 ps
point_indices = range(0, len(qt_times), 100)
#plt.scatter(qt_times[point_indices] * 1e12, ground_population[point_indices],

color=color1, s=20, zorder=5)
#plt.scatter(qt_times[point_indices] * 1e12, excited_population[point_indices],

color=color2, s=20, zorder=5)

Add grid lines every 100 ps on x-axis and every 0.1 on y-axis
plt.xticks(np.arange(0, 1100, 100))
plt.yticks(np.arange(0.1, 0.9, 0.1))
plt.grid(True, which=’major’, linestyle=’-’, linewidth=0.5, alpha=0.7)

plt.xlabel(’Time (ps)’)
plt.ylabel(’Population’)
plt.legend(loc=’center right’)
plt.title(’Exact Evolution of Ground and Excited State Populations’)
plt.show()

S9

S.3 FMO Complex

The Fenna–Matthews–Olson (FMO) complex is an important model system in studies of

excitonic energy transfer, particularly in the context of quantum biology. It consists of sev-

eral coupled chromophoric sites through which an excitation migrates before being funneled

toward a reaction center. The transport dynamics arise from the interplay of coherent cou-

plings between sites and environmental interactions such as dephasing and irreversible decay.

Here, we construct a reduced five-site Hamiltonian for the FMO complex and a correspond-

ing set of Lindblad operators representing various environmental effects. These operators

include site-dependent dephasing and an irreversible sink, both of which are crucial for mod-

eling realistic transport pathways. Once the Hamiltonian and dissipators are defined, we

evaluate the population dynamics across the network by computing expectation values of

projectors onto each site. This allows us to visualize transport processes as a function of

time.

This script defines the Hamiltonian and environmental interaction parameters for a five

site FMO like quantum system using QuTiP objects. It specifies three types of Lindblad

operators corresponding to different dissipation and transfer processes, controlled by the rates

alpha, beta, and gamma. Together, these operators characterize how energy relaxation, site

dependent noise, and irreversible population transfer affect the system dynamics.

Script S.3.1: FMO Complex parameters 2 3

from qutip import Qobj
import numpy as np
Hamiltonian (Unit: eV)
H = Qobj([

[0, 0, 0, 0, 0],
[0, 0.0267, -0.0129, 0.000632, 0],
[0, -0.0129, 0.0273, 0.00404, 0],
[0, 0.000632, 0.00404, 0, 0],

S10

https://colab.research.google.com/github/batistagroup/qflux/blob/master/demos/manuscript/SI_V.ipynb

[0, 0, 0, 0, 0],
])

alpha, beta, gamma = 3e-3, 5e-7, 6.28e-3 #Unit: fs (femtosecond)

Define the alpha operators
Llist_f = [Qobj(np.diag([0] * i + [np.sqrt(alpha)] + [0] * (4 - i))) for i in

range(1, 4)]

Define the beta operators
Llist_f += [Qobj(np.array([[np.sqrt(beta) if i == 0 and j == k else 0 for j in

range(5)] for i in range(5)])) for k in range(1, 4)]

Define the gamma operator
L_temp = np.zeros((5, 5))
L_temp[4, 3] = np.sqrt(gamma)
Llist_f.append(Qobj(L_temp))

Following code defines measurement operators to track the population of each site, the

ground state, and the sink state in a five level quantum system. It initializes the system

in the second excited site and propagates the state in time using the previously defined

Hamiltonian and Lindblad operators. Finally, it plots the time dependent populations to

visualize how excitation energy redistributes and decays across the system.

Script S.3.2: FMO Complex plot 2 3

Measurement operators
Mexp_f = [

Qobj(np.diag([0, 1, 0, 0, 0])),
Qobj(np.diag([0, 0, 1, 0, 0])),
Qobj(np.diag([0, 0, 0, 1, 0])),
Qobj(np.diag([1, 0, 0, 0, 0])),
Qobj(np.diag([0, 0, 0, 0, 1]))

]

Time evolution
times = np.linspace(0.0, 450.0, 2000)
psi0_f = Qobj([[0], [1], [0], [0], [0]])

Using qutip_propagation function
population = qutip_prop(H, psi0_f, times, Llist_f, Mexp_f)

