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Abstract

Energy and charge transfer processes, which are central to photosynthesis, catalysis, and molecular

electronics, are governed by quantum dynamics in contact with complex environments. Interactions with

surrounding degrees of freedom give rise to dissipation, decoherence, and energy exchange, shaping the

mechanisms that determine chemical reactivity and transport phenomena. In Part IV of the QFlux tutorial

series, we extend our study of quantum dynamics to open quantum systems, where time evolution is

intrinsically non-unitary. Using the Lindblad master equation as a unifying and practical framework, we

show how environmental effects can be modeled, simulated, and visualized with QFlux, an open-source

platform that bridges classical and quantum computation. The tutorial presents the theoretical foundations

of open-system dynamics, constructs the Lindblad propagator, and implements representative simulations

ranging from spin models to chemically relevant double-well potentials. Special attention is given to dilation

methods, which embed non-unitary dynamics within an enlarged unitary space through ancillary qubits,

enabling open-system simulations on quantum hardware. This installment provides both conceptual insight
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and computational methodology for exploring dissipative quantum dynamics, laying the groundwork for

subsequent parts addressing variational, non-Markovian approaches.
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Abstract

Energy and charge transfer processes, which are central to photosynthesis, catal-

ysis, and molecular electronics, are governed by quantum dynamics in contact with

complex environments. Interactions with surrounding degrees of freedom give rise to

dissipation, decoherence, and energy exchange, shaping the mechanisms that determine

chemical reactivity and transport phenomena. In Part IV of the QFlux tutorial series,
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we extend our study of quantum dynamics to open quantum systems, where time evolu-

tion is intrinsically non-unitary. Using the Lindblad master equation as a unifying and

practical framework, we show how environmental effects can be modeled, simulated,

and visualized with QFlux, an open-source platform that bridges classical and quan-

tum computation. The tutorial presents the theoretical foundations of open-system

dynamics, constructs the Lindblad propagator, and implements representative simula-

tions ranging from spin models to chemically relevant double-well potentials. Special

attention is given to dilation methods, which embed non-unitary dynamics within an

enlarged unitary space through ancillary qubits, enabling open-system simulations on

quantum hardware. This installment provides both conceptual insight and computa-

tional methodology for exploring dissipative quantum dynamics, laying the groundwork

for subsequent parts addressing variational, non-Markovian approaches.

1 Introduction

In chemistry and physics, the environment often plays a role as crucial as the system it-

self. Electron and proton transfer reactions in solution, charge transport in proteins and at

electrode interfaces, energy migration in photosynthetic complexes, superconducting qubits

coupled to resonators, and molecular junctions connected to electron leads are all examples

in which environmental effects fundamentally shape the observed dynamics.1–11 Such sit-

uations are naturally described as open quantum systems, in which the system of interest

interacts with a surrounding environment and therefore cannot be treated as isolated.

In earlier parts of this QFlux12 tutorial series, we developed a progressively richer

description of quantum dynamics. Part I established the foundations of time-dependent

propagation using classical methods and emphasized physical intuition and cross-validation.

Part II translated these ideas to closed-system quantum simulation on qubit-based hard-

ware, while Part III introduced the circuit-synthesis tools required to make these simulations

executable, including state preparation and unitary decomposition. The present installment,

2



Part IV, moves beyond closed systems to open systems, where Markovian descriptions of

environmental effects play a decisive role in the system dynamics.

For open quantum systems, the system state can no longer be described by a single

wavefunction but instead by a density matrix,

ρ =
∑

n

pn |ψn⟩⟨ψn| , (1.1)

which represents a statistical mixture of quantum states |ψn⟩ with probabilities pn arising

from tracing over environmental degrees of freedom. The reduced dynamics of the system

are formally written as

ρ(t) = G(t) ρ(0), (1.2)

where G(t) is a dynamical propagator acting on density matrices. Unlike the unitary propa-

gators of closed systems, G(t) is generally non-unitary, reflecting irreversible processes such

as relaxation and dephasing that arise from coupling to the environment.

A wide range of theoretical and numerical approaches have been developed to model G(t),

ranging from exact path-integral formulations to master-equation-based techniques.3,9,13–21

Among these, the Lindblad master equation, originally formulated by Gorini, Kossakowski,

Sudarshan, and Lindblad, has become one of the most widely used frameworks.22,23 This is

particularly true in quantum information science, where it offers a balance between phys-

ical interpretability and computational efficiency. The Lindblad formalism relies on the

Markovian assumption that environmental correlations decay rapidly compared to the sys-

tem dynamics. When this assumption breaks down, for example, in the presence of strong

coupling, structured environments, low temperatures, or ultrafast processes, non-Markovian

effects become important, and memory must be retained explicitly in the dynamical descrip-

tion. The treatment of non-Markovian dynamics will be discussed in Part VI.

Simulating open-system dynamics on quantum hardware entails additional challenges.

Quantum circuits are inherently unitary: every operation preserves probability and infor-
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mation. In contrast, realistic open-system dynamics are fundamentally non-unitary. As a

result, non-unitary evolution must be implemented indirectly. Several frameworks have been

developed for this purpose, including linear combinations of unitaries (LCU),20,24,25 dilation-

based approaches,26–30 quantum imaginary time evolution,31–33 and variational quantum

algorithms.34–37 Each of these techniques reformulates non-unitary dynamics in terms of

unitary operations, typically by enlarging the Hilbert space with ancillary qubits or by in-

troducing parametrized circuit ansätze.

In this part of the QFlux12 tutorial, we focus on dilation methods for treating non-unitary

dynamics. In these approaches, the system is embedded into an extended Hilbert space that

explicitly includes ancillary degrees of freedom representing the environment. The combined

system and ancillary state evolve unitarily, while the reduced dynamics of the system alone

exhibit open-system effects after tracing out the ancilla.

The purpose of this tutorial is to guide readers through the conceptual foundations of

simulating open-system dynamics on quantum computers. We begin by reviewing quantum

algorithms for treating non-unitary processes within the quantum-circuit framework. These

ideas are then illustrated through a sequence of examples of increasing complexity, rang-

ing from simple spin-1
2 models to spin chains and chemically relevant double-well systems.

Each example is first analyzed using classical simulations to develop physical intuition and

establish reference results, and is subsequently implemented using quantum-circuit-based

constructions to highlight algorithmic structure and performance considerations.

All simulations presented here are performed using QFlux,12 the open-source frame-

work introduced in Part I. QFlux integrates classical solvers, tensor-network techniques,

and quantum-circuit backends within a unified workflow, enabling systematic comparison,

validation, and visualization of environmental effects. By working through the examples in

this part, readers will acquire the tools needed to determine when open-system treatments

are required and to implement them efficiently in realistic quantum simulations.

This installment also prepares the ground for the final parts of the tutorial series. Part V
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introduces adaptive variational algorithms for the efficient approximate simulation of open-

system dynamics on noisy intermediate-scale quantum hardware. Part VI builds directly on

the framework developed here to explore generalized quantum master equations describing

non-Markovian memory effects in chemically and physically realistic environments. Together,

these parts complete a coherent pathway from foundational open-system concepts to state-

of-the-art quantum simulation methods for complex environments.

2 Quantum algorithm for open system dynamics

Quantum computers natively implement unitary operations, whereas the dynamics of open

quantum systems are inherently non-unitary due to dissipation and decoherence. This mis-

match presents a central challenge for simulating realistic quantum dynamics on quantum

hardware. The dilation method resolves this issue by embedding non-unitary evolution into

a higher-dimensional unitary process using ancillary qubits, enabling open-system dynamics

to be simulated within standard quantum circuit frameworks. From a physical perspective,

dilation mirrors the idea that irreversible behavior emerges when a system is viewed as part

of a larger, closed system that includes environmental degrees of freedom. In this section, we

demonstrate how to perform quantum simulations of non-unitary evolution in open systems

using the dilation method.

2.1 Encoding the density matrix into qubit state vector

To simulate the dynamics governed by Eq. (1.2) in a quantum circuit, it is necessary to

encode the information of the density matrix into the state vector of a qubit register. Here,

we introduce two commonly used approaches: one is based on vectorization of the density

matrix, and the other relies on the Kraus operator representation of open system dynamics.
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2.1.1 Vectorization of the density matrix

For a system with an N -dimensional Hilbert space, the density matrix ρ is an N×N matrix.

In the vectorized representation of the density matrix, it is reshaped into an N2-dimensional

vector:

ρ → |νρ⟩ = [ρ11, . . . , ρ1N , ρ21, . . . , ρ2N , . . . , ρN1, . . . , ρNN ]⊤ , (2.1)

Here the superscript “⊤” represents a transpose operation. The vectorized density matrix

|νρ⟩ contains all the information about the system and can be represented using log2(N2)

qubits.

In this representation, the time evolution described by Eq. (1.2) becomes

|νρ(t)⟩ = G(t)|νρ(0)⟩ , (2.2)

where G(t) is the N2 × N2 propagator matrix, which is the matrix representation of the

superoperator G(t) in Eq. (1.2).

The time evolution can then be simulated using a quantum circuit: the qubits are initial-

ized to the vector |νρ(0)⟩ (if ⟨νρ(0)|νρ(0)⟩ ̸= 1, it differs by a normalization factor). Then,

a quantum gate UG(t), corresponding to the non-unitary matrix G(t), is constructed using

the dilation method introduced below. After applying UG(t), the output of the quantum

circuit represents the time-evolved vectorized density matrix |νρ(t)⟩.

2.1.2 The Kraus Operator Representation

Here, we introduce another method to represent the density matrix ρ using qubits. This

approach utilizes the Kraus operator representation to evolve the system dynamics. It avoids

the need to vectorize the density matrix (state vector of dimension N2) and instead evolves a

state vector in the system’s N -dimensional Hilbert space. For cases where the density matrix

has a large dimension, this method significantly reduces the number of qubits required for

simulation.
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The Kraus operator representation expresses the reduced density matrix at time t as a

sum over operators applied to the density matrix:38

ρ(t) =
∑

i

Mi(t)ρ(0)M †
i (t), (2.3)

where Mi(t) are the Kraus operators (N × N matrices) that describe the evolution of the

system. Conceptually, the Kraus operator representation expresses open-system dynamics

as an ensemble of pure-state evolutions, each corresponding to a physically allowed quantum

operation. These Kraus operators define a mapping from ρ(0) to ρ(t). Since the evolution is

a physical quantum operation, this mapping must be a completely positive map.38 According

to Kraus’ theorem, this implies that38

∑
i

M †
i Mi ≤ I , (2.4)

with I as the identity matrix. When the “<” inequality holds here, it means that the matrix

I − ∑
i M

†
i Mi is positive definite.

With the initial density matrix as in Eq. (1.1), ρ(0) = ∑
n pn(0) |ψn(0)⟩⟨ψn(0)|, Eq. (2.3)

becomes

ρ(t) =
∑
in

pn(0)Mi(t) |ψn(0)⟩⟨ψn(0)|M †
i (t)

=
∑
in

pn(0)
∣∣∣ψi

n(t)
〉〈
ψi

n(t)
∣∣∣ ,

(2.5)

where ∣∣∣ψi
n(t)

〉
= Mi(t) |ψn(0)⟩ (2.6)

is the state obtained by applying the Kraus operator Mi(t) to the initial state |ψn(0)⟩.

Therefore, using the Kraus operator representation, the qubits need to be initialized to the

state |ψn(0)⟩, which involves log2(N) qubits. Then, quantum gates UMi
(t), corresponding

to the Kraus operators Mi(t), are constructed using the dilation method. The output of the
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quantum circuit represents |ψi
n(t)⟩. Then the density matrix is reconstructed via Eq. (2.5).

It is worth noting that the Kraus operator approach requires log2(N) qubits to represent

the density matrix, compared to log2(N2) in the vectorization method, significantly reducing

qubit requirements for large N . However, the trade-off is that multiple circuits need to be

executed: the total number of circuits is determined by the product of the number of Kraus

operators and the number of quantum states in the expansion of the initial density matrix

(i.e., the total number of states |ψi
n(t)⟩ for different i and n).

