
30 January 2026

QFlux: Quantum Circuit Implementations of Molecular

Dynamics. Part III - State Initialization and Unitary

Decomposition

Alexander V Soudackov1, Delmar G A Cabral1, Brandon C Allen1, Xiaohan Dan1, Nam P Vu1,2,3, Cameron

Cianci4, Rishab Dutta1, Sabre Kais5, Eitan Geva6, Victor S Batista1,7

1. Department of Chemistry Yale University

2. Department of Electrical Engineering and Computer Science Massachusetts Institute of Technology

3. Research Laboratory of Electronics Massachusetts Institute of Technology

4. Department of Physics University of Connecticut

5. Department of Electrical and Computer Engineering North Carolina State University

6. Department of Chemistry University of Michigan

7. Yale Quantum Institute Yale University

Abstract

This tutorial builds upon the foundations established in Part~II to present a unified, implementation-oriented

overview of quantum state initialization and unitary decomposition for n-qubit systems, available in QFlux.

We begin with the preparation of arbitrary quantum states and develop two complementary constructions:

(i) a recursive multiplexor method (after Shende et al.) that disentangles qubits via multiplexed Ry and

Rz rotations, and (ii) an algebraic scheme based on uniformly controlled rotations (UCRs) (after Möttönen

et al.) that realizes the same mapping through analytically defined rotation networks with predictable

gate counts. We then extend these state-preparation tools to generic unitary synthesis through Givens-

rotation, column-by-column, and recursive cosine-sine (CSD) and quantum Shannon (QSD) decompositions,

explicitly linking linear-algebraic factorizations to executable circuits while tracking CNOT complexity.

Finally, we introduce the Walsh decomposition for diagonal unitaries and show how Gray-code ordering

and local CNOT cancellations yield an O(2^n) entangling-gate cost, providing shallow, NISQ-friendly

implementations. Taken together, these techniques form a pedagogical bridge from matrix analysis to

Posted on 30 January 2026 — CC-BY 4.0 — This is a preprint and has not been peer reviewed. Data may be preliminary. — https://

doi.org/10.26434/chemrxiv.10001767/v1

hardware-efficient circuit constructions, offering clear design rules, closed-form parameters, and scalable

synthesis pathways for simulation and experiment.

Posted on 30 January 2026 — CC-BY 4.0 — This is a preprint and has not been peer reviewed. Data may be preliminary. — https://

doi.org/10.26434/chemrxiv.10001767/v1

QFlux: Quantum Circuit Implementations of

Molecular Dynamics.

Part III – State Initialization and Unitary

Decomposition

Alexander V. Soudackov,† Delmar G. A. Cabral,† Brandon C. Allen,† Xiaohan

Dan,† Nam P. Vu,†,‡,¶ Cameron Cianci,§ Rishab Dutta,† Sabre Kais,∥ Eitan

Geva,⊥ and Victor S. Batista∗,†,#

†Department of Chemistry, Yale University, New Haven, CT 06520, USA

‡Department of Electrical Engineering and Computer Science, Massachusetts Institute of

Technology, Cambridge, MA 02139, USA

¶Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge,

MA 02139, USA

§Department of Physics, University of Connecticut, Storrs, CT 06268, USA

∥Department of Electrical and Computer Engineering, Department of Chemistry, North

Carolina State University, Raleigh, North Carolina 27606, USA

⊥Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA

#Yale Quantum Institute, Yale University, New Haven, CT 06511, USA

E-mail: victor.batista@yale.edu

1

victor.batista@yale.edu

Abstract

This tutorial builds upon the foundations established in Part II to present a unified,

implementation-oriented overview of quantum state initialization and unitary decom-

position for n-qubit systems, available in QFlux. We begin with the preparation of

arbitrary quantum states and develop two complementary constructions: (i) a recur-

sive multiplexor method (after Shende et al.) that disentangles qubits via multiplexed

Ry and Rz rotations, and (ii) an algebraic scheme based on uniformly controlled rota-

tions (UCRs) (after Möttönen et al.) that realizes the same mapping through analyt-

ically defined rotation networks with predictable gate counts. We then extend these

state-preparation tools to generic unitary synthesis through Givens-rotation, column-

by-column, and recursive cosine–sine (CSD) and quantum Shannon (QSD) decom-

positions, explicitly linking linear-algebraic factorizations to executable circuits while

tracking CNOT complexity. Finally, we introduce the Walsh decomposition for diago-

nal unitaries and show how Gray-code ordering and local CNOT cancellations yield an

O(2n) entangling-gate cost, providing shallow, NISQ-friendly implementations. Taken

together, these techniques form a pedagogical bridge from matrix analysis to hardware-

efficient circuit constructions, offering clear design rules, closed-form parameters, and

scalable synthesis pathways for simulation and experiment.

1 Introduction

Quantum computing offers a powerful framework for simulating and manipulating quantum

systems by operating directly within the Hilbert space of many-body states. A prerequisite

for essentially all quantum algorithms is the ability to efficiently initialize quantum states and

decompose unitary operators into executable gate sequences. These two tasks-state prepara-

tion and unitary synthesis-form the backbone of quantum simulation, quantum chemistry,

linear-algebraic algorithms, machine learning, and variational methods. Despite their funda-

mental role, translating abstract mathematical objects such as complex vectors and matrices

2

into compact, hardware-compatible quantum circuits remains one of the central technical

challenges in practical quantum computing.

This paper presents Part III of the QFlux1 tutorial series and focuses on the constructive

methods that make quantum simulations executable. Building on the physical intuition and

circuit-level propagation strategies developed in Parts I and II, this installment addresses

how quantum states and operators are systematically mapped onto gate-based architectures.

The emphasis is on implementation-oriented algorithms that connect linear-algebraic factor-

izations to explicit circuit constructions with predictable resource requirements.

While the individual building blocks discussed here-state preparation, unitary synthesis,

and diagonal-unitary decomposition-are well established in the quantum-computing litera-

ture,2–6 the contribution of this tutorial lies in their unified, implementation-level treatment

within a single coherent framework. Rather than presenting these techniques in isolation,

we integrate arbitrary state initialization, generic unitary decomposition, and Walsh-based

synthesis of diagonal operators7–11 into a consistent end-to-end pipeline that maps abstract

vectors and matrices directly to executable quantum circuits. Throughout, gate counts-

particularly CNOT complexity-are tracked systematically and transparently, enabling direct

comparison among synthesis strategies and informed method selection for near-term de-

vices. All constructions are implemented natively within QFlux, providing a reproducible,

software-integrated workflow that carries the reader from linear-algebraic input (state vectors

or operators) to hardware-ready circuits.

We begin by introducing algorithms for state preparation on an n-qubit register. Two

complementary approaches are presented. The first is a recursive multiplexor method,2 which

constructs arbitrary quantum states through hierarchically controlled Ry and Rz rotations.

The second is a uniformly controlled rotation (UCR) scheme,3 which encodes amplitudes

and phases analytically using structured rotation networks. Both approaches are illustrated

with explicit circuit examples and analyzed in terms of gate counts and CNOT scaling.

The second part of the tutorial extends these ideas to the decomposition of arbitrary

3

unitary matrices. We introduce several widely used synthesis strategies, including Givens-

rotation-based QR decomposition,4 column-by-column construction with correction gates,6

and recursive factorizations such as the Cosine-Sine Decomposition (CSD)5 and the Quantum

Shannon Decomposition (QSD).2 These methods progressively reduce an n-qubit unitary into

products of simpler controlled operations that can be implemented using a universal gate

set.

Finally, we present the Walsh decomposition for diagonal unitaries. By expanding di-

agonal Hamiltonians in the Walsh-Fourier basis7,8 and exploiting Gray-code ordering,9,12

this approach yields circuits with only O(2n) entangling gates,9 significantly reducing cir-

cuit depth and improving fidelity on noisy intermediate-scale quantum (NISQ) devices.10

Because diagonal unitaries arise ubiquitously in Hamiltonian simulation and time evolution,

this method plays a recurring role throughout the QFlux series.

Throughout the tutorial, theory and implementation are tightly integrated. Code ex-

amples accompany each algorithm to demonstrate the complete workflow-from deriving

matrix factorizations to mapping them onto gate sequences and optimizing the resulting

circuits. Together, these techniques provide a coherent bridge from abstract unitary design

to hardware-efficient circuit realization.

Within the broader tutorial sequence, Part III establishes the circuit-synthesis infras-

tructure required for all subsequent developments. The tools introduced here are used di-

rectly in Part IV, which extends QFlux to open quantum systems through Lindblad dy-

namics and dilation techniques,10,13–18 in Part V, which introduces adaptive variational

algorithms for noisy quantum hardware, and in Part VI, which addresses non-Markovian

dynamics via generalized quantum master equations.18 These interdependencies are sum-

marized schematically in Fig. 1, which provides a visual roadmap for the synthesis pipeline

developed in this work.

As summarized in Fig. 1, synthesis strategy in QFlux is guided by operator structure:

diagonal or phase-only operators are implemented most efficiently using Walsh-based decom-

4

Figure 1: Unified circuit-synthesis workflow underlying QFlux (Parts II–VI). Ab-
stract inputs-state vectors, generic unitaries, Hamiltonians, and open-system maps-are trans-
lated into executable quantum circuits through a layered synthesis stack. Arbitrary state
preparation is achieved using multiplexor or uniformly controlled rotation (UCR) networks.
Generic unitaries are constructed via linear-algebraic factorizations (Givens/QR, column-
by-column methods, and CSD/QSD), yielding controlled blocks and diagonal sub-units.
Diagonal operators are implemented efficiently using Walsh decompositions with Gray-code
ordering, enabling CNOT cancellation and shallow circuits. Closed-system time evolution
e−iHt (Part II) and open-system simulations via dilation (Part IV) both reuse this common
synthesis infrastructure, highlighting a single, modular pathway from abstract operators to
hardware-ready quantum circuits.

position;9 generic unitaries on small registers are naturally handled via column-by-column

decomposition;6 larger generic unitaries benefit from recursive cosine–sine or quantum Shan-

5

non decompositions (CSD/QSD);2,5 and state preparation or debugging tasks favor recursive

multiplexor constructions2 that prioritize transparency over minimal gate count.