S11

https://colab.research.google.com/github/batistagroup/qflux/blob/master/demos/manuscript/SI_V.ipynb

Plotting the results
import matplotlib.pyplot as plt

fig, ax = plt.subplots()
labels = ["State 1", "State 2", "State 3", "Ground State", "Sink State"]
for expec, label in zip(population, labels):

ax.plot(times, expec, label=label)
ax.set_xlabel(’Time(fs)’)
ax.set_ylabel(’Population’)
ax.legend()
plt.show()

S.4 Vectorized Effective Hamiltonian

Variational methods for open quantum systems frequently operate in the Liouville-space

formalism, where density matrices are vectorized and the master equation becomes a linear

differential equation. In this representation, the Liouvillian superoperator acts as an ef-

fective non-Hermitian Hamiltonian, combining coherent dynamics generated by the system

Hamiltonian with dissipative effects arising from Lindblad operators.

To construct this Liouville-space object, we begin by defining a routine that vectorizes

the commutator with a given Hamiltonian. We then build the full effective operator by

incorporating the dissipative contributions of the Lindblad terms. The resulting structure is

essential for the QMAD variational algorithm, which approximates time evolution in Liouville

space using parametrized ansätze.

This script constructs a vectorized representation of an effective Hamiltonian acting in

Liouville space by transforming commutators into Kronecker products. It combines the

coherent Hamiltonian contribution with dissipative Lindblad terms scaled by the decay rate

gamma to form a superoperator acting on vectorized density matrices. The result is packaged

into a class that separately stores the Hamiltonian and dissipation components for later use

in open system simulations.

S12

Script S.4.1: Vectorized Effective Hamiltonian 2 3

def vectorize_comm(A):
Create an identity matrix with the same dimension as A
iden = np.eye(A.shape[0])
Compute the vectorized commutator [A, .] as the Kronecker product
return np.kron(iden, A) - np.kron(A.T, iden)

class VectorizedEffectiveHamiltonian_class:
def __init__(self, He, Ha):

self.He = He
self.Ha = Ha

def VectorizedEffectiveHamiltonian(H, gamma, lind):
Create an identity matrix with the same dimension as H
iden = np.eye(H.shape[0])
d = H.shape[0]
Compute the vectorized commutator for the Hamiltonian H
vec_H = vectorize_comm(H)
Initialize the result matrix with zeros (complex type)
res = np.zeros((d**2, d**2), dtype=np.complex128)
Compute the conjugate of the Lindblad operator
L_conj = lind.conj()
L_dagger_L = L_conj.T @ lind
Compute the Lindblad contribution to the effective Hamiltonian
res -= gamma * (np.kron(L_conj, lind) - (np.kron(iden, L_dagger_L) +
np.kron(L_dagger_L.T, iden)) / 2)

Return an instance of the VectorizedEffectiveHamiltonian_class with vec_H and
res

return VectorizedEffectiveHamiltonian_class(vec_H, res)

S.5 Operator Pool for Amplitude Damping Channel

Variational algorithms require a flexible and expressive pool of operators from which trial

updates to the quantum state or density matrix can be constructed. In the context of the

QMAD approach, we build this pool from tensor products of Pauli operators acting on

different subsets of qubits. These operators serve as the building blocks of ansätze used to

approximate the evolution of vectorized density matrices.

The code below defines a function that generates such an operator pool, systematically

exploring combinations of qubit indices and Pauli matrices. We also provide an Ansatz

S13

https://colab.research.google.com/github/batistagroup/qflux/blob/master/demos/manuscript/SI_V.ipynb

constructor that assembles the initial state, vectorizes the density matrix, and packages the

operator pool for use by the variational solver.