2.1.3 Obtaining the Kraus operators from the propagator matrix

At the theoretical level, the propagator and Kraus representations are equivalent formula-

tions of completely positive open-system dynamics. While the Kraus operator representation

in Eq. (2.3) expresses the evolution in terms of an operator-sum decomposition, the prop-

agator matrix G(t) in Eq. (2.2) provides an explicit linear mapping of the density matrix

from time 0 to t.

This equivalence allows the propagator matrix to be systematically converted into a Kraus

operator representation. The procedure for performing this transformation, which relies on

the Choi–Jamiołkowski isomorphism, is well established in the literature.18,39,40 Here, we

outline the general steps required to obtain the Kraus operators from a given propagator.

First, the Choi matrix39,40 C is constructed from the propagator G(t):

C =
N∑

i,j=1
(Eij ⊗ I)G(t)(I ⊗ Eij) (2.7)

where Eij is an N ×N matrix with the ij-th element equal to 1 and all other elements equal

to 0, and I is the N × N identity matrix. The Choi matrix is a positive definite matrix,

which can be diagonalized

C =
N2∑
k=1

λkuku
†
k (2.8)

where λk ≥ 0 are the eigenvalues and uk (dimension N2 × 1) are the eigenvectors.
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After diagonalizing the Choi matrix, the Kraus operators {Mk} are constructed by re-

shaping
√
λk uk into N ×N matrices and taking their conjugate transpose. As indicated in

Eq. (2.8), a system with Hilbert-space dimension N admits at most N2 Kraus operators.

In practice, Kraus operators associated with very small eigenvalues λk contribute negligi-

bly to the dynamics. To reduce computational overhead, a tolerance tolk can be introduced,

and all Kraus operators satisfying λk < tolk are discarded.

In QFlux, this procedure is implemented by diagonalizing the Choi matrix associated

with the propagator and retaining only the Kraus operators that satisfy the chosen toler-

ance criterion. The code for computing the Kraus operators from the propagator matrix is

provided in Script S.1.1.

2.2 Dilation Method

As discussed above, both the propagator G(t) and the Kraus operators Mi(t) are generally

non-unitary, reflecting the irreversible nature of open-system dynamics. To implement such

dynamics on quantum hardware, where operations must be unitary, we introduce the dilation

method, which embeds a non-unitary process-denoted here by M -into a higher-dimensional

unitary evolution. This construction is based on Sz.-Nagy’s unitary dilation procedure.41

For a non-unitary operatorM acting on a Hilbert space H, Sz.-Nagy’s theorem guarantees

the existence of a unitary operator UM defined on an enlarged Hilbert space such that the

action of UM , when restricted to H, reproduces the action of M . In particular, the 1-dilation

yields a unitary operator of the form

UM =

 M DM†

DM −M †

 , DM =
√
I −M †M, DM† =

√
I −MM †. (2.9)

Here, DM and DM† are referred to as defect operators. The 1-dilation doubles the

dimension of the Hilbert space, corresponding to the introduction of a single ancillary qubit

in a quantum circuit. Since the defect operators involve the square root of I − M †M , the
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operator M must be a contraction, meaning that its operator norm satisfies

∥M∥op = sup
v ̸=0

∥Mv∥
∥v∥

≤ 1. (2.10)

Conceptually, the dilation method embeds irreversible open-system dynamics into a

larger, closed system whose total evolution is unitary, while non-unitary behavior emerges

in the reduced dynamics after tracing out the ancillary degrees of freedom (DOF’s). At the

circuit level, this construction is realized by introducing an ancillary qubit and implementing

a unitary gate acting on the combined system–ancilla space.

In practice, when M is a Kraus operator, as shown in Eq. (2.4), it is a contraction. When

M is the propagator matrix G(t), one can divide the original G(t) by a norm nd, ensuring

that the rescaled G(t) is a contraction (this norm nd will be multiplied back when obtaining

the final result).

We can verify the relation U †
MUM = UMU

†
M = I and for any vector v in H,

UM

v

0

 =

Mv

v′

 , (2.11)

which implies that after disregarding v′ in the extended space, UM yields the same results

as M .

We implement the Sz.-Nagy dilation function in Script S.2.1. This 1-dilation technique

has been applied to simulating open quantum system dynamics.27,42–44 More advanced di-

lation schemes have recently been developed, leveraging the singular-value decomposition

(SVD) of the operator M to express it as a sum of two unitary operators.29 This approach

outperforms the traditional LCU method and reduces circuit depth compared to Sz.-Nagy

dilation.18,21,29 Moreover, combining SVD dilation with the Walsh operator representation

of diagonal unitary operators45 further simplifies circuit implementation.18 These techniques

are detailed in Ref. 21 and have been integrated into the QFlux package. As illustrated in
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Script S.4.5, users can specify different dilation methods to construct quantum circuits.

2.3 Quantum Circuit

We now translate the theoretical constructions introduced above into executable quantum

circuits. In particular, we show how the dilated forms of the propagator in Eq. (2.2) and

the Kraus operators in Eq. (2.6) can be implemented as unitary gates acting on an extended

Hilbert space. After dilation, the time evolution of the system is expressed as

|νρ(t)⟩

|ν ′(t)⟩

 = UG(t)

|νρ(0)⟩

0

 , (2.12)

|ψ i
n(t)⟩

|ψ′(t)⟩

 = UMi
(t)

|ψn(0)⟩

0

 . (2.13)

Here, UG(t) and UMi
(t) denote the unitary dilation of the propagator G(t) and the Kraus

operator Mi(t), respectively. In both cases, the quantum circuit is initialized with the system

register prepared in the desired initial state and the ancillary register initialized to the zero

state.

At the circuit level, the corresponding unitary gate is then applied to the combined

system–ancilla register. After execution of the circuit, the components |νρ(t)⟩ and |ψ i
n(t)⟩

encode the time-evolved system information and are accessed through measurement. The

remaining components, |ν ′(t)⟩ and |ψ′(t)⟩, reside entirely in the ancillary subspace and are

discarded.

In summary, vectorization and Kraus representations offer complementary strategies for

encoding open-system dynamics, differing primarily in their qubit requirements and circuit

overhead. The dilation method provides a unifying framework that enables both approaches

to be implemented as unitary quantum circuits.
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3 The Lindblad Master Equation

As a representative model of open-system dynamics, we consider evolution governed by

the Lindblad master equation. This equation describes the most general form of a trace-

preserving and completely positive dynamical evolution for a system density matrix ρ(t)

under the assumptions of Markovianity and weak system-environment coupling.13,15,46,47 It

is given by

∂ρ(t)
∂t

= − i
ℏ

[H, ρ(t)] + 1
2

∑
n

γn

(
2Lnρ(t)L†

n − ρ(t)L†
nLn − L†

nLnρ(t)
)
, (3.1)

where H is the system Hamiltonian, Ln are Lindblad (jump) operators describing dissipative

processes, and γn ≥ 0 are the corresponding decay rates. Here, H denotes the Hamiltonian

of the isolated system. Interactions with the environment can, in general, modify the system

Hamiltonian through the so-called Lamb shift.13 Because these energy shifts are typically

small, we neglect this contribution in the following discussion. The operators Ln describe

dissipative channels induced by the environment, while the corresponding rates γn quantify

the strength of these processes.

Although dilation-based constructions can, in principle, encode memory effects through

the explicit inclusion of ancillary degrees of freedom, the simulations presented here employ

Lindblad-form generators and therefore describe Markovian open-system dynamics. For

near-term quantum hardware, simulations must also account for practical limitations such

as circuit depth, ancillary qubit requirements, and noise, which can favor approximate or

resource-efficient constructions over formally exact realizations.

The derivation of the Lindblad equation is well established and discussed extensively in

the literature;13,15,46 it is not reproduced here. Instead, we specify the relevant forms of H,

Ln, and γn and focus on simulating the resulting dynamics using both classical and quantum

computational approaches.

The Lindblad master equation relies on several standard approximations:13,15,46,48 sepa-
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rability, whereby the system and environment are initially uncorrelated and described by a

product state; the Born approximation, assuming weak system–environment coupling and a

large environment that remains effectively unperturbed; the Markov approximation, which

requires the system evolution timescale to be much longer than the environment correlation

time, leading to a memoryless bath; and the secular approximation, which neglects rapidly

oscillating terms and yields the Lindblad form of the dissipative superoperator.

As shown in Ref. 21, these assumptions limit its applicability. When the Lindblad

equation breaks down, numerically exact non-Markovian methods can be employed, which

will be discussed in Part VI of this tutorial series.

3.1 Solving the Lindblad equation on classical computers

Before delving into the key quantum algorithms in this tutorial, it is crucial to first become

acquainted with the numerical simulations that can be performed on classical computers. It

is a best practice to run simpler trial examples using numerical simulations before testing

quantum algorithms on quantum computers. The results obtained from such simulations,

often referred to as “exact results", serve as a benchmark for evaluating the accuracy of

quantum algorithms and quantum computers.

In this section, we demonstrate the simulation of the Lindblad master equation, Eq. (3.1),

using two methods: matrix exponential propagation and QuTiP’s Lindblad master equation

solver.48,49 Using matrix exponential propagation, we can express the Lindblad equation

in the form given in Eq. (2.2) and construct the propagator matrix corresponding to the

Lindblad equation. The propagator matrix can then be used in the quantum algorithm

introduced in Section 2.

3.1.1 Matrix exponential: the propagator of the Lindblad equation

For the first numerical simulation method to solve the Lindblad equation, we present a

matrix-vector multiplication approach. This method utilizes commonly used Python pack-
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ages scipy and numpy. The approach involves three key steps: (i) vectorizing the density

matrix, (ii) converting the Lindblad equation into a matrix-vector form, and (iii) integrating

this matrix-vector equation to determine the system’s time evolution.

We can recast the Lindblad equation in Eq. (3.1) in the equivalent matrix-vector form:

∂ |νρ(t)⟩
∂t

= −iHeff |νρ(t)⟩ , (3.2)

where |νρ(t)⟩ is the vectorized density matrix defined in Eq. (2.1). The effective Hamiltonian

is Heff = HC + iHD, with HC and HD representing the N2 × N2 matrix forms of the

commutator and the Lindbladian dissipator in Eq. (3.1), respectively:

HC = H ⊗ I − I ⊗HT ,

HD = 1
2

∑
n

γn

[
2Ln ⊗ L∗

n − I ⊗ LT
nL

∗
n − L†

nLn ⊗ I
]
,

(3.3)

Here, L∗
n is the complex conjugate of Ln and I is the identity matrix in the Hilbert space of

the Hamiltonian H.

By integrating Eq. (3.2), the density matrix at time t can be expressed as the action of

the exponential of the matrix −iHeff on the vectorized density matrix at t = 0,

|νρ(t)⟩ = G(t)|νρ(0)⟩ = e−iHefft|νρ(0)⟩ . (3.4)

Now the Lindblad equation is written in the form of Eq. (2.2) and the propagator matrix

G(t) evolves the system over time. The method for calculating the propagator matrix G(t) is

implemented in Script S.3.1, while the propagation of the Lindblad equation using the matrix

exponential is encapsulated in the Python function propagate_matrix_exp, as shown in

Script S.3.2. A further demonstration of how to call this function and plot the results is

provided in Section 4.1.
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3.1.2 QuTiP’s Lindblad master equation solver

Another convenient way to obtain numerically exact solutions of the Lindblad equation

is using QuTiP,48,49 an open-source software with a predefined Lindblad master equation

solver called mesolve. This solver uses an ordinary differential equation solver to handle

the Lindblad equation, requiring users to provide only the essential parameters and output

instructions. The package manages all computational processes, delivering the final results

efficiently.