Relation to modern compiler-level synthesis. In practical quantum computing work-

flows, many users rely on automated compiler pipelines rather than explicit, hand-crafted

circuit decompositions. For small systems-most notably one- and two-qubit blocks-optimal

or near-optimal synthesis is often achieved using Cartan (KAK) decompositions, which fac-

tor generic SU(4) unitaries into a minimal entangling core supplemented by local rotations

and form the backbone of many modern transpilers.2,19,20 At larger scales, contemporary

compilation strategies increasingly emphasize hardware-aware transpilation, qubit routing,

and gate resynthesis, as well as variational or numerical compilation methods that optimize

parameterized circuits directly against a target unitary under device-specific constraints.21–24

While such approaches can substantially reduce circuit depth or improve fidelity on specific

hardware platforms, they typically operate as black-box optimizers and provide limited ana-

lytic transparency. The constructions presented in this work therefore serve a complementary

role: they provide deterministic, structurally explicit mappings from quantum states and op-

erators to executable circuits, which are essential for custom or highly structured unitaries,

Hamiltonian simulation, algorithmic validation, and situations where analytic control over

circuit form, parameterization, or scaling is required. In this sense, the QFlux synthesis

framework is not intended to replace modern compilers, but rather to supply a transparent

and reproducible foundation that informs, constrains, and seeds higher-level compilation and

optimization workflows.

2 Method Selection

This section elaborates on the practical tradeoffs underlying the method-selection guidelines

summarized in Fig. 1. The appropriate choice of synthesis method depends on both the

structure of the target operator and the constraints imposed by available quantum hardware.

6

For arbitrary state preparation, two complementary strategies are emphasized. Uniformly

controlled rotations (UCRs)3 are often preferred when control patterns are regular or when a

modular, layered circuit structure is desirable. They achieve asymptotic scaling comparable

to recursive multiplexor constructions while offering greater circuit regularity and improved

compiler friendliness. Recursive multiplexors, by contrast, provide fully general and exact

constructions with maximal conceptual transparency,2 but typically incur higher CNOT

overhead, which can limit their direct applicability on near-term devices.

When the target operator has diagonal or phase-only structure, Walsh-based synthesis

is optimal. By exploiting the commutativity of diagonal terms together with Gray-code

ordering,9,12 this approach achieves near-minimal two-qubit gate counts and is particularly

well suited to NISQ-era hardware. In contrast, cosine–sine and quantum Shannon decom-

positions (CSD/QSD) are asymptotically optimal for generic unitaries,2,5 but are primarily

of theoretical or compiler-level interest due to their circuit depth and control complexity.

Practical method selection is ultimately constrained by hardware-specific considerations

that lie beyond the scope of this introductory tutorial. Limited qubit connectivity, native

gate sets, and compilation- and noise-induced errors can substantially alter the effective

cost of otherwise optimal decompositions. On near-term devices, synthesis strategies that

minimize two-qubit gate counts and exploit structural features of the target operator are

therefore likely to outperform formally optimal but deeper constructions.

To guide method selection in the context of state preparation, Table 1 summarizes the

key practical tradeoffs between recursive multiplexor-based constructions and uniformly con-

trolled rotations.

Despite their higher CNOT cost, multiplexor constructions remain valuable when fine-

grained control, interpretability, or systematic debugging of state-preparation circuits is re-

quired. In most practical settings, uniformly controlled rotations serve as the default choice

for arbitrary state preparation due to their regular structure and compiler-friendly imple-

mentation.

7

Table 1: Comparison of multiplexor-based and uniformly controlled rotation (UCR) state-
preparation methods.

Feature Multiplexors UCRs
CNOT count 2n+1 − 2n 2n+2 − 4n− 4
1Q rotations O(2n) 2n+2 − 5
Structure Recursive Regular
Parameter form Numerical Analytic
Compiler support Moderate High
Typical use Transparency, debugging,small-n Scalable synthesis,automation

3 State Initialization Algorithms

State initialization is a fundamental operation in quantum computing, as it defines how a

quantum register of n qubits is prepared in a specified target state. Starting from the vacuum

state

|00 · · · 0⟩ = |0⟩⊗n =

1

0

⊗
1

0

⊗ · · · ⊗
1

0


︸ ︷︷ ︸

n qubits

= (1, 0, . . . , 0)⊤. (3.1)

the objective is to construct a quantum circuit that transforms it into an arbitrary target

state

|ψ⟩ = (c1, c2, . . . , c2n)⊤, (3.2)

with complex amplitudes cj satisfying ∑j |cj|2 = 1.

Roadmap. Sections 3.1 and 3.2 introduce two complementary strategies for preparing arbi-

trary quantum states-recursive and algebraic-whose circuit primitives are reused throughout

the unitary-synthesis methods developed in Section 4.

We focus on two state-preparation algorithms implemented within QFlux. The first is

a recursive, multiplexor-based construction following Shende et al.,2 which hierarchically

disentangles qubits using controlled Ry and Rz rotations. The second, due to Möttönen et

al.,3 employs uniformly controlled rotations (UCRs) to encode amplitudes and phases via

8

an explicit algebraic mapping with predictable resource requirements. Both methods deter-

ministically prepare arbitrary quantum states from the vacuum and serve as foundational

building blocks for the unitary-synthesis techniques developed in later sections.

In terms of gate complexity, recursive demultiplexing for an n-qubit register requires

2n+1− 2n CNOT gates,2 whereas the UCR-based approach uses 2n+2− 4n− 4 CNOT gates

and 2n+2 − 5 single-qubit rotations. Together, these constructions provide a practical and

scalable foundation for modern quantum state preparation, underpinning applications in

quantum simulation, optimization, and data encoding.

3.1 Quantum Multiplexors

Goal of this subsection. We show how an arbitrary n-qubit quantum state can be pre-

pared from the vacuum by recursively disentangling qubits using multiplexed single-qubit

rotations, reducing the problem dimension by one qubit at each step.

A quantum multiplexor is a gate that applies different single-qubit operations depending

on the state of a set of control qubits. Multiplexors play a central role in efficient quantum

state preparation and decomposition algorithms. To understand them, we begin from the

most fundamental idea: how to “disentangle" one qubit from a general n-qubit state.

Step 1: Decomposing the Target Quantum State

Consider an arbitrary n-qubit state |ψ⟩ expressed in the computational basis:

|ψ⟩ =
∑

k1,k2,...,kn∈{0,1}
ck1k2...kn |k1k2 . . . kn⟩ . (3.3)

Here, each binary string (k1k2 . . . kn) labels a computational basis state, and each coefficient

ck1k2...kn is a complex amplitude. To isolate the last qubit, we group terms by the first n− 1

9

bits:

|ψ⟩ =
∑

k1,k2,...,kn−1∈{0,1}
|k1k2 . . . kn−1⟩ ⊗

[
ck1k2...kn−10 |0⟩+ ck1k2...kn−11 |1⟩

]
. (3.4)

The bracketed term defines a single-qubit state, which we denote:

∣∣∣ρk1k2...kn−1

〉
= ck1k2...kn−10 |0⟩+ ck1k2...kn−11 |1⟩ . (3.5)

Thus, |ψ⟩ can be viewed as a superposition of (n− 1)-qubit states, each entangled with one

single-qubit state
∣∣∣ρk1k2...kn−1

〉
.

Intuition. Grouping amplitudes by the last qubit isolates a conditional single-qubit state

for each configuration of the remaining qubits, making it possible to remove entanglement

one qubit at a time using controlled rotations.

Step 2: Aligning the Last Qubit on the Bloch Sphere

Each
∣∣∣ρk1k2...kn−1

〉
can be visualized as a point on the Bloch sphere. Our goal is to rotate this

qubit so that it aligns with the north pole, |0⟩, while leaving the other qubits untouched.

This is achieved through a pair of single-qubit rotations:

Ry(−θk1k2...kn−1)Rz(−φk1k2...kn−1)
∣∣∣ρk1k2...kn−1

〉
= rk1k2...kn−1eitk1k2...kn−1 |0⟩ . (3.6)

The angles φk1k2...kn−1 and θk1k2...kn−1 are directly computed from the amplitudes ck1k2...kn−10

and ck1k2...kn−11. Geometrically, this corresponds to rotating the Bloch vector into the z-axis.

Intuition. Each conditional single-qubit state can be rotated to the north pole of the Bloch

sphere, so a single pair of rotations suffices to erase the last qubit’s entanglement for a fixed

control configuration.

10

Step 3: Defining the Quantum Multiplexor

Because the rotation angles depend on the configuration of the control qubits (k1, . . . , kn−1),

the combined operation can be written as a block-diagonal matrix,

R(n) =
⊕

k1,...,kn−1∈{0,1}
Ry(−θk1k2...kn−1)Rz(−φk1k2...kn−1), (3.7)

that is, a direct sum of 2n−1 conditional single-qubit rotations acting on the last qubit. This

operation is referred to as a quantum multiplexor. Acting on the state |ψ⟩, it disentangles

the final qubit,

R(n) |ψ⟩ =
∣∣∣ψ(n−1)

〉
⊗ |0⟩ , (3.8)

where
∣∣∣ψ(n−1)

〉
denotes the reduced state of the remaining n − 1 qubits. In this way, the

multiplexor reduces the effective problem size from 2n to 2n−1 amplitudes.

q1

∣∣∣ψ(n−1)
〉q2

qn−2

qn−1

qn Rz(−φ) Ry(−θ) |0⟩

|ψ⟩

Figure 2: Quantum circuit implementing multiplexed R(n)
z and R(n)

y rotations, with angles
conditioned on the binary state of the n− 1 most significant qubits.

Intuition. The multiplexor applies all required conditional rotations in parallel, disen-

tangling the last qubit and reducing the n-qubit problem to an (n − 1)-qubit one, thereby

enabling a recursive construction.

11

Step 4: Recursive Disentanglement

The same procedure can be applied recursively. After disentangling the last qubit, the

multiplexor construction is repeated on the remaining n − 1 qubits. After n iterations, all

qubits are aligned to |0⟩, yielding

n∏
m=1

[
R(m) ⊗ I⊗(n−m)

]
|ψ⟩ = eiΦ |00 . . . 0⟩ , (3.9)

up to a global phase eiΦ. To prepare the state |ψ⟩, this procedure is simply reversed,

|ψ⟩ =
n∏

m=1

[(
R(n−m+1)

)†
⊗ I⊗(m−1)

]
D |00 . . . 0⟩ , (3.10)

where D = e−iΦ removes the accumulated global phase.

3.1.1 Supporting Functions for State Preparation

Goal of this subsection. We outline the numerical routines and matrix-building primi-

tives required to implement the recursive multiplexor state-preparation algorithm in practice.