Script S.5.1: Defining pool of operators/gates 2 3

from itertools import combinations, product
from qflux.variational_methods.qmad.ansatz import PauliOperator

Define Pauli matrices
sx = np.array([[0, 1], [1, 0]])
sy = np.array([[0, -1j], [1j, 0]])
sz = np.array([[1, 0], [0, 0]])

def build_pool(nqbit):
pauliStr = ["sx", "sz", "sy"]
res = []
Iterate over combinations of qubit indices and Pauli operators
for order in range(1, 3):

for idx in combinations(range(1, nqbit + 1), order):
for op in product(pauliStr, repeat=order):

res.append(PauliOperator(op, list(idx), 1, nqbit))
return res

S.6 Variational Simulation of Amplitude Damping

Having established the exact amplitude damping dynamics using a linear solver, we now ap-

ply the QMAD variational algorithm to approximate the same evolution in Liouville space.

This method represents the density matrix as a vector and simulates its trajectory using

a parametrized ansatz. The variational parameters are updated by minimizing the resid-

ual of the vectorized master equation, enabling an efficient approximation of open-system

dynamics.

We construct in this script the vectorized effective Hamiltonian for the amplitude damp-

ing channel and initialize a suitable ansatz based on the operator pool defined earlier. We

S14

https://colab.research.google.com/github/batistagroup/qflux/blob/master/demos/manuscript/SI_V.ipynb

propagate the system over time using the QMAD solver and directly compare the varia-

tional dynamics against the numerically exact results obtained with QuTiP. This compari-

son highlights both the accuracy and the potential computational advantages of variational

approaches for simulating dissipative quantum processes.

Script S.6.1: Amplitude Damping Channel (UAVQDS) 2 3

import numpy as np
from qflux.variational_methods.qmad.solver import solve_avq_vect
from qflux.variational_methods.qmad.effh import VectorizedEffectiveHamiltonian
from qflux.variational_methods.qmad.ansatz import Ansatz
import matplotlib.pyplot as plt

sx = np.array([[0, 1], [1, 0]])
sy = np.array([[0, -1j], [1j, 0]])
sp = (sx + 1j * sy) / 2
Id = np.eye(2, dtype=np.complex128)

#-- build effective Hamiltonian for the vectorized density matrix
H = np.eye(2, dtype=np.complex128)
gamma = 1.52e9
lind = sp
H = VectorizedEffectiveHamiltonian(H, gamma, lind)

#-- initial state to build the initial pure state density matrix
u0 = np.array([1 / 2, np.sqrt(3) / 2], dtype=np.complex128) #it should be normalized

initial state with 2^n length

#-- simulation time (tf) and time step (dt) (in seconds)
tf = 1000e-12
dt = 10e-12

#-- Initialize the ansatz and propagate the variational parameters and density matrix
ansatz = Ansatz(u0, relrcut=1e-6, vectorized=True)
res = solve_avq_vect(H, ansatz, [0, tf], dt, rk45=False)

#-- Print the optimized ansatz at the end of simulation
print("=" * 60)
print(f"Simulation time: {tf*1e12} ps")
print(f"Time step: {dt*1e12} ps")
print("=" * 60)
print("Final Optimized Ansatz")

S15

https://colab.research.google.com/github/batistagroup/qflux/blob/master/demos/manuscript/SI_V.ipynb

print("=" * 60)
print(f"Number of gates in final ansatz: {len(res.A[-1])}")
#print(f"Final ansatz gates: {res.A[-1]}")
print(f"Number of time steps: {len(res.t)}")
print("=" * 60)

#-- Extract diagonal elements from density matrices at each time step
excited = np.array([res.u[i][1, 1].real for i in range(len(res.u))])
ground = np.array([res.u[i][0, 0].real for i in range(len(res.u))])
times = np.array(res.t)

line_qt_1 = plt.plot(qt_times * 1e12, ground_population, label="Ground State
(QuTiP)", linewidth=2, color=’tab:blue’)

line_qt_2 = plt.plot(qt_times * 1e12, excited_population, label="Excited State
(QuTiP)", linewidth=2, color=’tab:orange’)

color_qt_1 = line_qt_1[0].get_color()
color_qt_2 = line_qt_2[0].get_color()

point_indices_qt = range(0, len(qt_times), 100)
#plt.scatter(qt_times[point_indices_qt] * 1e12,

ground_population[point_indices_qt], color=color_qt_1, s=20, zorder=5)
#plt.scatter(qt_times[point_indices_qt] * 1e12,

excited_population[point_indices_qt], color=color_qt_2, s=20, zorder=5)