When using mesolve, key components must be provided as input: the system Hamilto-

nian H, the initial density matrix ρ(0), a list of time points for dynamical simulation, and

collapse operators c_ops, defined as √
γnLn. If no collapse operators are given, the solver

propagates the Liouville equation of the system (pure system evolution). Additionally, users

must specify the output instructions, particularly the operators e_ops whose expectation val-

ues are to be calculated. With these quantities defined, mesolve generates time-dependent

expectation values for the given operators by propagating either the Liouville equation or

the Lindblad master equation. Execution of both scenarios is shown in Script S.3.3, with

the results alongside those obtained from the matrix exponential method in Section 4.1.

4 The Spin-1/2 System

4.1 Simulations on Classical Computers

To illustrate the application of the two numerical methods introduced in Section 3.1, we

consider a simple but fundamental example: the spin-1
2 system. This system provides a

minimal setting for exploring open quantum dynamics and serves as a useful reference point

for benchmarking both classical and quantum simulations.

In the absence of environmental coupling, the dynamics of an isolated spin-1
2 system are

characterized by coherent oscillations, corresponding to sinusoidal population exchange be-
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tween the two energy levels. Here, we incorporate environmental effects through dissipative

terms in the Lindblad equation, allowing direct comparison between closed- and open-system

dynamics. This comparison provides physical intuition for the role of dissipation and estab-

lishes reliable classical reference results for subsequent quantum simulations.

The spin-1/2 system can be modeled using the following Hamiltonian:

H = E0 σ
z + ∆ σx (4.1)

where E0 is the energy splitting between the two spin states, ∆ is the tunneling rate, σz and

σx denote the Pauli Z and X matrices, respectively. In this case, we select spin-1/2 system

parameters as E0 = 0, ∆ = 0.1 × 2π. For the jump operators in Eq. (3.1), we select a single

jump operator L = σx and the damping rate γ = 0.05.

The spin-up |↑⟩ and spin-down |↓⟩ states, which are the basis states of the system, are

defined as:

|↑⟩ = |0⟩ =

1

0

 , |↓⟩ = |1⟩ =

0

1

 (4.2)

These states represent the two possible spin orientations of a spin-1/2 particle. The initial

state of the system is set to the spin-up state:

|ψ(0)⟩ = |0⟩ , ρ(0) = |0⟩⟨0| . (4.3)

These settings for the spin-1/2 system are shown in Script S.4.1.

With the parameters defined above, we can propagate the Lindblad equation to simulate

the dynamics and evaluate the expectation value of the Pauli Z matrix, ⟨σz⟩(t). Similarly,

we also solve the closed system Liouville equation for comparison, allowing us to observe

the differences between closed and open system dynamics. This is achieved by omitting the

specification of the collapse operator when using the qutip.mesolve function. These steps

are shown in Script S.4.2.

16



The results are shown in Fig. 1. The dynamics of ⟨σz⟩(t) described by the Liouville

equation with the system Hamiltonian H exhibit persistent oscillations with the frequency

2
√
E2

0 + ∆2 known as the Rabi frequency.14 The jump operator term L in the Lindblad

equation introduces dissipation, leading to damped oscillations in the dynamics of ⟨σz⟩(t).

The consistency between the two methods (matrix exponential propagation and QuTiP

mesolve) indicates the accuracy of our propagation techniques and validates our simulations

of the dynamics.

The simulation can also be easily performed using the QFlux package, as demonstrated

in Script S.4.4, yielding the same results as those shown in Fig. 1.

Figure 1: ⟨σz⟩(t) dynamics of the spin-1/2 system. Here we present results from two methods
used to propagate the Lindblad equation (blue curve: matrix exponential propagation; black
dots: QuTiP method). The results for the closed system Liouville equation (red curve) are
also included for comparison.

4.2 Quantum Simulation: Amplitude Damping Channel

Having established the classical reference dynamics, we now focus on their implementation

using quantum circuits constructed within QFlux. In this example, we choose parameters

for the spin-1
2 Hamiltonian in Eq. (4.1) that correspond to the amplitude damping channel

commonly studied in quantum information theory.24,27,29 This channel models physically

relevant dissipative processes such as atomic spontaneous emission and T1 relaxation in

nuclear magnetic resonance (NMR) spectroscopy.
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Specifically, we set E0 = 0 and ∆ = 0. For the Lindblad dynamics, we include a single

jump operator, L = σ+, corresponding to the Pauli raising operator, with a damping rate

γ = 1.52 × 109 s−1.

The corresponding Lindblad master equation is:

ρ̇ (t) = γ
[
σ+ρ(t)σ− − 1

2{σ−σ+, ρ(t)}
]
, (4.4)

where σ± = (σx ± iσy)/2 are Pauli raising and lowering operators, respectively.

The initial density matrix is defined as24,27,29

ρ(0) = 1
4

1 1

1 3

 , (4.5)

and we calculate the populations in the basis {|0⟩ , |1⟩} from t = 0 to t = 1000 ps with a

time step of 10 ps.

Script S.4.5 implements the steps for simulating amplitude damping dynamics using the

QFlux package with the vectorized density matrix representation. We initialize a DynamicsQ

object and set the measurement qubit states to |000⟩ and |011⟩. According to the vector-

ization of ρ(t) in the dilated space (Eq. (2.1) and Eq. (2.12)), the amplitudes of these states

correspond to the populations of the states |0⟩ and |1⟩ in the spin-1/2 system.

The quantum circuit dilation method can be specified by the user, choosing between the

Sz.-Nagy dilation (Section 2.2) or the more advanced SVD dilation, which can be combined

with the Walsh operator representation for further optimization.

The results are shown in Fig. 2, where the population dynamics obtained from the quan-

tum simulation align with the dynamics computed using the matrix exponential propagation

method on a classical computer (labeled “benchmark” in Fig. 2).

In the following, we provide the code details underlying the QFlux package. When

performing quantum simulations using QFlux based on the vectorized density matrix rep-
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Figure 2: Quantum simulation of the Lindbladian dynamics for the spin-1/2 system with an
amplitude damping channel. The population dynamics computed using a quantum simulator
(red for |0⟩ and blue for |1⟩) are compared to those obtained from the simulation on a
conventional classical computer with matrix exponential propagation (black dot for |0⟩ and
yellow dot for |1⟩).

resentation, we first employ the matrix exponential propagation method (Section 3.1) to

obtain the propagator for Eq. (4.4), as demonstrated in Script S.4.7. Once the propagator is

obtained, it can be directly applied to the initial state vector to generate classical numerical

results, which serve as a benchmark for the quantum simulation.

With the propagator G(t) calculated, QFlux performs the dilation and constructs the

corresponding quantum circuit for UG(t). As an illustrative example, we use the dilate

function defined in Script S.2.1 to perform the circuit dilation. After executing UG(t) and

measuring the qubits, the population of the spin-1/2 system in |0⟩ and |1⟩ states can be

obtained by taking the square root of the measurement probabilities for the qubit states

|000⟩ and |011⟩, followed by applying the normalization factors associated with the dilation

and the initial density operator:

P0 =A0nd

√
N000/N (4.6)

P1 =A0nd

√
N011/N , (4.7)

where N is the total number of shots, nd is the norm associated with dilation, and A0 is the

norm of the vectorized initial density matrix. N000 and N011 are the number of shots at |000⟩
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and |011⟩, respectively. Script S.4.8 shows the implementation details of the construction

and execution of the quantum circuit for the Lindblad dynamics governed by Eq. (4.4). The

results are consistent with those obtained from QFlux in Script S.4.5.

5 Spin Chain

As another example, we choose the Heisenberg spin-chain model, which is widely used to

study the properties of radical and magnetic materials.50 A schematic representation of

a spin-chain model, including its coupling to the environment, is shown in Fig. 3. The

Hamiltonian for the spin-chain is defined as follows:51

H =
N−1∑
n=0

Ωnσ
z
n − 1

2

N−2∑
n=0

(
Jx

n,n+1σ̂
x
nσ̂

x
n+1 + Jy

n,n+1σ̂
y
nσ̂

y
n+1 + Jz

n,n+1σ̂
z
nσ̂

z
n+1

)
(5.1)

where N denotes the number of spins in the model, σi
n denotes a Pauli matrix acting on the

n-th (n ∈ {0, ..., N − 1}) spin site with i ∈ {x, y, z}. Ωn is the local potential in the n-th

spin site, J i
n,n+1 with i ∈ {x, y, z} denotes the coupling between n-th and (n+ 1)-th site.

For illustrative purposes, we consider the parameters as used in the Ref. 51 but with

three spin sites (N = 3) rather than twenty.

Table 1: Hamiltonian parameters used in the spin chain simulation, from Fiori et al 51

Parameter n = 0 n ̸= 0
Ωn 0.65 1.0

Jx
n,n+1 0.75 1.0
Jy

n,n+1 0.75 1.0
Jz

n,n+1 0.0 0.0

The initial state and the corresponding density matrix are defined as

|ψ(0)⟩ = |↑↓↓⟩ , ρ(0) = |ψ(0)⟩⟨ψ(0)| . (5.2)

This state is a Kronecker product of the spin-up (first site) and spin-down vectors and the
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Figure 3: Schematic representation of a spin chain model coupled to an environment, where
a graphene nanoribbon acts as a spin chain. The free radical moieties in the polymer group
(red or blue molecular groups in the figure) represent the spin sites, which may have spin up
or down. Ωn is the energy required to flip the spin state at the particular polymer site n, and
Jn,n+1 is the offsite couplings between spins at site n and n + 1. The graphene nanoribbon
is coupled to a bath, with the dissipation effect given by the damping rate γn (for simplicity
γn = γn+1 ∀n).

initial density matrix is the projector on the initial state vector (since it is a pure state).

We use the Script S.5.1 to set the spin chain’s initial state and the Hamiltonian. Likewise,

Script S.5.2 defines the spin chain Hamiltonian through the Kronecker product of the Pauli

matrices constituting the Hamiltonian operators.

The jump operators for the Lindblad equation of the spin chain were chosen to model

the effect of dissipation of an analogous spin system on a quantum device.52 We rewrite the

Eq. (3.1) as

ρ̇(t) = −i[H, ρ(t)] + 1
2

2∑
m=1

N−1∑
n=0

γm,n

[
2Lm,nρ(t)L†

m,n − ρ(t)L†
m,nLm,n − L†

m,nLm,nρ(t)
]

(5.3)

Here m denotes two different noise channels, the amplitude damping noise (m = 1) and the

dephasing noise (m = 2), acting on the n-th spin site. The jump operators Lm,n associated
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with these noise channels are52

L1,n = σ̂−
n (5.4)

L2,n = σ̂+
n σ̂

−
n . (5.5)

with σ̂±
n ≡ (σ̂x

n ± iσ̂y
n)/2. The damping rates γ1,n and γ2,n can be experimentally determined

by measuring the spin relaxation process.52 Here, we choose γ1,n and γ2,n corresponding to

the average noise determined by Dang and coworkers in Ref. 52, where they determined the

average noise for the two relaxation processes as T1,n = 24.9×5 and T2,n = 15.3×5 (in units

of 1/J , where J = 5 MHz), with J denoting the nearest-neighbor coupling. Using J has a

scale of 1.0 in our Table 1, and relate T1,n and T2,n to damping rate through γ1,n = 2/T1,n,

γ2,n = 4/T2,n, then we have γ1,n = 0.016 and γ2,n = 0.0523. With the jump operators

and damping rates defined, we can implement it in a manner analogous to the spin chain

Hamiltonian. For convenience, we store the collapse operators √
γm,nLm,n.

The observable of interest for our spin chain example is the survival amplitude, defined

as

As(t) =
√

Tr[ρ(t)ρ(0)] , (5.6)

When starting from a pure state |ψ(0)⟩, this expression is equal to |⟨ψ(0)|ψ(t)⟩|.