1. Computing Bloch-Sphere Angles. Script S.1.1 shows how to compute the Bloch-

sphere angles ϕ and θ corresponding to the single-qubit state |ρ⟩ = c0 |0⟩ + c1 |1⟩, obtained

according to the following rotation of the vacuum state:

|ρ⟩ = Rz(ϕ)Ry(θ) |0⟩ . (3.11)

2. Rotation Matrices. The standard SU(2) operators, corresponding to the RZ(ϕ) and

RY (θ) rotations used in all decompositions are provided in Script S.1.2.

3. Multiplexor Construction. Script S.1.3 builds the block-diagonal matrix introduced

by Eq. (3.7).

12

4. Recursive Transformation. Script S.1.4 recursively applies multiplexors to map |ψ⟩

to |00...0⟩.

3.1.2 Example: Three-Qubit State Preparation

Script S.1.5 provides a simple example of a three-qubit state preparation.

3.1.3 Example: Coherent Wavepacket State Preparation on a 6-Qubit System

Script S.1.6 provides another example of a state preparation. In this example, the initial

state describes a coherent wavepacket for a particle with mass m = 1 a.u. and frequency

ω = 1 a.u. in the position grid representation with 26 = 64 grid points on the interval

between -5 Bohr and 5 Bohr.

3.1.4 Quantum Circuit Implementation

The full quantum state preparation circuit based on multiplexed rotations is shown in Fig. 3.

This circuit generates the target quantum state |ψ⟩ from the initial vacuum state |00 . . . 0⟩.

The operations R(m)
y and R(m)

z denote multiplexed rotations acting on qubit m with m − 1

control qubits, and D represents a diagonal unitary operator that encodes the relative phases

of the target amplitudes.

To execute this circuit on a physical quantum device, both the diagonal operator D

and the multiplexed rotations Rz and Ry must be decomposed into elementary gates. The

simplest example of such a decomposition is the two-qubit multiplexor,

U = U1 ⊕ U2, (3.12)

where U1 and U2 are single-qubit unitaries acting on the least significant qubit q2, conditioned

on the state of the control qubit q1. Specifically, U1 acts when |q1⟩ = |0⟩ and U2 acts when

13

. . .

. . .

. . .

. . .

. . .

|0⟩

D

R(1)†
y R(1)†

z

|0⟩ R(2)†
y R(2)†

z

|0⟩

|0⟩

|0⟩ R(n)†
y R(n)†

z

|ψ⟩

Figure 3: Quantum circuit for state preparation via multiplexed rotations. The operations
R(m)

y and R(m)
z perform multiplexed rotations on qubit m with m − 1 control qubits, while

D is a diagonal operator encoding phase information.

|q1⟩ = |1⟩. For a general superposition |q1⟩ = c0 |0⟩+ c1 |1⟩, the multiplexor behaves as

(U1 ⊕ U2) |q1⟩ ⊗ |q2⟩ = c0 |0⟩ ⊗ U1 |q2⟩+ c1 |1⟩ ⊗ U2 |q2⟩ . (3.13)

This effect can be realized by first applying U1 to q2 unconditionally, followed by a

controlled operation A = U2U
†
1 conditioned on |q1⟩ = |1⟩. The unitary A can be expressed

using the standard ZYZ decomposition:25,26

A = eiΦRz(α)Ry(β)Rz(γ). (3.14)

The corresponding quantum circuit for the two-qubit multiplexor is shown in Fig. 4.

q1

q2 U1 ⊕ U2

∼=
q1 eiΦ/2 Rz(Φ)

q2 U1 Rz(γ) Ry(β/2) Ry(−β/2) Rz(−α+γ
2) Rz(α−γ

2)

Figure 4: Decomposition of a general two-qubit multiplexor into elementary gates.

When U1 and U2 are single-axis rotation gates, U1 = Rα(θ1) and U2 = Rα(θ2), the circuit

14

simplifies considerably, as shown in Fig. 5. Here, the rotation axis α can be either y or z.

q1

q2 Rα(θ1)⊕Rα(θ2)
∼=

q1

q2 Rα(θ1+θ2
2) Rα(θ1−θ2

2)

Figure 5: Simplified decomposition of a two-qubit multiplexor Rα(θ1)⊕Rα(θ2), with α = y
or z.

For an n-qubit register, a multiplexed rotation gate R(k)
α with k control qubits can be

recursively demultiplexed using 2k CNOT gates.2,27 The recursive pattern is illustrated in

Fig. 6, showing how higher-level multiplexors reduce to smaller blocks. Overall, the complete

state-preparation procedure requires 2n+1 − 2n CNOT gates,2 providing a compact and

systematic synthesis strategy.

(a)

R(j)
α

∼=

R(j−1)
α R(j−1)

α

(b)

R
(2)
y

∼=

Ry(θ̃1) Ry(θ̃2) Ry(θ̃3) Ry(θ̃4)

θ̃1 = 1
4 (θ00 + θ01 + θ10 + θ11) , θ̃2 = 1

4 (θ00 − θ01 + θ10 − θ11) ,

θ̃3 = 1
4 (θ00 − θ01 − θ10 + θ11) , θ̃4 = 1

4 (θ00 + θ01 − θ10 − θ11) .

Figure 6: Demultiplexing of multiplexed rotation gates. (a) Single recursive step for R(j)
α

with j control qubits. (b) Complete decomposition of R(3)
y showing how the four original

rotation angles combine into new effective angles θ̃i.

Finally, the diagonal unitary D appearing in Eq. (3.10) can also be recursively decom-

15

posed using alternating layers of Rz(φ) rotations and CNOT gates. As shown in Fig. 7, this

construction requires only 2n+1− 3 CNOTs,28 providing an efficient and compact implemen-

tation for phase encoding. This decomposition framework ensures that both the amplitude

D
∼=

D

Rz

Figure 7: First step in the recursive decomposition of the diagonal unitary D. The structure
alternates between Rz rotations and CNOT gates, yielding an efficient implementation with
2n+1 − 3 CNOTs.

and phase components of the target quantum state are efficiently encoded using a minimal

number of gates, making the multiplexed-rotation approach highly suitable for scalable state

preparation on near-term quantum devices.
Checkpoint Summary: Recursive Multiplexor State Preparation

What problem did we solve? We constructed a recursive procedure to prepare

an arbitrary n-qubit quantum state from the vacuum by successively disentangling

qubits using multiplexed single-qubit rotations.

When should I use this method? Use this approach when conceptual trans-

parency and step-by-step control over amplitude and phase encoding are impor-

tant, or when validating/debugging state-preparation pipelines.

What is the asymptotic cost? CNOT gates: 2n+1 − 2n

Single-qubit rotations: O(2n)

16

3.2 Uniformly Controlled Rotations

While the recursive multiplexor construction of Section 2.1 offers a transparent and sys-

tematic route to arbitrary state preparation, it relies on hierarchical disentanglement steps

whose circuit structure is inherently recursive. In this section, we present an alternative

formulation based on uniformly controlled rotations,3 which realizes the same mapping from

the vacuum state |0 . . . 0⟩ to an arbitrary n-qubit target state |ψ⟩ using an explicit, alge-

braic construction. In contrast to recursive synthesis, this approach encodes amplitudes and

relative phases directly into structured rotation networks with analytically determined an-

gles and predictable resource requirements. As a result, arbitrary state preparation can be

achieved using only 2n+2−4n−4 CNOT gates and 2n+2−5 single-qubit rotations, yielding a

compact, compiler-friendly circuit architecture well suited for scalable implementations and

automated synthesis pipelines.

Definition

A uniformly controlled rotation, denoted F k
m(a,α), acts on k control qubits and

one target qubit m. It performs a sequence of 2k single-qubit rotations about an axis a =

(ax, ay, az), where each rotation angle αj corresponds to one binary configuration of the

control qubits.

Each controlled operation applies the rotation

Ra(αj) = eia·σ αj/2 = I2×2 cos αj

2 + i (a · σ) sin αj

2 , (3.15)

where a · σ = axσx + ayσy + azσz involves the standard Pauli matrices.

Circuit Interpretation

Intuitively, F k
m(a,α) applies 2k conditional rotations on the target qubit, one for each

configuration of the k controls. For example, when k = 3, there are eight such controlled

operations.

Figure 8 illustrates: - (a) the abstract definition of the uniformly controlled rotation,

17

and - (b) its explicit gate decomposition using CNOTs and single-qubit rotations.

The effective rotation angles θj in the decomposed circuit are related to the original

angles αj via a linear transformation:


θ1

...

θ2k

 = M


α1

...

α2k

 , Mij = 2−k(−1)bj−1·gi−1 , (3.16)

where bm and gm denote the binary code and the binary reflected Gray code representa-

tions of the integer m. As shown in Eq. 3.16, the matrix M is a normalized Walsh-Hadamard

transform composed with Gray-code reordering.

Intuition. The Gray-code transformation reorganizes control configurations so that con-

secutive rotations differ by only one control bit, minimizing the number of required CNOT

gates in the circuit implementation.

(a)

Ra

∼=

. . .

. . .

. . .

. . .Ra(α1) Ra(α2) Ra(α3) Ra(αM−2) Ra(αM−1) Ra(αM)

(b)

Ra(θ1) Rc(θ2) Rc(θ3) Rc(θ4) Rc(θ5) Rc(θ6) Rc(θ7) Rc(θ8)

Figure 8: Quantum circuits for uniformly controlled rotations. (a) Definition of F k
m(a,α)

with k control qubits. (b) Full decomposition for F 3
4 (a,α). Angles θj are related to the

original αj via Eq. (3.16). Open (filled) circles represent control bits with value 0 (1).

18

Application: Quantum State Preparation

Goal of this subsection. We construct a unitary that maps the vacuum state directly

to an arbitrary target state by separately encoding phases and amplitudes using uniformly

controlled rotations.

Uniformly controlled rotations form the building blocks of an efficient algorithm for

preparing arbitrary quantum states. Given a normalized n-qubit target state

|ψ⟩ =
(
|c1|eiω1 , |c2|eiω2 , . . . , |cN |eiωN

)⊤
, N = 2n, (3.17)

we seek a unitary U such that U |0 . . . 0⟩ = |ψ⟩.