point_indices = range(0, len(times), 10)
plt.scatter(times[point_indices] * 1e12, ground[point_indices], color=color_qt_1,

label="Ground State (UAVQDS)", s=75, marker=’*’, zorder=5)
plt.scatter(times[point_indices] * 1e12, excited[point_indices], color=color_qt_2,

label="Excited State (UAVQDS)", s=75, marker=’*’, zorder=5)

plt.xlabel("Time (ps)")
plt.ylabel("Amplitude")
plt.grid(True, which=’major’, linestyle=’-’, linewidth=0.5, alpha=0.7)
plt.gca().xaxis.set_major_locator(plt.matplotlib.ticker.MultipleLocator(200))
plt.gca().yaxis.set_major_locator(plt.matplotlib.ticker.MultipleLocator(0.1))
plt.legend()
plt.show()

S.7 Preprocessing Hamiltonians for the SSE Approach

The stochastic Schrödinger equation (SSE) unravels Lindblad dynamics into an ensemble of

pure-state trajectories, whose average reproduces the density-matrix evolution. To employ

this approach efficiently, it is helpful to separate the generator into its Hermitian (coherent)

S16

and anti-Hermitian (dissipative) parts and to precompute terms like L†L that appear in the

non-unitary evolution between quantum jumps.

The routine below builds a compact data structure containing: (i) the total Hermitian

part, (ii) the effective anti-Hermitian contribution proportional to the sum of L†L, (iii) the

full list of Lindblad operators, and (iv) the corresponding L†L factors. This object is then

passed to the trajectory solver to define both drift and jump processes.

Script S.7.1: Preprocessing Hamiltonian for SSE approach 2 3

class EffectiveHamiltonian_class:
def __init__(self, He, Ha, Llist, LdL):

self.He = He # Hermitian part
self.Ha = Ha # Anti-Hermitian part
self.Llist = Llist # List of Lindblad operators
self.LdL = LdL # List of L^\dagger L

def EffectiveHamiltonian(mats, Llist):
"""
Create an EffectiveHamiltonian object based on provided parameters.
:param mats: List of matrices (Hamiltonian terms).
:param Llist: List of lists of Lindblad operators.
:return: An instance of EffectiveHamiltonian_class.
"""
He = sum(mats) # Sum of Hamiltonian terms as Hermitian part
Ha = 0.0 # Initialize anti-Hermitian part
LdL = [] # Initialize the list for Lindblad operator products

for LL in Llist:
for L in LL:

L_dagger_L = (L.conj().T @ L)
LdL.append(L_dagger_L) # Append to LdL list
Ha += L_dagger_L # Sum for the anti-Hermitian part

Return the Effective Hamiltonian object
return EffectiveHamiltonian_class(He, 0.5 * Ha, [L for LL in Llist for L in LL],
LdL)

S17

https://colab.research.google.com/github/batistagroup/qflux/blob/master/demos/manuscript/SI_V.ipynb

S.8 Parallel Processing of Trajectories

Each SSE trajectory is statistically independent, which makes the method embarrassingly

parallel. By distributing trajectory computations across CPU cores, one can reduce wall-

clock time and obtain accurate ensemble averages with large sample sizes. The helper func-

tion below launches a pool of workers to compute batches of trajectories concurrently and

then collects the results. This strategy is particularly useful for realistic models that require

hundreds or thousands of trajectories for convergence.

This script defines a helper function to run multiple independent quantum trajectories

with identical parameters. It uses Python’s multiprocessing Pool to distribute the trajectory

simulations across available CPU cores in parallel. The results from all trajectories are

collected and returned as a single list for further averaging or analysis.

Script S.8.1: Parallel processing of trajectories 2 3

from multiprocessing import Pool
def run_trajectories(num_trajectory, H, ansatz, tf, dt):

Create a list of tuples with the required parameters for each trajectory
param_list = [(H, ansatz, tf, dt) for _ in range(num_trajectory)]

with Pool() as pool:
results = pool.starmap(solve_avq_trajectory, param_list)

return results

S.9 SSE Simulations of the FMO Complex

We now apply the SSE-based QMAD approach to the FMO complex introduced earlier.