5.1 Classical Simulation

The Lindblad dynamics for the spin chain can be simulated with the matrix exponential

propagation method and the QuTiP method. Similar to the single spin-1/2 case, we propa-

gate the pure system Liouville equation for comparison.

The results are shown in Fig. 4. The dynamics of the pure system Liouville equation

demonstrates that the system oscillates between different spin configurations and recovers

the initial state after some time. However, the Lindblad equation includes the spin relaxation

process which is described by two types of jump operators. This leads to the relaxation of
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the survival amplitude and the initial state is not recovered. Similar to the spin-1/2 case,

the matrix exponential propagation and QuTiP mesolve give the same result.

Figure 4: Quantum dynamics of the spin-chain for the pure system evolution (red line)
and the open system dynamics described by the Lindblad equation (blue line for matrix
exponential propagation and black dot for QuTiP method). Without dissipation, the pure
system oscillates between the available spin configurations, while after introducing the spin
relaxation process, the system gradually loses energy and deviates from its initial state as
the simulation time increases.

By instantiation of a Dynamics object corresponding to the spin chain Hamiltonian,

the above results can also be simulated using the QFlux package. The implementation is

provided in Script S.5.6.

5.2 Quantum Simulation

In this subsection, we extend the quantum algorithm to perform the qubit-based simulation

of the Lindblad dynamics of the spin chain Hamiltonian. We use the same spin chain

parameters as in the conventional computer simulation in Section 5.1.

Similar to the previous example of simulating the spin-1/2 system, the quantum cir-

cuit simulation of the spin chain can also be directly performed using the QFlux package.

Script S.5.7 provides the details of the implementation.
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Here, we measure the state |0011011⟩ because, in our specific example, the initial density

matrix is given by ρ(0) = |↑↓↓⟩ ⟨↑↓↓| = |011⟩⟨011|. Consequently, its vectorized form is

|νρ(0)⟩ = |011011⟩, and the corresponding initial state vector in the dilated space is |ν̃ρ(0)⟩ =

|0011011⟩. The survival amplitude in Eq. (5.6) is transformed to

As(t) =
√

| ⟨ν̃ρ(t)|ν̃ρ(0)⟩ | (5.7)

where ⟨ν̃ρ(t)|ν̃ρ(0)⟩ can be obtained by taking the square root of the probability of measuring

the |0011011⟩ component in the quantum circuit.

It’s important to note that to achieve statistically meaningful results, the quantum sim-

ulation must be executed multiple times for each time point and then averaged. To demon-

strate this, we carried out the simulations using 1000 and 10000 shots, performed using

Qiskit’s AerSimulator.53 The results are shown in Fig. 5. While both the results agree well

with the classical computer benchmark (QuTiP result in Section 5.1), the results obtained

from 1000 shots exhibit more noise compared to the data obtained from 10000 shots.

Figure 5: Quantum simulation of the Lindbladian dynamics for the spin-chain model. Two
results obtained with different numbers of shots on the quantum device simulator are pre-
sented. For comparison, the results from the classical conventional computer simulation
using QuTiP (black dots) are also presented.

Script S.5.9 details the implementation of the QFlux package. It begins by computing

the propagator G(t) using the method outlined in Section 3.1.1. The quantum circuit is
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then initialized at |ν̃ρ(0)⟩, followed by the dilation of the propagator G(t) to UG(t), which

is applied to the quantum circuit. Measurements are performed to obtain the dynamics of

As(t). Note that the normalization factor nd in the dilation process is applied after the

measurement.

6 Double Well

Double-well potentials provide a simple yet powerful model for chemical processes involving

barrier crossing, such as proton transfer reactions and conformational changes in molecules.

In this context, the two wells correspond to distinct chemical configurations, while popu-

lation transfer between them reflects reaction dynamics driven by thermal fluctuations and

environmental coupling. The time-dependent population of each well can be directly inter-

preted in terms of reaction rates, with dissipation controlling the timescale over which the

system relaxes from a metastable configuration to the energetically favored state.

In this section, we will simulate the Lindblad dynamics in a double-well potential. The

double-well form of the potential is ubiquitous in many chemical reactions, such as proton

transfer in DNA base pairs54,55 and proton-coupled electron transfer processes in solution or

electrochemical systems.1,56,57 Since the surrounding environment influences these processes,

they are often modeled as a double-well system coupled to a dissipative bath.58,59 When

the system-bath interaction is weak, the Lindblad equation is a suitable choice for such

simulations.

Here, we choose the example of proton transfer in DNA base pairs. This dissipative

chemical system has been the focus of study in the recent work,60,61 simulated with an

analog quantum processor, yielding reasonable results for chemical kinetics. The system’s

Hamiltonian H is given by:

H = p2

2m + V (x) (6.1)

where p is the proton’s momentum, m = 1836.15 a.u. is the mass of the proton, and the
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model potential V (x) describes the hydrogen bond within the adenine-thymine base pair in

DNA:54,55

V (x) = α

[
0.429

(
x

x0

)
− 1.126

(
x

x0

)2
− 0.143

(
x

x0

)3
+ 0.563

(
x

x0

)4
]
, (6.2)

Here, x is the one-dimensional proton coordinate defined relative to the middle of the proton

transfer interface in an individual adenine-thymine (A-T) pair, x0 = 1.9592 Bohr is the half

of the distance between the two minima of the potential, and α = 0.0367493 is the unit

conversion factor from electronvolts to atomic units. The plot of the potential V (x) is shown

in Fig. 6.

Figure 6: The model double-well potential for the proton motion in the adenine-thymine
base pair of DNA.

We can diagonalize the double-well system Hamiltonian H in Eq. (6.1) to obtain the

eigenstates:

H|ϕi⟩ = Ei|ϕi⟩ (6.3)

Here, |ϕi⟩ represents the i-th eigenstate of the system, and Ei is the corresponding eigenvalue.
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The code shown in Script S.6.2 solves for the first Neig = 50 eigenstates of the system. The

probability densities for the first 12 eigenstates and the corresponding energy levels are

shown in Fig. 7. It can be seen from the figure that the first 10 states are localized in either

the left or right well, while the eigenstates after the 11-th are delocalized across the entire

double-well potential.

To simulate the proton transfer process, we set the initial state to the eigenstate |ϕ6⟩,

which is the first eigenstate localized in the right well:

|ψ(0)⟩ = |ϕ6⟩; ρ(0) = |ψ(0)⟩⟨ψ(0)| . (6.4)

Figure 7: The probability density (scaled by an appropriate scaling factor) for the eigen-
states of the system Hamiltonian in Eq. (6.1). The horizontal solid lines indicate the energy
levels and the black line shows the double-well potential. The left panel displays the first 6
eigenstates, while the right panel shows the eigenstates from 7 to 12.

The population of the proton in the left (L) and right (R) wells can be characterized by
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the following expectation values:

PR = ⟨Θ(x− x∗)⟩

PL = ⟨1 − Θ(x− x∗)⟩ ,

(6.5)

where ⟨A⟩ = Tr[Aρ] for a given operator A, Θ(x) is the Heaviside function and x∗ defines the

dividing surface between the left and right wells. Here, x∗ = 0.37321768 a.u. corresponds to

the position at the top of the barrier.

The time evolution of the system is described by the Lindblad equation in Eq. (3.1) with

the jump operators L1 and L2 that account for the environmental dissipation effects:62,63

L1 = â

L2 = â†
(6.6)

where â and â† are annihilation and creation operators defined as

â =
√
mω

2ℏ x̂+ i√
2ℏmω

p̂ (6.7)

â† =
√
mω

2ℏ x̂− i√
2ℏmω

p̂ (6.8)

Here, the frequency ω = 0.00436 a.u. (956.9 cm−1) corresponds to the bottom of the right

well of the double-well potential. We write the specific form of the Lindblad equation for

double-well potential as follows:

ρ̇ = −i[Ĥ, ρ(t)]

+ κ (1 + nth)
(
âρ(t)â† − 1

2
{
â†â, ρ(t)

})
+ κnth

(
â†ρ(t)â− 1

2
{
ââ†, ρ(t)

})
(6.9)

where κ describes the coupling between the system and environment, and nth =

1/(exp(ℏω/kBT ) − 1) is the thermally averaged quantum number of the harmonic oscil-

lator corresponding to the temperature of the environment. We choose κ = 1/10 fs−1 and
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T = 300 K (corresponding to nth = 0.01 a.u.).

6.1 Classical Simulation

To propagate the Lindblad equation, we express all operators in the basis of the eigenstates,

ρij = ⟨ϕi|ρ|ϕj⟩, Hij = ⟨ϕi|Ĥ|ϕj⟩, and similarly for â and â†. When the basis is truncated to

the Neig-th state, these operators are represented as Neig × Neig matrices in the eigenstate

basis.

After expressing all operators in the basis of eigenstates, we can use the QuTiP mesolve

function to simulate the dynamics. Fig. 8 shows the dynamics of the population in the

right well. The upper panel presents the results for different eigenstate truncations, and

it can be seen that the results converge at Neig = 30. The plot in the top panel shows a

comparison between the dynamics simulated using the QuTiP solver and matrix exponential

propagation. The good agreement between the two validates our simulation.

It is worth mentioning that using matrix exponential propagation, we can obtain the

dynamics at time t directly without iterating over the time steps. In Fig. 9, we present

the dynamics of proton transfer on a longer time scale obtained by the matrix exponential.

The population PR(t) exhibits a clear exponential decay. Around 20 ps, the majority of the

proton distribution has transferred to the left well. An exponential fit to the data indicates

that the rate constant is approximately 8×10−2 ps−1. This rate is consistent with dissipative

barrier-crossing proton-transfer behavior expected at room temperature.

Fig. 10 provides a spatially resolved view of the population transfer inferred from Fig. 8.

By examining the proton probability density at selected time points, the proton transfer

process becomes directly visible. As the population PR(t) in the right well decreases, as

shown in Fig. 8, the probability density progressively shifts toward the lower-energy left

well.

This spatial redistribution of the proton probability density reflects energy dissipation

arising from interactions with the environment. It is important to emphasize that, because
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the initial state is an eigenstate of the system Hamiltonian, the population PR(t) would

remain equal to unity and the probability density would remain unchanged in the absence of

dissipation. Consequently, the observed proton transfer from the right well to the left well

is driven entirely by environmental effects.

Figure 8: The dynamics of the population in the right well for the double-well system.
(Upper) The dynamics simulated with different truncation levels, propagated using QuTiP
Lindblad equation solver. (Lower) The results from matrix exponential propagation and
QuTiP method, both with the truncation Neig = 30.

The same classical simulation results can also be obtained using the QFlux package,

with the code provided in Script S.6.5.
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Figure 9: The long-time dynamics of the population in the right well for the double-well
system. The result is obtained from matrix exponential propagation with the eigenstate
truncation Neig = 30.

Figure 10: The proton probability density in the double-well potential at different time
points.
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6.2 Quantum Simulation

In this subsection, we use the dilation-based quantum algorithm to perform the quantum

simulation of the Lindblad dynamics in the double-well Hamiltonian. The Hamiltonian and

the corresponding Lindblad equation are the same as presented in Section 6.1. Here, we

utilize the Kraus operator representation to evolve the system dynamics. Conceptually,

each Kraus operator represents a distinct dissipative pathway contributing to the reduced

dynamics of the proton.

This approach avoids the need to vectorize the density matrix (state vector of dimension

N2) and instead evolves a state vector in the system’s N -dimensional Hilbert space. For

cases where the density matrix has a high dimension, such as in the double-well model, this

method significantly reduces the number of qubits required for the simulation.

In practice, within QFlux, the propagator obtained from the classical simulation is con-

verted into Kraus operators, each of which is implemented as a separate quantum circuit.

Script S.6.6 provides the QFlux package implementation for the quantum simulation of the

Lindblad dynamics in the double-well potential. In this case, we extract the precomputed

propagator from the classical simulation results in Section 6.1 (Neig = 30). To match the

qubit dimension, the expand function initializes the propagator to a 322 × 322 matrix. By

creating a DynamicsQ object and specifying the Kraus operator representation, the QFlux

package utilizes the technique from Section 2.1.3 to convert the propagator into Kraus op-

erators and perform the quantum circuit simulation.