The process proceeds in two conceptual steps:

(1) Phase Equalization

We first remove all relative phases among the amplitudes by applying a sequence of

uniformly controlled z-rotations. This transforms |ψ⟩ into a real, positive vector of

amplitudes:

Rz |ψ⟩ = eiΩ(|c1|, |c2|, . . . , |cN |)⊤. (3.18)

The operator Rz is built as

Rz =
n∏

k=1
F k−1

k (z,αz
n−k+1)⊗ I2n−k , (3.19)

with angles

(αj)z
k =

2k−1∑
l=1

ω(2j−1)2k−1+l − ω(j−1)2k+l

2k−1 , j = 1, . . . , 2n−k. (3.20)

Intuition. Phase equalization removes all relative complex phases first, reducing the prob-

lem to preparing a real, nonnegative amplitude vector that can be handled solely with y-axis

rotations.

19

(2) Amplitude Encoding

Next, we use uniformly controlled y-rotations to redistribute amplitudes. Each ro-

tation step eliminates amplitudes corresponding to basis states with a 1 in a specific qubit

position, progressively collapsing the superposition toward |0 . . . 0⟩:

RyRz |ψ⟩ = eiΦ |0 . . . 0⟩ . (3.21)

For instance, the first rotation in this sequence is F n−1
n (y,αy), where

αy
j = 2 arcsin

 |c2j|√
|c2j−1|2 + |c2j|2

 , (3.22)

which cancels all amplitudes with the least significant qubit set to 1. After this, the last

qubit is disentangled and initialized to |0⟩:

F n−1
n (y,αy) |ψ⟩ = eiΩ

(√
|c1|2 + |c2|2,

√
|c3|2 + |c4|2, . . .

)⊤
⊗ |0⟩ . (3.23)

Intuition. Each uniformly controlled y-rotation redistributes probability mass so that ba-

sis states with a 1 in a chosen qubit are eliminated, progressively disentangling qubits from

least to most significant.

Repeating this procedure over all n qubits yields:

Ry =
n∏

k=1
F k−1

k (y,αy
n−k+1)⊗ I2n−k , (3.24)

with

(αj)y
k = 2 arcsin


√∑2k−1

l=1 |c(2j−1)2k−1+l|2√∑2k

l=1 |c(j−1)2k+l|2

 . (3.25)

20

Recovering the Target State

To reconstruct |ψ⟩ from the vacuum state, apply the inverse transformation:

|ψ⟩ = R†
zR†

yeiΦ |0 . . . 0⟩ . (3.26)

Intuition. Reversing the disentangling sequence reconstructs the target state from the

vacuum, yielding a compact, non-recursive circuit with analytically determined parameters.

Checkpoint Summary: Uniformly Controlled Rotations (UCR)

What problem did we solve? We introduced an algebraic state-preparation method

based on uniformly controlled rotations that separately encodes phases and amplitudes

using analytically defined rotation networks.

When should I use this method? Use this approach when circuit compactness, pre-

dictable gate counts, and compiler-friendly structure are priorities.

What is the asymptotic cost?

CNOT gates: 2n+2 − 4n− 4; Single-qubit rotations: 2n+2 − 5

4 Decomposition of an Arbitrary Unitary Gate

Implementing an arbitrary unitary U on an n-qubit register entails decomposing the

[2n × 2n] matrix into a product of native one- and two-qubit gates. The goal is to factor U

into building blocks whose circuit realizations are known and hardware-efficient. Since CNOT

gates are required to generate entanglement but also increase depth and error susceptibility,

most algorithms seek to minimize their count. Several families of methods achieve this via

controlled/multiplexed gates and recursive constructions that mirror the state-preparation

techniques of Section 3.

21

4.1 Decomposition Using Givens Rotations

Goal of this subsection. We describe how an arbitrary n-qubit unitary can be decom-

posed into a sequence of two-level Givens rotations that eliminate matrix elements column

by column, closely mirroring the QR decomposition.

A particularly transparent synthesis strategy is based on Givens rotations,4 which

provide a direct quantum analogue of classical QR factorization. The central idea is to

eliminate off-diagonal matrix elements one column at a time using two-level unitaries that

act nontrivially only within a selected two-dimensional subspace. Let N = 2n. For a fixed

column index i, a Givens rotation iGj,k acts on the computational basis states |j⟩ and |k⟩ so

as to zero the matrix element Uji by mixing it with Uki. The corresponding 2 × 2 unitary

block embedded in the full [N ×N] matrix is

iΓj,k = 1√
|Uji|2 + |Uki|2

 U∗
ki U∗

ji

−Uji Uki

, (4.1)

which is placed into the (j, k) rows and columns of the identity to form the full Givens

operator iGj,k.

iGj,k =



k
↓

j
↓

U∗
ki U∗

ji ← k

−Uji Uki ← j



(4.2)

Intuition. Each Givens rotation acts only on a two-dimensional subspace, using one matrix

element to cancel another while leaving all other basis states unchanged.

22

The decomposition proceeds column by column. One first removes all entries below the

top element of the first column by applying 1GN,N−1, then 1GN−1,N−2, and so on down to
1G2,1.

Writing
U1 = 1GN,N−1 U,

U2 = 1GN−1,N−2 U1,

...

UN−1 = 1G2,1 UN−2,

(4.3)

the first column becomes (1, 0, . . . , 0)⊤ up to a global phase. Repeating the same idea

for subsequent columns triangularizes the matrix. To make the result exactly the identity

rather than a trivial phase multiple, one first adjusts the global phase by multiplying U with

e−i arg(det U)/NI. A concrete N=4 example is shown in Fig. 9.

U
e−i arg(det U)/4I−−−−−−−−−→


∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗



1G4,3−−−→


∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
0 ∗ ∗ ∗

 1G3,2−−−→


∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
0 ∗ ∗ ∗
0 ∗ ∗ ∗

 1G2,1−−−→


1 0 0 0
0 ∗ ∗ ∗
0 ∗ ∗ ∗
0 ∗ ∗ ∗



2G4,3−−−→


1 0 0 0
0 ∗ ∗ ∗
0 ∗ ∗ ∗
0 0 ∗ ∗

 2G3,2−−−→


1 0 0 0
0 1 0 0
0 0 ∗ ∗
0 0 ∗ ∗

 3G4,3−−−→


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


U = exp [i arg (detU) /4] I 1G†

4,3
1G†

3,2
1G†

2,1
2G†

4,3
2G†

3,2
3G†

4,3

Figure 9: Schematic representation of the QR decomposition of a [4×4] unitary matrix U .
The asterisks denote the arbitrary complex numbers.

23

In general, the full factorization can be written compactly as

N−1∏
i=1

N∏
j=i+1

N−iGj,j−1

 (e−i arg(det U)/NI
)
U = I, (4.4)

which implies

U = ei arg(det U)/N I
N−1∏
i=1

N−i∏
j=1

iG†
N−j+1, N−j. (4.5)

Intuition. Each two-level rotation eliminates a single matrix element while leaving pre-

viously fixed entries unchanged. Repeating this process column by column systematically

reduces the unitary to the identity. Reversing the sequence of rotations then reconstructs

the original operator as an ordered product of simple, localized two-level transformations.

For quantum circuits, the ordering of basis states is crucial. With standard binary order-

ing, many iGj,k couple basis vectors that differ in multiple qubits, making a direct realization

in terms of elementary gates cumbersome. Gray-code ordering remedies this by arranging

basis states so that neighbors differ in exactly one bit. Under Gray ordering, each iGj,k acts

on adjacent basis states and can be implemented as a single-qubit rotation with n−1 control

qubits. Denoting by γ(·) the Gray-code permutation (i.e., the integer value of a Gray-coded

bitstring), the factorization in Eq. (4.4) becomes4

N−1∏
i=1

N∏
j=i+1

γ(N−i)Gγ(j), γ(j−1)

 (e−i arg(det U)/NI
)
U = I. (4.6)

Intuition. Gray-code ordering ensures that each two-level rotation couples basis states

differing by a single bit, allowing direct realization as multi-controlled single-qubit gates.

A two-qubit example is depicted in Fig. 10, where the Givens rotations iΓ†
j,k in Gray order

translate into fully controlled single-qubit gates. Each such multi-controlled Givens rotation

can be decomposed into a ZYZ sequence (Rz, Ry, Rz) and an O(n) overhead of CNOTs to

implement the controls. The optimized construction of Ref. 4 achieves a CNOT complexity

O(4n), matching known asymptotic lower bounds for generic n-qubit unitaries.

24

U ∼=

2Γ†
4,2

1Γ†
4,2

4Γ†
3,4

2Γ†
3,4

1Γ†
2,1

1Γ†
3,4

Figure 10: QR-style decomposition of a 2-qubit unitary U using Givens rotations iΓ†
j,k ((4.1))

in Gray-code ordering. Adjacent basis states differ by one bit, enabling realization as multi-
controlled single-qubit rotations.

Code overview. The accompanying Python snippets (Script S.2.1–Script S.2.3) implement

the construction of two-level Givens rotations and their sequential application to triangularize

U . The optional Gray-coded mode makes the rotation sequence directly amenable to circuit

synthesis with multi-controlled single-qubit gates.

This formulation makes explicit how an arbitrary unitary breaks down into a product of two-

level operations that, under Gray ordering, become multi-controlled single-qubit rotations

with known ZYZ decompositions and well-characterized CNOT overhead, thereby providing

a clear pathway from matrix factorization to hardware-level circuits on NISQ devices.

Example: Decomposition of a Random Unitary Matrix To verify the implementa-

tion, Script S.2.4 defines a Haar-random 4×4 unitary U using scipy.stats.unitary_group

and applies the routine Gmatrix() defined above. By construction, Gmatrix returns RUphase

with a global phase adjustment Uphase = e−i arg(det U)/NI (here N=4), so that

(RUphase)U = R (UphaseU) = I (4.7)

up to machine precision. The printout below shows the ordered Givens sequence and confirms

that the transformed matrix is (numerically) the identity.

Discussion. The printed sequence lists the two-level Givens unitaries in the order they

are applied to eliminate subdiagonal entries. The scalar D is the global phase adjustment

ensuring det(DU) = 1. The same procedure extends directly to larger N = 2n, with Gray

ordering making each two-level unitary act on adjacent basis states that differ by one bit,

25

which maps cleanly to multi-controlled single-qubit rotations.

4.1.1 Real-parameter Givens variant

Goal of this subsection. We show how complex Givens rotations can be replaced by

purely real rotations by separating local phase corrections, thereby simplifying circuit syn-

thesis.