To accommodate the variational solver’s Hilbert-space requirements, we first pad the FMO

Hamiltonian and Lindblad operators to a higher-dimensional space. We then prepare an

initial excitation localized on a selected site. This setup allows the algorithm to simulate

S18

https://colab.research.google.com/github/batistagroup/qflux/blob/master/demos/manuscript/SI_V.ipynb

dissipative energy transfer using an ensemble of quantum trajectories.

This script prepares the Hamiltonian and dissipation operators for an FMO complex by

embedding the original five site system into a larger eight dimensional Hilbert space. It

defines multiple Lindblad operators corresponding to different physical processes using the

parameters alpha, beta, and gamma, and pads them to match the extended system size.

Finally, it initializes the quantum state with a single excitation localized on the second site

of the FMO complex.

Script S.9.1: Setting up parameters for FMO Complex 2 3

#Hamiltonian
H = [

[0, 0, 0, 0, 0],
[0, 0.0267, -0.0129, 0.000632, 0],
[0, -0.0129, 0.0273, 0.00404, 0],
[0, 0.000632, 0.00404, 0, 0],
[0, 0, 0, 0, 0],

]
H_fmo= np.pad(H, ((0, 3), (0, 3)), mode=’constant’)

alpha, beta, gamma = 3e-3, 5e-7, 6.28e-3

Define the alpha operators
Llist_f = [(np.diag([0] * i + [np.sqrt(alpha)] + [0] * (4 - i))) for i in range(1, 4)]

Define the beta operators
Llist_f += [(np.array([[np.sqrt(beta) if i == 0 and j == k else 0 for j in range(5)]

for i in range(5)])) for k in range(1, 4)]

Define the gamma operator
L_temp = np.zeros((5, 5))
L_temp[4, 3] = np.sqrt(gamma)
Llist_f.append(L_temp)
Llist_f_padded = [np.pad(matrix, ((0, 3), (0, 3)), mode=’constant’) for matrix in

Llist_f]

#initial state
u0_fmo = np.zeros(8,dtype=np.complex128)
u0_fmo[1] = 1

S19

https://colab.research.google.com/github/batistagroup/qflux/blob/master/demos/manuscript/SI_V.ipynb

Following script configures and runs a trajectory based variational quantum dynamics

simulation for the FMO complex. It sets the time parameters and number of stochastic

trajectories, constructs the effective Hamiltonian from the system Hamiltonian and Lind-

blad operators, and initializes the variational ansatz from the chosen initial state. Finally,

it launches multiple trajectories in parallel to generate an ensemble of quantum evolution

results.

Script S.9.2: Setting up parameters for trajectory method 2 3

from qflux.variational_methods.qmad.solver import solve_avq_trajectory
from qflux.variational_methods.qmad.effh import EffectiveHamiltonian
from qflux.variational_methods.qmad.ansatz import Ansatz

Guard for multiprocessing in Jupyter
if __name__ == "__main__":

Define your parameters (these are placeholders)
tf = 450 # Final time
dt = 5 # Time step
num_trajectory = 200 # Number of trajectories
H = EffectiveHamiltonian([H_fmo], [Llist_f_padded]) # Initialize the effective
Hamiltonian

ansatz = Ansatz(u0_fmo, relrcut=1e-5, vectorized=False) # Create an Ansatz
instance

Running the parallel trajectories
results = run_trajectories(num_trajectory, H, ansatz, tf, dt)

To extract physical observables from these trajectories, we compute expectation values

of diagonal projectors corresponding to excitations on each of the FMO sites and the sink.

By averaging over all trajectories, we reconstruct the population dynamics predicted by the

Lindblad equation. The result provides insight into the flow of excitation energy across the

FMO network.