The quantum circuit simulation results shown in Fig. 11 are consistent with the results

from the matrix exponential propagation, demonstrating the correctness of the quantum

algorithm based on dilation and the Kraus operator representation.

In the following, we provide a detailed explanation of how the QFlux package implements

this quantum simulation. First, Script S.6.7 presents the explicit definition for the expand

function, which extends the propagator to match the qubit dimension. Then, Script S.6.8

converts the propagator into the Kraus operator representation.
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Figure 11: Quantum Aer simulation of the right well population dynamics in the double-
well system. Each quantum circuit is measured with 2000 shots. The result is compared
to the simulation from the matrix exponential propagation with the eigenstate truncation
Neig = 30.

We compute the time evolution of the population in the right well through quantum sim-

ulations. Using the initial state from Eq. (6.4) and the Kraus representation from Eq. (2.3),

the population PR(t) is expressed as

PR(t) = Tr[ρ(t)P̂R]

=
∑

i

Tr[Mi(t)|ψ(0)⟩⟨ψ(0)|M †
i (t)P̂R]

=
∑

i

⟨ψi(t)|P̂R|ψi(t)⟩ , (6.10)

where P̂R is the Heaviside function Θ(x− x∗) [Eq. (6.5)] in the double-well eigenstate basis,

and |ψi(t)⟩ = Mi(t)|ψ(0)⟩. It should be noted that although the above equation uses the

initial density matrix for the pure state ρ(0) = |ψ(0)⟩⟨ψ(0)|, the form of the equation remains

unchanged even if the initial density matrix corresponds to a mixed state. In such cases,
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one only needs to include an index in the summation to iterate over the states of the initial

mixed state.

The Kraus operatorsMi(t) are non-unitary and, by definition, they are always contraction

mappings38 satisfying the relation ∑
i MiM

†
i ≤ I, with singular values bound above by 1,

which makes the Sz.-Nagy dilation in Eq. (2.9) directly applicable without rescaling the

matrix. After dilation, Eq. (6.10) acquires the form

PR(t) =
∑

i

⟨0|⟨ψ(0)|U †
Mi
P̃RUMi

|0⟩|ψ(0)⟩ (6.11)

where |0⟩ is the state of the ancilla qubit, and the quantum circuit is initialized at |0⟩|ψ0⟩,

with |ψ0⟩ = |ϕ6⟩ as in Eq. (6.4). After applying the dilated Kraus operator UMi
to the initial

state, the result is obtained by measuring the expectation value of P̃R and summing over the

indices of the Kraus operators. The operator P̃R in the dilated space is

P̃R =

P̂R 0

0 0

 . (6.12)

It should be noted that the Kraus representation reduces the number of required qubits

by nearly half compared to the vectorized density matrix representation. The trade-off is

that each Kraus operator corresponds to a quantum circuit, meaning that the reduction in

the number of qubits leads to an increase in the number of quantum circuits (up to N2

quantum circuits may be needed).

To measure the observable P̃R on a quantum computer, it must be represented as the

sum of the tensor products of the Pauli operators,

P̃R =
∑

ξ1,ξ2,...,ξn

aξ1ξ2···ξn ξ1ξ2 · · · ξn (6.13)

where each ξi ∈
{
I, σX , σY , σZ

}
is the Pauli operator operating on the i-th qubit and aξ1ξ2···ξn
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is a real number. The method for expressing a general Hermitian matrix in terms of the

Pauli operators is demonstrated in Part II and is implemented here in the ham_to_pauli

function. In Script S.6.9, we decompose P̃R with a given precision tolp and convert it into a

Qiskit operator.

The quantum simulation is performed in Script S.6.10, where we used Estimator function

from qiskit_aer.primitives to use Aer implementation for measuring the expectation

values of the observables after the execution of the quantum circuit. This yields the same

results as the QFlux implementation in Script S.6.6.

7 Conclusions

In this tutorial, we have presented a comprehensive introduction to simulating the dynamics

of open quantum systems on quantum computers. Throughout the discussion, we deliber-

ately distinguished conceptual formulations of open-system dynamics from their realization

in quantum circuits, enabling readers to engage with either the theoretical framework or the

implementation details according to their interests.

We employed both vectorization of the density matrix and the Kraus operator repre-

sentation to encode open-system states into qubit registers, and used the dilation method

to construct quantum circuits capable of simulating non-unitary dynamics. By studying

physically and chemically relevant models, we analyzed dissipative Lindblad dynamics and

illustrated the role of environmental interactions in driving energy dissipation. In all cases,

the quantum circuit simulations were found to be in good agreement with benchmarks ob-

tained from classical computations, validating the correctness of the proposed approach.

In addition, this tutorial introduced the QFlux package, which provides a unified frame-

work for simulating open-system dynamics on both classical and quantum platforms. The

accompanying coding examples and detailed workflows are intended to help readers efficiently

implement and adapt these methods to a wide range of problems in open quantum system
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dynamics. Together, the methodology and software tools presented here lay the groundwork

for future developments and applications in quantum simulations of dissipative systems.

Supporting Information

Detailed code snippets are available in the Supporting Information and corresponding Google

Colab notebook as well as through the QFlux Documentation site.
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S.1 From Propagators to Kraus Maps

We begin by converting a superoperator (propagator) G(t) acting on the vectorized density

matrix into an operator-sum (Kraus) representation Et(ρ) = ∑
i Mi(t)ρM †

i (t). This proceeds

by building the Choi matrix of G(t) and diagonalizing it; eigenvectors yield Kraus opera-

tors. The routine below implements that construction with a tolerance to drop numerically

negligible modes.

Script S.1.1: Obtaining Kraus operators from the propagator 2 3

import numpy as np
import scipy.linalg as LA

def gen_Kraus_list(Gmat,N,tol=1E-5):
"""
Generate the Kraus operators from the propagator with a given tolerance
Input:
- Gmat: matrix of the propagator (numpy array of shape (N^2, N^2)).
- N: The system Hilbert space dimension
- tol: tolerance for the Kraus operator representation.
Returns:
- Kraus: List of Kraus operators
"""
# defining the Choi matrix from the matrix of the propagator
C_mat = np.zeros(Gmat.shape,dtype=np.complex128)
for i in range(N):

for j in range(N):
C_matij = np.zeros(Gmat.shape,dtype=np.complex128)
for k in range(N):

for l in range(N):
C_matij[i*N+k,l*N+j] = Gmat[j*N+k,l*N+i]

C_mat += C_matij

Kraus = []
val,arr = LA.eigh(C_mat)
for i in range(len(val)):

if (val[i]>tol):
Mi = np.sqrt(val[i])*arr[:,i].reshape(N,N)
Kraus.append(Mi.conj().T)

return Kraus
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S.2 Unitary Dilations for Quantum Simulation

Open-system maps can be embedded into larger unitary evolutions via Sz.-Nagy (or SVD-

based) dilation. The routine below constructs a 2N × 2N unitary U whose action on an

enlarged space reproduces the original contraction after tracing out ancillas. Optional scaling

ensures the contraction property when the input matrix is not strictly contractive.

Script S.2.1: Dilation 2 3

def dilate(array,Isscale=True):

if(Isscale):
# Normalization factor, 1.1 times martix’s norm to ensure contraction
norm = LA.norm(array,2)*1.1
array_new = array/norm

else:
array_new = array

ident = np.eye(array.shape[0])

# Calculate the conjugate transpose of the G propagator
fcon = (array_new.conjugate()).T

# Calculate the defect matrix for dilation
fdef = LA.sqrtm(ident - np.dot(fcon, array_new))

# Calculate the defect matrix for the conjugate of the G propagator
fcondef = LA.sqrtm(ident - np.dot(array_new, fcon))

# Dilate the G propagator to create a unitary operator
array_dilated = np.block([[array_new, fcondef], [fdef, -fcon]])
if(Isscale):

return array_dilated, norm
else:

return array_dilated
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S.3 Lindblad Dynamics

We now assemble tools to compute dynamics governed by the Lindblad master equation.

The generator acts linearly on the vectorized density matrix, enabling propagation via a

matrix exponential.

S.3.1 Propagator via Matrix Exponential

Script S.3.1: Calculating the propagator of the Lindblad equation 2 3

def Gt_matrix_expo(H, L, time_arr, Is_show_step = False):
"""
Getting the propagator of the Lindblad equation by matrix exponential
Parameters:
- H: Hamiltonian of the system (numpy array of shape (N, N)).
- time_arr: Time array for dynamic simulation (array).
- L: List of Collapse operators, with each operator is a numpy array of shape (N,
N).

Returns:
- G_prop: List of propagators.
"""
Nsys = H.shape[0]
ident_h = np.eye(Nsys, dtype=np.complex128)

# Amatrix for time-derivation of the vectorized density matrix
Amat = -1j * (np.kron(H, ident_h) - np.kron(ident_h, H.T))
for i in range(len(L)):

Amat += 0.5 * (2.0 * (np.kron(L[i], L[i].conj()))
- np.kron(ident_h, L[i].T @ L[i].conj())
- np.kron(L[i].T.conj() @ L[i], ident_h))

G_prop = []
for i in range(len(time_arr)):

if(Is_show_step): print(’step’,i,’time’,time_arr[i])
Gt = LA.expm(Amat * time_arr[i])
G_prop.append(Gt)

return G_prop
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S.3.2 Direct Time Evolution and Observables

The helper below wraps propagation and evaluation of an observable ⟨O(t)⟩ = Tr[ρ(t)O].

Optional flags store full states and/or return the propagators for reuse.

Script S.3.2: Solving the Lindblad equation via matrix exponential 2 3

def propagate_matrix_exp(H, rho0, time_arr, L, observable, Is_store_state = False,
Is_show_step = False, Is_Gt = False):

"""
Solving the Lindblad equation by matrix exponential
Parameters:
- H: Hamiltonian of the system (numpy array of shape (N, N)).
- rho0: Initial density matrix (numpy array of shape (N, N)).
- time_arr: Time array for dynamic simulation (array).
- L: List of Collapse operators, with each operator is a numpy array of shape (N,
N).

- observable: Observable for which the expectation value is computed (numpy array
of shape (N, N)).

- Is_store_state: Boolean variable that determines whether to output the density
matrix list

- show_step: Boolean variable that determines whether to print the current step
during simulation

Returns:
- result: A class containing all the results

result.expect: List of expectation values of the observable over time.
result.G_prop: List of propagators.
result.density_matrix: List of density matrices.

"""

class Result:
def __init__(self):

self.expect = []
if(Is_store_state):

self.density_matrix = []
if(Is_Gt): self.Gprop = None

result = Result()

# Getting the propagator of the Lindblad equation
G_prop = Gt_matrix_expo(H, L, time_arr, Is_show_step)
if(Is_Gt): result.Gprop = G_prop

# initialized vectorized density matrix
Nsys = H.shape[0]
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vec_rho0 = rho0.reshape(Nsys**2)

for i in range(len(time_arr)):

vec_rhot = G_prop[i] @ vec_rho0

# get the density matrix by reshaping
rhot = vec_rhot.reshape(Nsys, Nsys)

if(Is_store_state): result.density_matrix.append(rhot)
result.expect.append(np.trace(rhot @ observable).real)

return result

S.3.3 Benchmarking Against QuTiP

For validation we compare with mesolve from QuTiP, using identical Hamiltonians and

collapse operators.

Script S.3.3: QuTiP for Exact Solutions 2 3

from qutip import mesolve, Qobj

def qutip_prop(H, rho0, time_arr, c_ops, observable):
"""
First import the mesolve function, which is used to solve master equations, and
the Qobj class, which is used to represent quantum objects, from the QuTiP
library.