The two-level complex blocks iΓj,k defined in Eq. (4.1) can be recast as real rotations by

first applying a local phase correction to the two participating basis states. Specifically, we

introduce a diagonal unitary i∆̃j,k that multiplies rows j and k by e−iϕji and e−iϕki , where

ϕji = arg(Uji) and ϕki = arg(Uki). After this transformation, the relevant column entries

become real (and nonnegative, if desired), allowing the elimination step to be performed

using a real 2× 2 rotation,

iΓ̃j,k =

 cos θijk sin θijk

− sin θijk cos θijk

, cos θijk = Re U ′
ki√

(Re U ′
ji)2 + (Re U ′

ki)2
, (4.8)

where U ′ = i∆̃j,k U denotes the phase-corrected matrix, ensuring that the pair (U ′
ji, U

′
ki) is

real.

The full [N ×N] embedding iG̃j,k of the real two-level block iΓ̃j,k is obtained by inserting

26

it into the (j, k) rows and columns of the identity, analogously to Eq. (4.2). Explicitly,

iG̃j,k =



k
↓

j
↓

cos θijk sin θijk ← k

− sin θijk cos θijk ← j



. (4.9)

Practical note. Beyond reducing circuit complexity, the real-parameter Givens variant

substantially simplifies parameter synthesis by eliminating complex-valued angles in favor

of purely real rotation parameters. This formulation is therefore preferable when target-

ing hardware with native real-valued rotations, restricted control precision, or compilation

pipelines that benefit from reduced parameter overhead.

The overall factorization then interleaves these phase corrections and real rotations, with

the global det-phase written for general dimension N (not fixed to 4):

N∆̃N,N

N−1∏
i=1

N∏
j=i+1

N−iG̃j,j−1
N−i∆̃j,j−1

 (e−i arg(det U)/NI
)
U = I, (4.10)

hence

U = ei arg(det U)/N I

N−1∏
i=1

N−i∏
j=1

i∆̃†
N−j+1, N−j

iG̃†
N−j+1, N−j

N∆̃†
N,N . (4.11)

As in the complex-valued construction, Gray-code ordering may be applied to ensure that

each two-level block acts on adjacent basis states, enabling a direct mapping to multi-

controlled single-qubit rotations with standard ZYZ decompositions.

27

Checkpoint Summary: Givens (QR-Style) Unitary Decomposition

What problem did we solve? We decomposed an arbitrary n-qubit unitary into a

sequence of two-level Givens rotations that eliminate matrix elements column by column,

mirroring QR decomposition.

When should I use this method? Use this as a transparent baseline/pedagogical ref-

erence or for validating more optimized synthesis strategies.

What is the asymptotic cost? CNOT gates: O(4n)

Single-qubit rotations: O(4n)

4.2 Column-by-Column Decomposition

The idea is to apply the reverse state-preparation technique successively to each column

of the target unitary until the whole matrix becomes the identity. Let U0 := U . At the first

stage, one constructs a state-preparation unitary R0 that maps the first column of U0 to the

computational basis state |0⟩; equivalently,

R0 U0 |0⟩ = |0⟩ , (4.12)

so that in the updated matrix U1 := R0U0 the first column is (1, 0, . . . , 0)⊤. The second

stage builds R1 such that

R1 U1 |1⟩ = |1⟩ , (4.13)

while preserving the previous column, i.e. R1 |0⟩ = |0⟩. Proceeding in this way, the (j+1)-st

stage constructs Rj so that

Rj Uj |j⟩ = |j⟩ , Uj+1 := RjUj, (4.14)

28

and simultaneously enforces Rj |i⟩ = |i⟩ for all i < j. After 2n−1 stages the updated matrix

U2n−1 is diagonal, and the entire decomposition reads

U = R†
0R

†
1 · · · R

†
2n−2 D

†, (4.15)

with the final operator D = R†
2n−1 diagonal.

Constructing the column maps. EachRj may be realized either with quantum multi-

plexors (cf. Section 3.1) or with uniformly controlled rotations (Section 3.2). Naively

applying these state-preparation blocks does not, however, guarantee the invariance con-

straintsRj |i⟩ = |i⟩ for i < j. The modified column-by-column decomposition (CCD)

of Iten et al.6 enforces these constraints with minimal overhead: after placing the required

uniformly controlled gates (UCGs) or multiplexors to align the (j+1)-st column, one inserts

a small number of multi-controlled gates (MCGs) that cancel any unintended action on

the previously fixed columns. In practice, this correction stage uses the fact that the already

prepared columns define projectors onto |0⟩ , . . . , |j − 1⟩; controls on those subspaces protect

what has been fixed while steering only the current column.

Three-qubit illustration. For a three-qubit register, Fig. 11 shows the progressive elim-

ination in the first column (top) and the corresponding circuit (bottom). The red blocks are

sequential multiplexed rotations R(i) ≡ R(i)
y R(i)

z (this order is used throughout) that perform

the reverse state preparation; the green block D is diagonal and collects phases. In Fig. 12,

the second column is prepared while preserving the first: the blue blocks are the additional

MCGs that correct the collateral action of the red UCGs on |0⟩.

29

U |0⟩ =



∗
∗
∗
∗
∗
∗
∗
∗


−→



∗
0
∗
0
∗
0
∗
0


−→



∗
0
0
0
∗
0
0
0


−→



∗
0
0
0
0
0
0
0


−→



1
0
0
0
0
0
0
0



R(1)

DR(2)

R(3)

U |0⟩ |0⟩

Figure 11: Step 0: transforming the first column to |0⟩. Top: successive nulling of sub-
entries; asterisks denote arbitrary complex numbers. Bottom: reverse state-preparation
with multiplexed rotations R(i) ≡ R(i)

y R(i)
z (red) and a diagonal phase block D (green), cf.

(3.7).

General stage j (harmonized notation). Throughout, products are written as a left-

to-right ordered product using −→∏ . For an n-qubit register,

Rj =
−→
n−1∏
s=0

[
∆(n−s) ⊗ I⊗s

] [
R

(n−s)
j ⊗ I⊗s

] [
R̃

(n−s)
j

]
, (4.16)

where R(n−s)
j is a UCG (multiplexor) on target qubit (n−s) with universal controls on the

s less-significant qubits and uses the rotation order RyRz; R̃(n−s)
j is an MCG on the same

target with controls on the remaining n−1 qubits; and ∆(n−s) is a diagonal gate acting on the

(n−s) least-significant qubits. The associated schematic circuit is shown in Fig. 13. When

s = n−1, the control-free R(1) is redundant and can be replaced by the identity.

Complexity. The full column-by-column decomposition of a generic n-qubit unitary re-

quires 4n + O(n2)2n CNOTs. This already improves on the straightforward QR-style ap-

30

R0U |1⟩ =



0
∗
∗
∗
∗
∗
∗
∗


−→



0
∗
0
∗
0
∗
0
∗


−→



0
∗
0
∗
0
∗
0
0


−→



0
∗
0
0
0
∗
0
0


−→



0
∗
0
0
0
0
0
0


−→



0
1
0
0
0
0
0
0



R(1)

DR(2) R(2)

R(3)

R0U |1⟩ |1⟩

Figure 12: Step 1: preparing the second column while preserving the first. Red: UCG/mul-
tiplexed rotations R(i). Blue: correcting MCGs that protect |0⟩. Green: diagonal D.

⊛ ⊛ . . . ⊛

⊛ ⊛ . . . ⊛

⊛ . . . ⊛ ⊛

⊛ . . . ⊛ ⊛

q1

Dn
Dn−1

D2

R̃(1)

q2 R̃(2) R(2)

qn−1 R̃(n−1) R(n−1)

qn R̃(n) R(n)

Figure 13: One stage of the column-by-column algorithm in the form of Eq. (4.16). Color
code: UCG/multiplexors (red, using RyRz order), correcting MCGs (blue), and diagonal
gates (green). Circled asterisks indicate zero or one control bits depending on context.

proach, and further optimizations such as the Quantum Shannon Decomposition (QSD)

and recursive Cosine-Sine Decomposition (CSD) reduce constants and refine structure.

A summary comparison of CNOT counts for QR, CCD, and QSD is reported in Table 2.

Intuition Summary. Conceptually, CCD performs reverse state preparation on each col-

umn while protecting previously fixed columns via additional controls.

31

4.3 Recursive Cosine–Sine and Quantum Shannon Decomposi-

tions

The synthesis methods introduced so far reduce arbitrary unitaries to sequences of con-

trolled operations, but they do not fully exploit the hierarchical block structure inherent

in large multi-qubit operators. In this section, we introduce two closely related recursive

factorizations-the Cosine–Sine Decomposition (CSD)5 and the Quantum Shannon

Decomposition (QSD)2-that systematically partition an n-qubit unitary into smaller,

structured blocks that map naturally to quantum circuits. Through recursive application,

these decompositions confine all control complexity to multiplexed single-qubit rotations

while relegating unconstrained unitary blocks to lower-dimensional subspaces. The resulting

circuit constructions achieve significantly reduced CNOT counts and depth compared to more

direct synthesis strategies, making CSD and QSD the methods of choice for near-optimal

implementation of large unitaries on both NISQ and fault-tolerant quantum architectures.

Cosine-Sine Decomposition (CSD). For an even-dimensional [2n × 2n] unitary U (an

n-qubit gate), the CSD expresses U as

U =

U00 U01

U10 U11

 =

A0 0

0 A1


︸ ︷︷ ︸

A0⊕A1

C −S

S C


︸ ︷︷ ︸
cos-sin block

B0 0

0 B1


︸ ︷︷ ︸

B0⊕B1

, (4.17)

where A0, A1, B0, B1 ∈ U(2n−1). The diagonal matrices C = diag(cos θ1
2 , . . . , cos θ2n−1

2) and

S = diag(sin θ1
2 , . . . , sin

θ2n−1
2) satisfy C2 + S2 = I2n−1 , so the middle factor is unitary. In

circuit terms, A0 ⊕ A1 and B0 ⊕ B1 are (n−1)-qubit multiplexors controlled by the most

significant qubit, and the cos-sin block implements a multiplexed single-qubit rotation Ry(θ)

on the most significant qubit, conditioned on the remaining n−1 qubits:

C − iS ≡ exp
(
− i

2 θ(c) σy

)
with c ∈ {0, 1}n−1. (4.18)

32

A schematic circuit is shown in Fig. 14.