S20

https://colab.research.google.com/github/batistagroup/qflux/blob/master/demos/manuscript/SI_V.ipynb

Script S.9.3: Plot for FMO Complex simulation output 2 3

import numpy as np
import matplotlib.pyplot as plt

Define the observables as diagonal matrices for expectation value calculations
Mexp_f = [

np.diag([0, 1, 0, 0, 0, 0, 0, 0]), # Observable 1
np.diag([0, 0, 1, 0, 0, 0, 0, 0]), # Observable 2
np.diag([0, 0, 0, 1, 0, 0, 0, 0]), # Observable 3
np.diag([1, 0, 0, 0, 0, 0, 0, 0]), # Observable 4
np.diag([0, 0, 0, 0, 1, 0, 0, 0]) # Observable 5

]

Initialize a list to store the average expectation values
average_expectation_values = []

Loop over each trajectory to accumulate expectation values
for j in range(num_trajectory):

Loop over each observable defined in Mexp_f
for k, observable in enumerate(Mexp_f):

expectation_values = [] # List to hold expectation values for the current
observable

Calculate expectation values for the current trajectory
for i, psi in enumerate(results[j].psi):

psi_dagger = np.conjugate(psi).T # Conjugate transpose of the wave
function

rho = np.outer(psi, psi_dagger) # Calculate the density matrix
expectation_value = np.trace(np.dot(rho, observable)) # Compute the

expectation value

Store the real part of the expectation value
expectation_values.append(expectation_value.real)

Accumulate expectation values for averaging later
if len(average_expectation_values) <= k:

average_expectation_values.append(np.array(expectation_values)) #
Initialize if not already done

else:
average_expectation_values[k] += np.array(expectation_values) # Sum the

values for this observable

Convert time to femtoseconds for plotting (assuming results[0].t contains time
data)

results_t_converted = [t for t in results[0].t]

Average the accumulated expectation values over all trajectories
average_expectation_values = [ev / num_trajectory for ev in

average_expectation_values]

S21

https://colab.research.google.com/github/batistagroup/qflux/blob/master/demos/manuscript/SI_V.ipynb

QuTiP time evolution
qutip_times = np.linspace(0.0, 450.0, 2000)
qutip_population = population

labels = ["State 1", "State 2", "State 3", "Ground State", "Sink State"]
colors = ["tab:blue", "tab:orange", "tab:green", "tab:red", "tab:purple"]

counter = 0
for expec, label in zip(population, labels):

plt.plot(qutip_times, expec, label=label, color=colors[counter])
counter += 1

sse_labels = ["State 1 (SSE)", "State 2 (SSE)", "State 3 (SSE)", "Ground State
(SSE)", "Sink State (SSE)"]

average_expectation_values = [np.asarray(arr) for arr in
average_expectation_values]

results_t_converted = np.asarray(results_t_converted)
point_indices = np.arange(0, len(results_t_converted), 3)

counter = 0
for expec, label in zip(average_expectation_values, sse_labels):

plt.plot(results_t_converted[point_indices], expec[point_indices], ’*’,
label=label, color=colors[counter])

counter += 1
plt.xlabel(’Time(fs)’)
plt.ylabel(’Population’)
plt.xticks(np.arange(0, 450, 100))
plt.yticks(np.arange(0, 1.2, 0.2))
plt.grid(True, which=’major’, linestyle=’-’, linewidth=0.5, alpha=0.7)
plt.legend(loc=’upper right’, ncol=2)
plt.ylim(0, 1.2)
plt.tight_layout()
plt.show()

S22

	Introduction
	Numerical Simulations on Classical Computers
	 for the Lindblad master equation
	Amplitude Damping Channel
	FMO Complex

	Variational Simulations of Lindblad Dynamics
	Vectorized Effective Hamiltonian
	Unrestricted adaptive procedure and system evolution
	Defining a Pool of Operators
	Amplitude Damping Channel

	Stochastic Schrödinger Equation Based Variational Approach
	Stochastic Schrödinger Equation
	Simulation Procedure for Stochastic Evolution
	Simulation of the FMO Complex

	Conclusions
	Supporting Information
	Acknowledgements
	References
	Linear Solver for the Lindblad Master Equation
	Amplitude Damping Channel
	Analytic solution of the Lindblad equation
	Numerical Solution

	FMO Complex
	Vectorized Effective Hamiltonian
	Operator Pool for Amplitude Damping Channel
	Variational Simulation of Amplitude Damping
	Preprocessing Hamiltonians for the SSE Approach
	Parallel Processing of Trajectories
	SSE Simulations of the FMO Complex