- H: Hamiltonian of the system (Qobj).
- rho0: Initial density matrix (Qobj).
- time_arr: Time array for dynamic simulation (array).
- c_ops: List of collapse operators (list of Qobj), can be empty for Liouville
equation.

- observable: Operator for which the expectation value is to be calculated (Qobj).
Returns:
- expec_vals: List of expectation values of the observable over time.
"""
result = mesolve(H, rho0, time_arr, c_ops=c_ops, e_ops=observable)
return result.expect
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S.4 Example: Single Qubit (Spin-1
2)

We illustrate the workflow on a driven-dissipative qubit with H = 2π · 0.1 σx and collapse

L = √
γ σx.

S.4.1 System Setup

Script S.4.1: Set up the Spin-1/2 system 2 3

from qflux.open_systems import params as pa

# The Spin-1/2 system Hamiltonian
H_1spin = 2 * np.pi * 0.1 * pa.X

# The jump operator and damping rate of Spin-1/2 system
gamma_1spin = 0.05
L_1spin = np.sqrt(gamma_1spin)*pa.X

# Initial density matrix
rho0_1spin = np.outer(pa.spin_up, pa.spin_up.conj())

# Time array for simulation
time_arr = np.linspace(0, (250 - 1) * 0.1, 250)

S.4.2 Propagation and Benchmarks

Script S.4.2: Propagate the Spin-1/2 system 2 3

# Matrix Exponential Propagation
result_matrix_exp = propagate_matrix_exp(H_1spin, rho0_1spin, time_arr, [L_1spin],

pa.Z)
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# QuTiP Propagation for Liouville equation (no collapse operator)
expec_vals_qutip_Liouv = qutip_prop(Qobj(H_1spin), Qobj(rho0_1spin), time_arr, [],

Qobj(pa.Z))

# QuTiP Propagation for Lindblad equation
expec_vals_qutip_Lindblad = qutip_prop(Qobj(H_1spin), Qobj(rho0_1spin), time_arr,

[Qobj(L_1spin)], Qobj(pa.Z))

S.4.3 Visualization

Script S.4.3: Plot the results: Spin 1/2 system 2 3

import matplotlib.pyplot as plt
plt.figure(figsize=(6,4))
plt.plot(time_arr, result_matrix_exp.expect,’b-’, label = "Matrix Exponential")
plt.plot(time_arr, expec_vals_qutip_Lindblad[0],’ko’,markersize=4,markevery=4,

label = "QuTiP_Lindblad")
plt.plot(time_arr, expec_vals_qutip_Liouv[0],’r-’, label = "QuTiP_Liouville")
plt.xlabel(’time’,fontsize=15)
plt.ylabel(r’$\langle\sigma^z\rangle (t)$’,fontsize=15)
plt.ylim(-1.1,1.8)
plt.legend(loc = ’upper right’)
plt.show()

S.4.4 High-Level QFlux Interfaces

The same computation can be scripted through QFlux abstractions, which encapsulate

Hamiltonians, collapse sets, and propagation options.
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Script S.4.4: Simulating the Spin-1/2 system with QFlux 2 3

from qflux.open_systems import params as pa
from qflux.open_systems.numerical_methods import DynamicsOS
from qflux.open_systems.quantum_simulation import QubitDynamicsOS
import numpy as np

# Classical Simulation
# set the Hamiltonian and initial state
# The Spin-1/2 system Hamiltonian
Hsys = 2 * np.pi * 0.1 * pa.X

# The collapse operator and damping rate of Spin-1/2 system
gamma = 0.05
c_ops = np.sqrt(gamma)*pa.X

# Initial density matrix
rho0 = np.outer(pa.spin_up, pa.spin_up.conj())

# Time array for simulation
time_arr = np.linspace(0, (250 - 1) * 0.1, 250)

# instantiation
spin1_puresys = DynamicsOS(Nsys=2, Hsys=Hsys, rho0=rho0)
spin1_dissipative = DynamicsOS(Nsys=2, Hsys=Hsys, rho0=rho0, c_ops = [c_ops])

# propagation
# QuTiP Propagation for the pure system Liouville equation (for comparison)
expec_vals_qutip_Liouv = spin1_puresys.propagate_qt(time_arr=time_arr,

observable=pa.Z)

# matrix exponential propagation
result_matrix_exp = spin1_dissipative.propagate_matrix_exp(time_arr=time_arr,

observable=pa.Z)

# QuTiP Propagation for the Lindblad equation
expec_vals_qutip_Lindblad = spin1_dissipative.propagate_qt(time_arr=time_arr,

observable=pa.Z)

S.4.5 Amplitude Damping on a Qubit

We next simulate an amplitude-damping channel both classically and via dilated unitaries

on a quantum backend, enabling a one-to-one comparison.

S11

https://colab.research.google.com/github/batistagroup/qflux/blob/master/demos/manuscript/SI_IV.ipynb


Script S.4.5: Quantum Simulation of Amplitude Damping with QFlux 23

import numpy as np

# Quantum Simulation: Amplitude damping channel
# System Hamiltonian
Hsys = 0.0 * pa.I

# The collapse operator and damping rate
gamma = 1.52e9*1E-12 # the spontaneous emission rate, ps^-1
c_ops = np.sqrt(gamma)*pa.sigmap

# Initial density matrix
rho0_sdam = np.array([[1/4,1/4],[1/4,3/4]],dtype=np.complex128)

time_sdam = np.arange(0, 1000, 1) #time array, from t=0 to t=1000 ps

# instantiation
spin1_sdam = QubitDynamicsOS(rep=’Density’, Nsys=2, Hsys=Hsys, rho0=rho0_sdam,

c_ops = [c_ops])
# set qubit state to measurement
spin1_sdam.set_count_str([’000’,’011’])
# set the dilation method, which can be ’Sz-Nagy’ or ’SVD’ or ’SVD-Walsh’
spin1_sdam.set_dilation_method(’SVD’)

# quantum simulation
Pop_qc = spin1_sdam.qc_simulation_vecdens(time_sdam)

# compare to classical
res_sdam_classical = spin1_sdam.propagate_matrix_exp(time_sdam, observable=pa.Z,

Is_store_state = True)

Pop_Mexp = np.zeros_like(Pop_qc[’data’])
for i in range(len(time_sdam)):

Pop_Mexp[i,0] = res_sdam_classical.density_matrix[i][0,0].real
Pop_Mexp[i,1] = res_sdam_classical.density_matrix[i][1,1].real

S.4.6 Population Dynamics
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Script S.4.6: Plot the Population Dynamics 2 3

plt.figure(figsize=(6,4))
plt.plot(time_sdam,Pop_qc[’data’][:,0],’r-’,label=r"quantum, $|0\rangle$")
plt.plot(time_sdam,Pop_Mexp[:,0],’ko’,markersize=5,markevery=40,label=r"benchmark,

$|0\rangle$")
plt.plot(time_sdam,Pop_qc[’data’][:,1],’b-’,label=r"quantum, $|1\rangle$")
plt.plot(time_sdam,Pop_Mexp[:,1],’yo’,markersize=5,markevery=40,label=r"benchmark,

$|1\rangle$")
plt.xlabel(’time (ps)’,fontsize=15)
plt.ylabel(’$P(t)$’,fontsize=15)
plt.legend(loc = ’center right’)
plt.show()

S.4.7 Propagator and Quantum-Circuit Realization

We explicitly form G(t) for the amplitude-damping channel, evolve the state classically, and

then embed each G(t) into a circuit via dilation to compare shot-based estimates.

Script S.4.7: Amplitude Damping Channel: Propagator 2 3

gamma = 1.52e9*1E-12 # the spontaneous emission rate, ps^-1
time_sdam = np.arange(0, 1000, 1) # time array, from t=0 to t=1000 ps
Nsys_1spin = 2

# defining the initial density matrix rho
rho0_sdam = np.array([[1/4,1/4],[1/4,3/4]],dtype=np.complex128)
vec0_sdam = rho0_sdam.reshape(Nsys_1spin**2)
norm0_sdam = LA.norm(vec0_sdam,2)
vec0_sdam /= norm0_sdam

Pop_Mexp = np.zeros((len(time_sdam),2),dtype=np.float64) #population array

Gprop_sdam = Gt_matrix_expo(0.0*pa.X, [np.sqrt(gamma)*pa.sigmap], time_sdam)

for i in range(len(time_sdam)):

Gt = Gprop_sdam[i]
rhot_sdam = (Gt@vec0_sdam).reshape(Nsys_1spin,Nsys_1spin)*norm0_sdam
Pop_Mexp[i,0] = rhot_sdam[0,0].real
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Pop_Mexp[i,1] = rhot_sdam[1,1].real

Script S.4.8: Amplitude Damping Channel: Quantum Simulation 2 3

from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister
from qiskit.quantum_info import Operator
from qiskit_aer import AerSimulator

# initial state in the dilated space
rho0_sdam_dil = np.concatenate((vec0_sdam,np.zeros(Nsys_1spin**2)))

aersim = AerSimulator()
shots = 2000
Pop_qc = np.zeros((len(time_sdam),2),dtype=np.float64)

for i in range(len(time_sdam)):
if(i%100==0):print(’istep’,i)
qr = QuantumRegister(2+1) # Create a quantum register
cr = ClassicalRegister(2+1) # Create a classical register to store measurement
results

qc = QuantumCircuit(qr, cr) # Combine the quantum and classical registers to
create the quantum circuit

# Initialize the quantum circuit with the initial state
qc.initialize(rho0_sdam_dil, qr)
# Dilated propagator
U_G, norm = dilate(Gprop_sdam[i])

# Create a custom unitary operator with the dilated propagator
U_G_op = Operator(U_G)
# Apply the unitary operator to the quantum circuit’s qubits and measure
qc.unitary(U_G_op, qr)
qc.measure(qr, cr)

counts1 = aersim.run(qc,shots=shots).result().get_counts()
if ’011’ and ’000’ in counts1:

Pop_qc[i,0] = np.sqrt(counts1[’000’]/shots)*norm*norm0_sdam
Pop_qc[i,1] = np.sqrt(counts1[’011’]/shots)*norm*norm0_sdam

else:
print(i,’shots=’,shots,’ no counts for up state’)
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S.5 Example: Open Spin Chain

We extend to a three-site spin chain with local fields and nearest-neighbor XYZ couplings.

The initial state is |↑↓↓⟩ and we monitor a survival amplitude observable.