U ∼=

Ry(θ)

B0 ⊕B1 A0 ⊕ A1

Figure 14: One CSD layer: a multiplexed Ry(θ) on the most significant qubit sandwiched
by (n−1)-qubit multiplexors A0 ⊕ A1 and B0 ⊕B1.

Recursive CSD. Applying CSD recursively to A0⊕A1 and B0⊕B1 yields a hierarchy down

to single-qubit multiplexors, as sketched in Fig. 15. Final demultiplexing into elementary

gates can be done in several analytically tractable ways; representative optimized realizations

achieve CNOT counts on the order of 4n with improved constants compared to QR-based

schemes (see Table 2 for a numerical comparison).

∼=
U (j)

Ry(θ(j))

B(j) A(j)

Figure 15: Recursive CSD step: each multiplexor is further decomposed into a smaller
multiplexed rotation flanked by smaller multiplexors, until only single-qubit blocks remain.

33

Quantum Shannon Decomposition (QSD). QSD sharpens the multiplexor decompo-

sition further. Suppose

U =

U0 0

0 U1

 (4.19)

is a multiplexor controlled by the most significant qubit. Diagonalize the (n−1)-qubit unitary

U0U
†
1 as

U0U
†
1 = V D2 V †, (4.20)

with V unitary and D diagonal unitary (so D2 carries the eigenvalues). Then

U =

V 0

0 V


D 0

0 D†


W 0

0 W

, W = DV †U1. (4.21)

The middle block D⊕D† is a diagonal multiplexor and maps to a single multiplexed Rz(ϕ)

on the most significant qubit, while V ⊕ V and W ⊕W are (n−1)-qubit unitaries applied

independently of the control. The circuit form is shown in Fig. 16.

∼=

Rz(ϕ)

U0 ⊕ U1 W V

Figure 16: QSD of a single-control multiplexor: two identical (n−1)-qubit unitaries V,W
flanking a multiplexed Rz(ϕ) on the most significant qubit.

CSD + QSD synthesis. Substituting the QSD factorization for each multiplexor that

appears in a CSD layer (Fig. 14) yields a circuit where the controlled structure is confined

to single-qubit multiplexed rotations Ry(θ) and Rz(ϕ) on the most significant qubit, while

the remaining (n−1)-qubit blocks are plain unitaries. An illustrative first recursion step is

34

shown in Fig. 17; subsequent steps continue along the same pattern until only single-qubit

gates and diagonal phases remain.

U ∼=

Rz(ϕB) Ry(θ) Rz(ϕA)

WB VB WA VA

Figure 17: First QSD substitution inside a CSD layer: controlled structure collapses to
multiplexed Rz and Ry on the most significant qubit; all other blocks act on the (n−1)-qubit
subspace.

Asymptotic gate counts. With careful demultiplexing and diagonal synthesis, recursive

CSD attains CNOT counts strictly below the 4n of QR-style schemes, and QSD improves

constants further. An optimized QSD pipeline realizes a CNOT count

23
48 4n − 3

2 2n + 4
3 , (4.22)

while comparable CSD constructions typically scale on the order of 4n with smaller pre-

factors than QR. Table 2 summarizes representative counts reported in the literature across

n, highlighting the progressive savings from QR to CSD to QSD.

35

Table 2: Representative elementary-gate counts for QR, CSD, and QSD decompositions of
a generic n-qubit unitary.

n 1 2 3 4 5 6 7 8 9
CNOT gate count

QR 0 4 64 536 4,156 22,618 108,760 486,052 2,078,668
CSD 0 4 26 118 494 2,014 8,126 32,638 130,814
QSD 0 3 21 105 465 1,953 8,001 32,385 130,305

Total gate count
QR 1 14 136 980 7,384 42,390 208,820 944,280 4,062,520
CSD 1 11 58 249 1,016 4,087 16,374 65,525 262,132
QSD 1 10 54 262 1,142 4,758 19,414 78,422 315,222

aData reproduced from Ref. 29.

Checkpoint Summary: Recursive CSD and Quantum Shannon Decomposition (QSD)

What problem did we solve? We reduced arbitrary n-qubit unitaries into recursively

structured blocks via CSD and optimized them via Quantum Shannon Decomposition

(QSD), confining controlled structure to multiplexed single-qubit rotations.

When should I use this method? Use this for near-optimal synthesis of large uni-

taries when CNOT count and depth matter (especially on NISQ devices).

What is the asymptotic cost? CNOT gates: CSD: O(4n) (smaller constants)

Optimized QSD: 23
484n − 3

22n + O(1)

5 Walsh Decomposition of Diagonal Unitaries

General-purpose decompositions often produce deep circuits even for diagonal unitaries,

which is undesirable on NISQ devices. Diagonal gates admit a far more efficient synthesis

via the Walsh basis.9–11 Any [2n × 2n] diagonal unitary can be written as

U = eiF , F = diag(f0, . . . , f2n−1) real. (5.1)

36

Expanding F in the Pauli basis and noting that only tensor products of {I, Z} contribute

for diagonal operators gives

F =
2n−1∑
j=0

aj wj, wj := Z j1
1 ⊗ Z

j2
2 ⊗ · · · ⊗ Z jn

n , (5.2)

where j = (j1 . . . jn)2 is the binary label, with j = ∑n
l=1 jl2 n−l (Most Significant Bit first,

MSB-first). The Walsh coefficients follow from Hilbert-Schmidt inner products:

aj = 2−n Tr(wjF) = 2−n
2n−1∑
k=0

(−1)
∑n

l=1 jlkl fk, (5.3)

which is precisely the (dyadic) Walsh-Fourier transform.7,8 Since all wj commute, the unitary

factors:

U =
2n−1∏
j=0

eiajwj . (5.4)

Each factor eiajwj is efficiently realized with one single-qubit Z-rotation and at most 2n

CNOTs:9,12 for a single Z on a target qubit, eiaZ = Rz(−2a).

Commutation allows strong cancellations. Ordering terms by a Gray code ensures

successive indices differ by one bit, so the entangling “ladders" that compute parity onto a

target qubit change minimally between factors, cutting two-qubit cost from naive O(n2n) to

roughly O(2n) in practice.9 Below we give a compact, modular implementation.

1. Bit utilities (MSB-first) and Gray code. Script S.3.1 provides helper functions to

adopt MSB-first bit vectors to match the analytic conventions above.

2. Fast Walsh-Hadamard transform (FWHT). Script S.3.2 computes a = WHT(f)/2n

in O(n2n), replacing the O(4n) double sum in Eq. (5.3).

3. Gate list generation (Walsh strings). For each nonzero aj, Script S.3.3 synthesizes

eiajwj as a parity ladder onto the target (highest 1-bit) followed by Rz(−2aj) and then

uncomputes. Gray-ordering the sequence of j’s reduces CNOTs between consecutive factors.

4. Circuit build & simple cancellation. Adjacent identical CNOTs cancel; this quick

37

pass removes them, as shown in Script S.3.4. Vendor transpilers will do more.

5. End-to-end test. Script S.3.5 starts from a random diagonal unitary U = diag(eifk),

computes aj via FWHT, generates and optimizes the Gray-ordered circuit, and prints its

depth.

Figure 18: Walsh-based synthesis of a diagonal n=3 unitary. Gray ordering yields a sym-
metric CNOT pattern with many local cancellations, concentrating cost into a small number
of entangling layers.

Discussion. The FWHT computes {aj} in O(n2n), and the Gray-ordered ladder imple-

mentation realizes each factor eiajwj with a single Rz and a short, highly cancellable CNOT

stencil. In aggregate this brings the two-qubit cost for a generic diagonal close to O(2n),

substantially shallower than QR/CSD-style compilations. The MSB-first convention in both

the analysis and the code ensures that the binary dot product in Eq. (5.3) matches the

synthesized control pattern exactly, avoiding subtle off-by-one or endianness bugs.

Practical tip. If you start from a diagonal unitary U instead of phases

fk, call phases_from_diagonal(np.diag(U)) to get f , then proceed with

walsh_coefficients_from_phases(f). Finally, verify numerically that ∏
j eiajwj re-

produces U up to machine precision by simulating on the computational basis.

5.1 Exercise: Walsh Synthesis for a Double-Well Potential

This exercise highlights the advantage of Walsh-based synthesis over generic unitary-

decomposition pipelines when implementing diagonal unitaries. A detailed solution is pro-

vided in Section S.3.6.

38

We consider a circuit that implements the exact potential-energy phase accumulation

|xj⟩ −→ e−iV (xj)t |xj⟩ , (5.5)

which is the central operation in split-operator quantum dynamics for molecular systems.

As discussed in Part II (Sec. 5), Q-SOFT simulations of tunneling, vibrational level split-

ting, and wavepacket transfer between the two wells alternate applications of the potential-

energy propagator UV (t) = e−itV with the kinetic-energy propagator UK(t) = e−itK . The

latter is implemented analogously, since K = p2/(2m) is diagonal in the momentum basis.

1. Show that the total number of CNOT gates required by the Walsh decomposition is

NCNOT = 2N2 + 4N3 + 6N4, (5.6)

where N1 is the number of single-qubit Zi terms, N2 the number of two-qubit ZiZj

terms, N3 the number of three-qubit ZiZjZk terms, and N4 the number of four-qubit

Z1Z2Z3Z4 terms.

2. Compare this result with the number of CNOT gates required to implement (i) a generic

four-qubit diagonal unitary and (ii) a fully generic four-qubit unitary, as summarized

in Table 2.

Discussion. This exercise demonstrates that for chemically structured Hamiltonians—

here, a discretized double-well potential energy surface—Walsh-based (Pauli-string) synthesis

exploits diagonal structure to achieve dramatic reductions in entangling-gate counts relative

to generic decomposition methods. This advantage grows exponentially with grid size, un-

derscoring the importance of structure-aware synthesis strategies for quantum simulations

of molecular dynamics on NISQ and early fault-tolerant devices.

39

6 Conclusions

This tutorial presented a unified framework for the synthesis of quantum circuits that per-

form state initialization and unitary decomposition on n-qubit quantum registers. These

two operations-mapping classical data to quantum states and factorizing arbitrary unitaries

into executable gate sequences-represent the foundation of nearly all quantum algorithms for

chemistry, physics, and information processing. By connecting formal linear-algebraic con-

structions to explicit circuit realizations, the methods discussed here provide both theoretical

insight and practical tools for scalable circuit design.

We began by introducing two efficient approaches to quantum state preparation: the

recursive multiplexor method and the uniformly controlled rotation (UCR) scheme. Both

techniques translate amplitude and phase information into sequences of controlled single-

qubit rotations, achieving predictable and near-optimal scaling in CNOT gate count. These

constructions demonstrate how any target state can be systematically assembled from the

vacuum state, forming the building block for more complex quantum transformations.

The second part of the paper addresses the decomposition of general unitary matrices.

We examined several complementary methods, including the Givens rotation (QR) decompo-

sition, the column-by-column synthesis, and the recursive Cosine-Sine (CSD) and Quantum

Shannon (QSD) decompositions. Each algorithm progressively factorizes a large unitary into

a product of simpler block-structured operators or multiplexed rotations. The recursive CSD

and QSD approaches were shown to yield the most efficient scaling, reducing CNOT counts

to (23/48) 4n−(3/2) 2n +4/3-a substantial improvement over the O(4n) complexity of earlier

QR-based methods. The explicit circuits and Python implementations provided in the text

demonstrate how these decompositions can be realized and benchmarked in practice.

Finally, we introduced the Walsh decomposition as a specialized yet powerful strategy

for compiling diagonal unitaries. By expressing diagonal Hamiltonians in the Walsh-Fourier

basis and ordering terms according to the Gray code, this method exploits commutation

relations among Pauli-Z strings to minimize entangling operations. The resulting circuits

40

require only O(2n) CNOT gates, making them particularly well suited for noisy intermediate-

scale quantum (NISQ) devices where gate depth and coherence time are limiting factors.

Taken together, these methods form a coherent toolkit for quantum circuit synthesis,

bridging the gap between mathematical formalism and hardware-level implementation. The

modular Python code examples provided through the QFlux1 framework demonstrate how

each algorithm can be executed, visualized, and optimized within a unified computational

environment. Beyond their immediate application to state preparation and unitary compila-

tion, these techniques lay the groundwork for more advanced protocols-such as time-evolution

simulation, variational optimization, and hybrid quantum-classical workflows-covered in sub-

sequent parts of the QFlux series.

In summary, this tutorial establishes a practical foundation for transforming abstract uni-

taries and quantum states into executable quantum circuits. By combining analytic decom-

positions with efficient gate synthesis and optimization, it provides researchers and students

alike with the tools to design, understand, and implement scalable quantum algorithms on

current and future quantum hardware.

Supporting Information

Detailed Jupyter notebooks implementing Q-SOFT and VQTE algorithms, code for Hamil-

tonian decomposition, and benchmark data are available in the Supporting Information and

corresponding Google Colab notebook as well as through the QFlux Documentation site.

Acknowledgements

This work was supported by the National Science Foundation under Award No. 2124511 (CCI

Phase I: NSF Center for Quantum Dynamics on Modular Quantum Devices, CQD-MQD) and

Award No. 2302908 (Engines Development Award: Advancing Quantum Technologies, CT).

The authors also acknowledge the use of IBM Quantum services and open-source software

41

https://colab.research.google.com/github/batistagroup/qflux/blob/master/demos/manuscript/SI_III.ipynb
https://qflux.batistalab.com

packages, including Qiskit, Bosonic Qiskit, Strawberry Fields, QuTiP, and MPSQD.

References

(1) Allen, B. C.; Batista, V. S.; Cabral, D. G. A.; Cianci, C.; Dan, X.; Dutta, R.; Geva, E.;

Hu, Z.; Kais, S.; Khazaei, P.; Lyu, N.; Mulvihill, E.; Shivpuje, S.; Soudackov, A. V.;

Vu, N. P.; Wang, Y.; Wilson, C. QFlux — An Open-Source Python Package for Quan-

tum Dynamics Simulations. https://qflux.batistalab.com, 2025; (accessed: 2025-

10-12).

(2) Shende, V. V.; Bullock, S. S.; Markov, I. L. Synthesis of quantum-logic circuits. IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems 2006, 25,

1000–1010.

(3) Mottonen, M.; Vartiainen, J. J.; Bergholm, V.; Salomaa, M. M. Transformation of

quantum states using uniformly controlled rotations. 2004; https://arxiv.org/abs/

quant-ph/0407010.

(4) Vartiainen, J. J.; Möttönen, M.; Salomaa, M. M. Efficient Decomposition of Quantum

Gates. Physical Review Letters 2004, 92, 177902.

(5) Paige, C. C.; Wei, M. History and generality of the CS decomposition. Linear Algebra

and its Applications 1994, 208, 303–326.

(6) Iten, R.; Colbeck, R.; Kukuljan, I.; Home, J.; Christandl, M. Quantum circuits for

isometries. Physical Review A 2016, 93, 032318.

(7) Walsh, J. L. A Closed Set of Normal Orthogonal Functions. American Journal of Math-

ematics 1923, 45, 5–24.

(8) Schipp, F.; Wade, W. R.; Simon, P. Walsh series. An introduction to dyadic harmonic

analysis; Adam Hilger, 1990.

42

https://qflux.batistalab.com
https://arxiv.org/abs/quant-ph/0407010
https://arxiv.org/abs/quant-ph/0407010

(9) Welch, J.; Greenbaum, D.; Mostame, S.; Aspuru-Guzik, A. Efficient quantum circuits

for diagonal unitaries without ancillas. New Journal of Physics 2014, 16, 033040.

(10) Dan, X.; Geva, E.; Batista, V. S. Simulating Non-Markovian Quantum Dynamics on

NISQ Computers Using the Hierarchical Equations of Motion. Journal of Chemical

Theory and Computation 2025, 21, 1530–1546.

(11) Seneviratne, A.; Walters, P. L.; Wang, F. Exact Non-Markovian Quantum Dynamics

on the NISQ Device Using Kraus Operators. ACS Omega 2024, 9, 9666–9675.

(12) Nielsen, M. A.; Chuang, I. L. Quantum computation and quantum information; Amer-

ican Mathematical Society, 2010.

(13) Levy, E.; Shalit, O. M. Dilation theory in finite dimensions: the possible, the impossible

and the unknown. Rocky Mountain Journal of Mathematics 2014, 44, 203–221.

(14) Sweke, R.; Sinayskiy, I.; Bernard, D.; Petruccione, F. Universal simulation of Markovian

open quantum systems. Physical Review A 2015, 91, 062308.

(15) Hu, Z.; Xia, R.; Kais, S. A quantum algorithm for evolving open quantum dynamics

on quantum computing devices. Scientific Reports 2020, 10, 3301.

(16) Head-Marsden, K.; Krastanov, S.; Mazziotti, D. A.; Narang, P. Capturing non-

Markovian dynamics on near-term quantum computers. Physical Review Research

2021, 3, 013182.

(17) Schlimgen, A. W.; Head-Marsden, K.; Sager-Smith, L. M.; Narang, P.; Mazziotti, D. A.

Quantum state preparation and nonunitary evolution with diagonal operators. Physical

Review A 2022, 106, 022414.

(18) Wang, Y.; Mulvihill, E.; Hu, Z.; Lyu, N.; Shivpuje, S.; Liu, Y.; Soley, M. B.; Geva, E.;

Batista, V. S.; Kais, S. Simulating Open Quantum System Dynamics on NISQ Com-

43

puters with Generalized Quantum Master Equations. Journal of Chemical Theory and

Computation 2023, 19, 4851–4862.

(19) Vatan, F.; Williams, C. P. Optimal Quantum Circuits for General Two-Qubit Gates.

Physical Review A 2004, 69, 032315.

(20) Vidal, G.; Dawson, C. M. Universal Quantum Circuit for Two-Qubit Transformations

with Three Controlled-NOT Gates. Physical Review A 2004, 69, 010301.

(21) Khatri, S.; LaRose, R.; Poremba, A.; Cincio, L.; Sornborger, A. T.; Coles, P. J.

Quantum-Assisted Quantum Compiling. Quantum 2019, 3, 140.

(22) Jones, T.; Brown, A.; Bush, I.; Benjamin, S. C. QuEST and high performance simula-

tion of quantum computers. Scientific reports 2019, 9, 10736.

(23) Cowtan, A.; Dilkes, S.; Duncan, R.; Krajenbrink, A.; Simmons, W.; Sivarajah, S. On

the qubit routing problem. arXiv preprint arXiv:1902.08091 2019,

(24) Murali, P.; Baker, J. M.; Javadi-Abhari, A.; Chong, F. T.; Martonosi, M. Noise-

Adaptive Compiler Mappings for Noisy Intermediate-Scale Quantum Computers. Pro-

ceedings of the 24th International Conference on Architectural Support for Program-

ming Languages and Operating Systems (ASPLOS). 2019; pp 1015–1029.

(25) Barenco, A.; Bennett, C. H.; Cleve, R.; DiVincenzo, D. P.; Margolus, N.; Shor, P.;

Sleator, T.; Smolin, J. A.; Weinfurter, H. Elementary gates for quantum computation.

Physical Review A 1995, 52, 3457–3467.

(26) Cybenko, G. Reducing quantum computations to elementary unitary operations. Com-

puting in Science & Engineering 2001, 3, 27–32.

(27) Krol, A. M.; Al-Ars, Z. Beyond Quantum Shannon: Circuit Construction for General

n-Qubit Gates Based on Block ZXZ-Decomposition. 2024.

44

(28) Bullock, S. S.; Markov, I. L. Asymptotically Optimal Circuits for Arbitrary n-qubit

Diagonal Computations. 2003.

(29) Mottonen, M.; Vartiainen, J. J. Decompositions of general quantum gates. 2005.

45

Supporting Information for

QFlux: Quantum Circuit Implementations of
Molecular Dynamics.