S.5.1 Parameters and Initial State

Script S.5.1: Spin Chain Parameter and initial state 2 3

# the system Hamiltonian parameter
nsite = 3 #this states how many spins in the simulation
Nsys_sc = 2**nsite #this is the dimension of the Hilbert space
Omegai_list = [0.65, 1.0, 1.0]
Jix_list = [0.75, 1.0]
Jiy_list = [0.75, 1.0]
Jiz_list = [0.0, 0.0]

# set up the initial state at [up,down,down...]
init_state = pa.spin_up
for i in range(nsite-1):

init_state = np.kron(init_state,pa.spin_down)

# set up the initial density matrix according to initial state
rho0_sc = np.zeros((Nsys_sc,Nsys_sc),dtype=np.complex128)
rho0_sc += np.outer(init_state,init_state.conj())

# time array for simulation
nsteps = 250
time_arr = np.linspace(0, (nsteps - 1) * 0.1, nsteps)

S.5.2 Hamiltonian Construction
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Script S.5.2: Spin Chain Hamiltonian 2 3

# the diagonal part of the Hamiltonian
H_diag = np.zeros((Nsys_sc,Nsys_sc),dtype=np.complex128)
for n in range(nsite):

tmp = 1.0
for i in range(nsite):

if(i==n):
tmp = np.kron(tmp,pa.Z)

else:
tmp = np.kron(tmp,pa.I)

H_diag += Omegai_list[n]*tmp

# the non-diagnoal (coupling) part of the Hamiltonian
H_coup = np.zeros((Nsys_sc,Nsys_sc),dtype=np.complex128)
XX = np.kron(pa.X,pa.X)
YY = np.kron(pa.Y,pa.Y)
ZZ = np.kron(pa.Z,pa.Z)
for n in range(nsite-1):

coup_tmp = Jix_list[n]*XX+Jiy_list[n]*YY+Jiz_list[n]*ZZ
tmp = 1.0
for i in range(nsite-1):

if(n==i):
tmp = np.kron(tmp,coup_tmp)

else:
tmp = np.kron(tmp,pa.I)

H_coup += tmp
Hsys_sc = H_diag - 0.5 * H_coup
Hsys_sc_qobj = Qobj(Hsys_sc)

S.5.3 Dissipation Model

Script S.5.3: Spin Chain Collapse Operators 2 3

# The lindblad damping rate
Gamma1 = [0.016]*nsite
Gamma2 = [0.0523]*nsite

# The Collapse operators
L_sc = []
L_sc_qobj = [] #this stores Qobj type for QuTiP methods
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sigma2 = pa.sigmap@pa.sigmam

for isite in range(nsite):
# Lindbladian for type 1
res = 1.0
for j in range(nsite):

if(j==isite):
res = np.kron(res,pa.sigmam)*np.sqrt(Gamma1[isite])

else:
res = np.kron(res,pa.I)

L_sc.append(res)
L_sc_qobj.append(Qobj(res))

# Lindbladian for type 2
res = 1.0
for j in range(nsite):

if(j==isite):
res = np.kron(res,sigma2)*np.sqrt(Gamma2[isite])

else:
res = np.kron(res,pa.I)

L_sc.append(res)
L_sc_qobj.append(Qobj(res))

S.5.4 Classical Dynamics and Benchmarks

Script S.5.4: Spin Chain Dynamics 2 3

# Matrix Exponential Propagation
result_matrix_exp = propagate_matrix_exp(Hsys_sc, rho0_sc, time_arr, L_sc, rho0_sc)

rho0_sc_qobj = Qobj(rho0_sc)
# QuTiP Propagation for Liouville equation (no collapse operator)
result_qutip_Liouv = qutip_prop(Hsys_sc_qobj, rho0_sc_qobj, time_arr, [],

rho0_sc_qobj)

# QuTiP Propagation for Lindblad equation
result_qutip_Lindblad = qutip_prop(Hsys_sc_qobj, rho0_sc_qobj, time_arr,

L_sc_qobj, rho0_sc_qobj)

As_matrix_exp = np.sqrt(result_matrix_exp.expect[:])
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As_qutip = np.sqrt(result_qutip_Lindblad[0][:])
As_qutip_liouv = np.sqrt(result_qutip_Liouv[0][:])

S.5.5 Visualization

Script S.5.5: Plot the results: Spin Chain 2 3

plt.figure(figsize=(6,4))
plt.plot(time_arr,As_matrix_exp,’b-’, label="Matrix Exponential")
plt.plot(time_arr,As_qutip,’ko’,markersize=4,markevery=4,label="QuTiP_Lindblad")
plt.plot(time_arr,As_qutip_liouv,’r-’,label="Pure System")
plt.xlabel(’time’,fontsize=15)
plt.ylabel(’$A_s(t)$’,fontsize=15)
plt.ylim(0,1.35)
plt.legend(loc = ’upper right’)
plt.show()

S.5.6 High-Level QFlux API (Classical)

Script S.5.6: Simulating Spin Chain Dynamics with QFlux 2 3

from qflux.open_systems import DynamicsOS

# Classical Simulation
# instantiation
spin_chain_puresys = DynamicsOS(Nsys=Nsys_sc, Hsys=Hsys_sc, rho0=rho0_sc)
spin_chain_opensys = DynamicsOS(Nsys=Nsys_sc, Hsys=Hsys_sc, rho0=rho0_sc, c_ops =

L_sc)

# propagation
# QuTiP Propagation for the pure system Liouville equation (for comparison)
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result_qutip_Liouv = spin_chain_puresys.propagate_qt(time_arr=time_arr,
observable=rho0_sc)

# matrix exponential propagation
result_matrix_exp = spin_chain_opensys.propagate_matrix_exp(time_arr=time_arr,

observable=rho0_sc)

# QuTiP Propagation for the Lindblad equation
result_qutip_Lindblad = spin_chain_opensys.propagate_qt(time_arr=time_arr,

observable=rho0_sc)

As_matrix_exp = np.sqrt(result_matrix_exp.expect[:])
As_qutip = np.sqrt(result_qutip_Lindblad[0][:])
As_qutip_liouv = np.sqrt(result_qutip_Liouv[0][:])

S.5.7 Quantum Simulation with QFlux

We next recast the open-system evolution in terms of unitary circuits with an ancillary qubit

and evaluate observables by sampling measurement outcomes.

Script S.5.7: Quantum Simulation of Spin Chain with QFlux 2 3

from qflux.open_systems import QubitDynamicsOS

# Quantum Simulation
qspin_chain = QubitDynamicsOS(rep=’Density’,Nsys=Nsys_sc, Hsys=Hsys_sc,

rho0=rho0_sc, c_ops = L_sc)
qspin_chain.set_count_str([’0011011’])

res_qc_1k = qspin_chain.qc_simulation_vecdens(time_arr,shots=1000)
res_qc_1w = qspin_chain.qc_simulation_vecdens(time_arr,shots=10000)

As_qc_1k = np.sqrt(res_qc_1k[’data’])
As_qc_1w = np.sqrt(res_qc_1w[’data’])
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Script S.5.8: Plot the Quantum Result of Spin Chain 2 3

plt.figure(figsize=(6,2))
plt.plot(time_arr,As_qc_1k[:],’r-’,label=f"quantum,counts={1000}")
plt.plot(time_arr,As_qc_1w[:],’b-’,label=f"quantum,counts={10000}")
plt.plot(time_arr,As_qutip,’ko’,markersize=4,markevery=4,label="QuTiP benchmark")
plt.xlabel(’Time’,fontsize=15)
plt.ylabel(’$A_s$(t)’,fontsize=15)
plt.legend(loc = ’upper right’)

S.5.8 Low-Level Circuit Realization

The next block shows a manual circuit construction using the explicit dilated propagator at

each time step.

Script S.5.9: Quantum Simulation of Spin Chain 2 3

# initial state of the spin chain in the dilated space
# rho0_sc=|up,down,...><up,down,...|, has defined in the Digital computer

simulation part
rho0_sc_dil = np.concatenate((rho0_sc.reshape(Nsys_sc**2),np.zeros(Nsys_sc**2)))

# The propagator of the spin chain Lindblad equation
Gprop_sc = Gt_matrix_expo(Hsys_sc, L_sc, time_arr)

aersim=AerSimulator()
shots_arr = [1000,10000]
As_qc_1k = np.zeros((nsteps),dtype=np.float64)
As_qc_1w = np.zeros((nsteps),dtype=np.float64)
As_qc = [As_qc_1k,As_qc_1w]
nsteps = len(time_arr)

for i in range(nsteps):
if(i%10==0):print(’istep’,i)
qr = QuantumRegister(nsite*2+1) # Create a quantum register
cr = ClassicalRegister(nsite*2+1) # Create a classical register to store
measurement results

qc = QuantumCircuit(qr, cr) # Combine the quantum and classical registers to
create the quantum circuit
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# Initialize the quantum circuit with the initial state
qc.initialize(rho0_sc_dil, qr)
# Dilated propagator
U_G, norm = dilate(Gprop_sc[i])

# Create a custom unitary operator with the dilated propagator
U_G_op = Operator(U_G)

# Apply the unitary operator to the quantum circuit’s qubits
qc.unitary(U_G_op, qr)

qc.measure(qr, cr)

for ishot in range(len(shots_arr)):
counts1 = aersim.run(qc,shots=shots_arr[ishot]).result().get_counts()
if ’0011011’ in counts1:

survi_amp = np.sqrt(counts1[’0011011’]/shots_arr[ishot])*norm
As_qc[ishot][i] = np.sqrt(survi_amp)

else:
print(i,’shots=’,shots_arr[ishot],"no counts")

S.6 Example: Double-Well Potential

Finally, we treat a dissipative vibrational system in a double-well potential. We discretize

in real space, build eigenstates, and move to a truncated eigenbasis for efficient open-system

simulation.

S.6.1 Potential and Discretization

Script S.6.1: Double-Well potential 2 3

def pot_doublewell(x, f=0.0367493, a0=0.0, a1=0.429, a2=-1.126, a3=-0.143,
a4=0.563):

# A-T pair double-well potential in Hartrees (x is in Bohr)
xi = x/1.9592
return f*(a0 + a1*xi + a2*xi**2 + a3*xi**3 + a4*xi**4)
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# The parameters
# Note that some unit conversion constants are defined in the pa object (an

implementation of the Params class)
mass0 = 1836.15
beta = pa.au2joule/(pa.bolz*300) #1/(kT) in a.u. units
omega = 0.00436 #the frequency associate with the right well
kappa = 1/(10/pa.au2fs)
nth = 1/(np.exp(beta*omega)-1)

# set up the grid point
xmin = -4.0
xmax = 4.0
ndvr = 1024
xgrid = np.linspace(xmin,xmax,ndvr)

pot_arr = pot_doublewell(xgrid)

plt.plot(xgrid,pot_arr,’k’, label = "V(x)")
plt.xlabel(’$x$ (Bohr)’,fontsize=15)
plt.ylabel(’$V(x)$ (a.u.)’,fontsize=15)
plt.ylim(-0.04,0.1)
plt.legend(loc = ’upper center’)
plt.show()

S.6.2 Eigenstates and Basis Truncation

Script S.6.2: Eigenstates in the Double-well Potential 2 3

import scipy.fft as sfft

def get_eig_state(hamk,pot,xgrid,Nstate):
"""
get the eigen state for potential in x-space
input:kinetic energy hamiltonian, potential in x-space
"""
Mata = hamk.copy()
for i in range(ndvr):

Mata[i,i]+=pot[i]

val,arr = LA.eigh(Mata)
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dx = xgrid[1]-xgrid[0]
return val[:Nstate],arr[:,:Nstate]/dx**0.5

kgrid = np.zeros(ndvr,dtype=np.float64)
# ak2: kinetic energy array in k-space
ak2 = np.zeros(ndvr,dtype=np.float64)

dx = xgrid[1]-xgrid[0]
dk = 2.0*np.pi/((ndvr)*dx)
coef_k = pa.hbar**2/(2.0*mass0)

for i in range(ndvr):
if(i<ndvr//2):

kgrid[i] = i*dk
else:

kgrid[i] = -(ndvr-i) * dk

ak2[i] = coef_k*kgrid[i]**2

akx0 = sfft.ifft(ak2)
# hamk: kinetic hamiltonian Matrix in position x grid space
hamk = np.zeros((ndvr,ndvr),dtype=np.complex128)

for i in range(ndvr):
for j in range(ndvr):

if(i<j):
hamk[i,j] = akx0[i-j].conj()

else:
hamk[i,j] = akx0[i-j]

Neig = 50
eneg_DW,psi_DW = get_eig_state(hamk,pot_arr,xgrid,Neig)

S.6.3 Operators in the Eigenbasis

We express x, p, ladder operators, and left/right well projectors in the truncated eigenbasis,

and choose a localized initial state.
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Script S.6.3: Express operators in terms of eigenstate basis 2 3

# the eigenstate in the k-space representation
# ( by Fourier transform of the original eigenstate in x-space)
psik_DW = np.zeros((ndvr,Neig),dtype=np.complex128)
pre_fac = dx/(2*np.pi)**0.5
for i in range(Neig):

psik_DW[:,i] = sfft.fft(psi_DW[:,i])*pre_fac

# initial density matrix
ini_occu = np.zeros(Neig,dtype=np.complex128)
ini_occu[5] = 1.0
rho0 = np.outer(ini_occu,ini_occu.conj())

# The operator in the eigenstate
xmat_eig = np.zeros((Neig,Neig),dtype=np.complex128)
pmat_eig = np.zeros((Neig,Neig),dtype=np.complex128)
for i in range(Neig):

for j in range(Neig):
xmat_eig[i,j] = np.dot(np.multiply(psi_DW[:,i].conj(),xgrid),psi_DW[:,j])*dx
pmat_eig[i,j] =

np.dot(np.multiply(psik_DW[:,i].conj(),kgrid),psik_DW[:,j])*dk

# hamiltonian
H_dw = np.diag(eneg_DW)
# creation/annihilation operator
amat_eig =

xmat_eig.copy()*np.sqrt(mass0*omega/2)+1j*pmat_eig.copy()/np.sqrt(mass0*omega*2)
adegmat_eig =

xmat_eig.copy()*np.sqrt(mass0*omega/2)-1j*pmat_eig.copy()/np.sqrt(mass0*omega*2)

# define the population on the left/right well
x_barrier = 0.37321768
P_R = np.heaviside(xgrid-x_barrier,1)
P_L = 1 - np.heaviside(xgrid-x_barrier,1)

P_R_eig = np.zeros((Neig,Neig),dtype=np.complex128)
P_L_eig = np.zeros((Neig,Neig),dtype=np.complex128)
for i in range(Neig):

for j in range(Neig):
P_R_eig[i,j] = np.dot(np.multiply(psi_DW[:,i].conj(),P_R),psi_DW[:,j])*dx
P_L_eig[i,j] = np.dot(np.multiply(psi_DW[:,i].conj(),P_L),psi_DW[:,j])*dx
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S.6.4 Dynamics: Classical and Matrix-Exponential

We propagate with thermal damping using both QuTiP and the matrix-exponential method;

the latter also stores G(t) and states for later quantum emulation.

Script S.6.4: Simulate the dynamics of the double-well 2 3

# propagate using QuTiP
gamma1 = np.sqrt(kappa*(nth+1))
gamma2 = np.sqrt(kappa*(nth))
time_qtp = np.linspace(0,1000/pa.au2fs,20000)

# run the dynamics with different eigenstates truncation
result_qtp = {}
for N_eig_use in [20,30,40]:

c_ops = [gamma1*Qobj(amat_eig[:N_eig_use,:N_eig_use]),
gamma2*Qobj(adegmat_eig[:N_eig_use,:N_eig_use])]

obs = [Qobj(P_R_eig[:N_eig_use,:N_eig_use]),
Qobj(P_L_eig[:N_eig_use,:N_eig_use])]

result_qtp[N_eig_use] = mesolve(Qobj(H_dw[:N_eig_use,:N_eig_use]),
Qobj(rho0[:N_eig_use,:N_eig_use]),
time_qtp, c_ops, obs,
options={"progress_bar": "text"}).expect

# propagation using matrix exponential propagation
N_eig_use=30
c_ops = [gamma1*amat_eig[:N_eig_use,:N_eig_use],

gamma2*adegmat_eig[:N_eig_use,:N_eig_use]]
observable = P_R_eig[:N_eig_use,:N_eig_use]

time_short = np.linspace(0,1000/pa.au2fs,30) #compare to QuTiP time scale
result_s = propagate_matrix_exp(H_dw[:N_eig_use,:N_eig_use],

rho0[:N_eig_use,:N_eig_use],
time_short, c_ops, observable, Is_show_step=True)

time_long = np.linspace(0,20000/pa.au2fs,60) #long time propagation
result_dw_l = propagate_matrix_exp(H_dw[:N_eig_use,:N_eig_use],

rho0[:N_eig_use,:N_eig_use],
time_long, c_ops, observable,
Is_store_state = True, Is_show_step=True, Is_Gt=True)
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S.6.5 Same Workflow with QFlux Abstractions

Script S.6.5: Simulating double-well dynamics with QFlux 2 3

# ==================classical simulation============================
# propagate using QuTiP
gamma1 = np.sqrt(kappa*(nth+1))
gamma2 = np.sqrt(kappa*(nth))

time_qtp = np.linspace(0,1000/pa.au2fs,20000)

# Double_Well with different eigenstates truncation
dw_eig = {}
result_qtp = {}
for N_eig_use in [20,30,40]:

c_ops = [gamma1*amat_eig[:N_eig_use,:N_eig_use],
gamma2*adegmat_eig[:N_eig_use,:N_eig_use]]

dw_eig[N_eig_use] = DynamicsOS(Nsys = N_eig_use, Hsys =
H_dw[:N_eig_use,:N_eig_use], \

rho0 = rho0[:N_eig_use,:N_eig_use], c_ops = c_ops)

obs = [P_R_eig[:N_eig_use,:N_eig_use], P_L_eig[:N_eig_use,:N_eig_use]]
result_qtp[N_eig_use] = dw_eig[N_eig_use].propagate_qt(time_qtp, obs, \

options={"progress_bar": "text"})

# propagate using matrix exponential propagation
N_eig_use=30
c_ops = [gamma1*amat_eig[:N_eig_use,:N_eig_use],

gamma2*adegmat_eig[:N_eig_use,:N_eig_use]]
observable = P_R_eig[:N_eig_use,:N_eig_use]

time_short = np.linspace(0,1000/pa.au2fs,30) #compare to QuTiP time scale
result_s = dw_eig[N_eig_use].propagate_matrix_exp(time_short, observable,

Is_show_step=True)

time_long = np.linspace(0,20000/pa.au2fs,60) #long time propagation
result_dw_l = dw_eig[N_eig_use].propagate_matrix_exp(time_long, observable, \

Is_store_state = True, Is_show_step=True, Is_Gt=True)
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S.6.6 Quantum Emulation Using Stored Propagators

We expand stored propagators to a qubit-compatible dimension and run shot-based simula-

tions.

Script S.6.6: Quantum simulation of double-well with QFlux 2 3

from qflux.open_systems.quantum_simulation import expand

# ===============Quantum Simulation ====================================
dim_dw = 32

# initial state of the double-well in the dilated space
ini_occu = np.zeros(dim_dw,dtype=np.complex128)
ini_occu[5] = 1.0
rho0 = np.outer(ini_occu,ini_occu.conj())

# hamiltonian
Hsys = H_dw[:dim_dw,:dim_dw]

# collapse operator and observable
c_ops = [gamma1*amat_eig[:dim_dw,:dim_dw], gamma2*adegmat_eig[:dim_dw,:dim_dw]]
observable = P_R_eig[:dim_dw,:dim_dw]

# extract the propagator from result of classical simulation,
# and expand to match the dimension of qubit space
# For saving calculation, only choose some time points
ilarge = 5
nsteps = int(len(time_long)/ilarge)
time_qdw = np.zeros(nsteps)
Gprop_dw = []

for i0 in range(nsteps):
i = i0*ilarge
org_dim = result_dw_l.density_matrix[i].shape[0]
Gprop_dw.append(expand(result_dw_l.Gprop[i],org_dim,dim_dw))

time_qdw[i0] = time_long[i]

# double well instance
dw_quantum = QubitDynamicsOS(rep=’Kraus’, Nsys=dim_dw, Hsys=Hsys, rho0=rho0, c_ops

= c_ops)
dw_quantum.set_observable(observable)
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# running the quantum simulation
P_dw_qc = dw_quantum.qc_simulation_kraus(time_qdw, shots=2000, Gprop = Gprop_dw,

tolk = 1E-2, tolo = 5E-3)

S.6.7 Propagator Expansion and Kraus Reconstruction

For completeness, the helper below expands a smaller superoperator into a larger block-

embedded one. We then convert the expanded G(t) into Kraus operators using the method

of Section S.1.

Script S.6.7: The double-well propagator 2 3

def expand(Gmat_org,Norg,Nexpand):
Gnew = np.zeros((Nexpand**2,Nexpand**2),dtype=np.complex128)
for i in range(Norg):

for j in range(Norg):
for k in range(Norg):

for l in range(Norg):
Gnew[i*Nexpand+j,k*Nexpand+l] = Gmat_org[i*Norg+j,k*Norg+l]

return Gnew

dim_dw = 32
Nqb_dw = int(np.log2(dim_dw))

# extract the propagator from result of classical simulation
Gprop_dw = []
for i in range(len(result_dw_l.Gprop)):

org_dim = result_dw_l.density_matrix[i].shape[0]
Gprop_dw.append(expand(result_dw_l.Gprop[i],org_dim,dim_dw))

Next, we apply the technique from Section S.1 to convert the propagator into the Kraus

operator representation. After running the code in Script S.6.8, we obtain the Kraus opera-

tors Mi(t) that describe the evolution of the system from time 0 to time t.
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Script S.6.8: Obtaining Kraus operators from the propagator 2 3

# For saving calculation, only choose some time points
ilarge = 5
nsteps = int(len(Gprop_dw)/ilarge)

Kraus_all = {}
for i0 in range(nsteps):

i = i0*ilarge
print(’istep: ’,i0)

# get the kraus operators from the propagator
Kraus_all[i0] = gen_Kraus_list(Gprop_dw[i],dim_dw,tol=1E-2)

S.6.8 Initial State, Observable, and Pauli Decomposition

We prepare the dilated initial state and decompose the observable into Pauli strings for

estimator-based expectation evaluation.

Script S.6.9: Initial state and observable 2 3

from qflux.open_systems.trans_basis import ham_to_pauli
from qiskit.quantum_info import SparsePauliOp
import numpy as np

# initial state of the double-well in the dilated space
ini_occu = np.zeros(dim_dw,dtype=np.complex128)
ini_occu[5] = 1.0
stat0_dil = np.concatenate((ini_occu,np.zeros(dim_dw)))

# decompose the dilated space observable into summation of tensor product of pauli
matrices

Obs_mat = np.zeros((2*dim_dw,2*dim_dw),dtype=np.complex128)
Obs_mat[:dim_dw,:dim_dw] = P_R_eig[:dim_dw,:dim_dw]
Obs_paulis_dic = ham_to_pauli(Obs_mat, Nqb_dw+1, tol=5E-3)

# Prepare the qiskit observable from the pauli strings of observable matrix
data = []
coef = []
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for key in Obs_paulis_dic:
data.append(key)
coef.append(Obs_paulis_dic[key])

obs_q = SparsePauliOp(data,coef)

S.6.9 Quantum Simulation with Kraus-Dilated Unitaries

Finally, we loop over times, apply each (dilated) Kraus operator to the prepared state, and

estimate the observable using Estimator. The sum over Kraus paths yields the expected

population on the right well.

Script S.6.10: Quantum Simulation of Double-Well 2 3

from qiskit_aer.primitives import Estimator

# Aer implementation of an Estimator
estimator = Estimator()

shots = 2000

# For saving calculation, only choose some time points
ilarge = 5
nsteps = int(len(Gprop_dw)/ilarge)

time_dw_qc = np.zeros((nsteps),dtype=np.float64)
P_dw_qc = np.zeros((nsteps),dtype=np.float64)

for i0 in range(nsteps):

i = i0*ilarge

time_dw_qc[i0] = time_long[i]
matKraus_list = Kraus_all[i0]
print(’istep: ’, i0, ’Length: ’, len(matKraus_list))

for ikraus in range(len(matKraus_list)):

# Create the quantum circuit
qr = QuantumRegister(Nqb_dw+1)
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cr = ClassicalRegister(Nqb_dw+1)
qc = QuantumCircuit(qr, cr)

# Initialize the quantum circuit with the initial state
qc.initialize(stat0_dil, qr)

# Create a custom unitary operator with the dilated Kraus propagator
UM = dilate(matKraus_list[ikraus],Isscale=False)
UM_op = Operator(UM)

# Apply the unitary operator to the quantum circuit’s qubits
qc.unitary(UM_op, qr)

result = estimator.run(qc, obs_q, shots = shots).result()
P_dw_qc[i0] += result.values[0]
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