Part III – State Initialization and Unitary
Decomposition

Alexander V. Soudackov†, Delmar G. A. Cabral†, Brandon C. Allen†, Xiaohan Dan†, Nam

P. Vu†, Cameron Cianci‡, Rishab Dutta†, Sabre Kais¶, Eitan Geva§ and Victor S.

Batista∗,∥,⊥

†Department of Chemistry, Yale Quantum Institute, Yale University, New Haven, CT

06511, USA
‡Department of Physics, University of Connecticut, Storrs, CT 06268, USA

¶Department of Electrical and Computer Engineering, Department of Chemistry, North

Carolina State University, Raleigh, North Carolina 27606, USA
§Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA

∥Department of Chemistry, Yale University, New Haven, CT 06520, USA
⊥Yale Quantum Institute, Yale University, New Haven, CT 06511, USA

E-mail: victor.batista@yale.edu

S1

Contents

S.1 State Preparation via Quantum Multiplexors S3

S.1.1 Bloch Sphere Angles . S3

S.1.2 Single-Qubit Rotation Matrices . S3

S.1.3 Block-Diagonal Multiplexor Construction S4

S.1.4 Recursive Transformation to the Vacuum State S4

S.1.5 Example: Three-Qubit State Preparation S5

S.1.6 Example: Coherent Wavepacket State Preparation on a 6-Qubit System S6

S.2 Givens-Based Decomposition of Unitaries S7

S.2.1 Imports and Setup . S7

S.2.2 Single Givens Rotation . S7

S.2.3 Full Givens Sequence and Triangularization S8

S.2.4 Example: Decomposition of a Random 4× 4 Unitary S9

S.3 Walsh Decomposition of Diagonal Unitaries S11

S.3.1 Binary and Gray-Code Utilities . S11

S.3.2 Walsh Coefficients via FWHT . S11

S.3.3 Walsh Strings and Gate List . S12

S.3.4 Circuit Construction and Peephole Optimization S13

S.3.5 Walsh Decomposition Circuit End-to-End Test S14

S.3.6 Solution: Walsh Synthesis for a Double-Well Potential S15

S2

S.1 State Preparation via Quantum Multiplexors

This section collects helper routines for mapping an arbitrary n-qubit state vector to the

computational vacuum state |0 · · · 0⟩ using a sequence of single-qubit rotations arranged in

multiplexor form. The same building blocks can be inverted to construct state-preparation

circuits.

S.1.1 Bloch Sphere Angles

This utility takes the two complex amplitudes (c0, c1) of a single qubit, normalizes them, and

returns the equivalent Bloch-sphere angles θ and ϕ such that α |0⟩ + β |1⟩ = cos(θ/2) |0⟩ +

eiϕ sin(θ/2) |1⟩ . These parameters are later used to build RZ and RY rotations that map the

qubit to |0⟩ or |1⟩.

Script S.1.1: Compute Bloch Sphere Angles 2 3

import numpy as np
def compute_bloch_angles(c0, c1):

norm = np.sqrt(np.abs(c0)**2 + np.abs(c1)**2)
alpha, beta = c0/norm, c1/norm
theta = 2 * np.arccos(np.abs(alpha))
phi = np.angle(beta * np.conjugate(alpha) / (np.abs(beta)*np.abs(alpha)))
return theta, phi

S.1.2 Single-Qubit Rotation Matrices

The following functions construct 2 × 2 rotation matrices RZ(ϕ) and RY (θ) in the compu-

tational basis. Together with the angles from Section S.1.1, they generate the single-qubit

unitaries used inside each 2× 2 block of the multiplexor.

S3

https://colab.research.google.com/github/batistagroup/qflux/blob/master/demos/manuscript/SI_III.ipynb

Script S.1.2: Rotation Matrices around Z and Y Axes 2 3

def rz_matrix(phi):
return np.array([[np.exp(-1j*phi/2), 0],

[0, np.exp(1j*phi/2)]])

def ry_matrix(theta):
return np.array([[np.cos(theta/2), -np.sin(theta/2)],

[np.sin(theta/2), np.cos(theta/2)]])

S.1.3 Block-Diagonal Multiplexor Construction

Given an n-qubit state vector of length 2n, this routine builds a block-diagonal matrix whose

2× 2 blocks act on adjacent amplitude pairs (c0, c1), choosing rotations that map each pair

to either |0⟩ or |1⟩ depending on the flag bit. This is the basic “quantum multiplexor"

primitive used in the recursive state-to-vacuum transformation.

Script S.1.3: Constructing the Multiplexor Matrix 2 3

from scipy.linalg import block_diag

def multiplexor_matrix(n, vector, bit=0):
bit = int(bool(bit))
multiplexor = None
for i in np.arange(0,2**n,2):

c0, c1 = vector[i], vector[i+1]
theta, phi = compute_bloch_angles(c0, c1)
r = ry_matrix(bit*np.pi - theta) @ rz_matrix(-phi)
multiplexor = block_diag(multiplexor, r) if multiplexor is not None else r

return multiplexor

S.1.4 Recursive Transformation to the Vacuum State

The next routine repeatedly applies multiplexors on successively coarse-grained vectors to

construct a global unitary that maps an arbitrary n-qubit state |ψ⟩ to |0 · · · 0⟩. The final

matrix total_matrix is the full 2n × 2n unitary implementing this transformation, up to a

S4

https://colab.research.google.com/github/batistagroup/qflux/blob/master/demos/manuscript/SI_III.ipynb
https://colab.research.google.com/github/batistagroup/qflux/blob/master/demos/manuscript/SI_III.ipynb

global phase.

Script S.1.4: Recursive Quantum Multiplexor Transformation 2 3

def rotate_to_vacuum_matrix(vector_input):
ndim = vector_input.size
if ndim & (ndim - 1) != 0:

raise ValueError("Dimension must be a power of 2.")
n = int(np.log2(ndim))
total_matrix = np.eye(ndim)
vector_k = vector_input.copy()
for k in np.arange(n,0,-1):

vector_pruned = vector_k if k==n else vector_new[::2]
multiplexor = multiplexor_matrix(k, vector_pruned)
multiplexor_padded = multiplexor if k==n

else np.kron(multiplexor, np.eye(2**(n-k)))
total_matrix = multiplexor_padded @ total_matrix
vector_k = multiplexor_padded @ vector_k
vector_new = multiplexor @ vector_pruned

total_matrix *= np.conjugate(vector_k[0])
return total_matrix

S.1.5 Example: Three-Qubit State Preparation

This example draws a random normalized 3-qubit state, constructs the corresponding

“rotate-to-vacuum" unitary, and verifies that the forward transformation maps |ψ⟩ to |000⟩

while the Hermitian conjugate recovers the original state vector.
Script S.1.5: State preparation for a 3-qubit system 2 3

from numpy import linalg as LA
np.random.seed(42)
nq = 3
state_vector = (2*np.random.rand(8)-1) * np.exp(1j*2*np.pi*np.random.rand(8))
state_vector /= LA.norm(state_vector)
mrot = rotate_to_vacuum_matrix(state_vector)
rot_vector = mrot.dot(state_vector)
back_vector = np.conjugate(mrot.T).dot(rot_vector)

S5

https://colab.research.google.com/github/batistagroup/qflux/blob/master/demos/manuscript/SI_III.ipynb
https://colab.research.google.com/github/batistagroup/qflux/blob/master/demos/manuscript/SI_III.ipynb

The forward transformation maps |ψ⟩ → |000⟩, and applying its Hermitian conjugate

restores the original state, |ψ⟩ = m†
rot |000⟩.

S.1.6 Example: Coherent Wavepacket State Preparation on a 6-

Qubit System

This example initializes a coherent wavepacket state |ψ⟩ in the position grid representation

with 26 = 64 points on a 6-qubit register, constructs the corresponding “rotate-to-vacuum"

unitary mrot, and verifies that the forward transformation maps |ψ⟩ to |000000⟩ while the

Hermitian conjugate recovers the original state vector.
Script S.1.6: Coherent Wavepacket State Preparation on a 6-Qubit System

2 3

import numpy as np
nq = 6

hbar = 1.0 # Planck’s constant in atomic units
mass = 1.0 # mass in atomic units
omega = 1.0 # oscillator frequency
normalization = (mass*omega/np.pi/hbar)**(0.25)

position grid
xmin = -5.0
xmax = 5.0
N_pts = 2**nq
dx = (xmax - xmin)/(N_pts-1)
xgrid = xmin + dx * np.arange(N_pts)

coherent wavepacket localized at (x_0, p_0)
x_0 = 1.0
p_0 = 0.0
psi = np.sqrt(dx)*normalization*np.exp(-(mass*omega/hbar/2.0)*((xgrid-x_0)**2)

+ 1j*p_0*xgrid/hbar)

mrot = rotate_to_vacuum_matrix(psi)
vacuum_vector = mrot.dot(psi)
back_vector = np.conjugate(mrot.T).dot(rot_vector) # should be psi

S6

https://colab.research.google.com/github/batistagroup/qflux/blob/master/demos/manuscript/SI_III.ipynb

The forward transformation maps |ψ⟩→|000000⟩, and applying its Hermitian conjugate

restores the original state, |ψ⟩ = m†
rot |000⟩.

S.2 Givens-Based Decomposition of Unitaries

This section implements a Givens-rotation-based scheme to triangularize an N ×N unitary

matrix U using two-level unitaries that act on pairs of rows. The resulting product R is such

that RU is upper triangular (and, after a phase adjustment, equal to the identity).

S.2.1 Imports and Setup

The first cell installs the graycode helper package and imports NumPy and Gray-code

routines used to order the Givens sequence in a Gray-encoded basis.

Script S.2.1: Imports and Setup for Givens Decomposition 2 3

!pip install graycode
import numpy as np
import graycode

S.2.2 Single Givens Rotation

This function constructs a two-level unitary G that mixes rows j and k (for a fixed column i)

to zero out the element Aj,i. It is the basic building block in the QR-like elimination process

applied to a unitary matrix A.

S7

https://colab.research.google.com/github/batistagroup/qflux/blob/master/demos/manuscript/SI_III.ipynb

Script S.2.2: Single Givens Rotation Constructor 2 3

def GivensRotation(i, j, k, A):
"""
Construct a two-level unitary that zeros out A[j,i] by rotating rows j and k.
Indices i, j, k are zero-based.
"""
ndim = A.shape[0]
G = np.eye(ndim, dtype=A.dtype)
aji = A[j, i]
if aji == 0:

return G
aki = A[k, i]
norm = np.sqrt(abs(aji)**2 + abs(aki)**2)
G[k, k] = np.conj(aki) / norm
G[j, j] = aki / norm
G[k, j] = np.conj(aji) / norm
G[j, k] = -aji / norm
return G

S.2.3 Full Givens Sequence and Triangularization

The routine Gmatrix sweeps column by column through a unitary U , applying a sequence

of Givens rotations to eliminate subdiagonal entries. An initial global phase adjustment

ensures that the final triangular matrix is proportional to the identity, and the product RU

is close to the identity up to numerical precision.

Script S.2.3: Sequential Application of Givens Rotations 2 3

def Gmatrix(U, gray=False, print_sequence=False):
"""
Apply a full sequence of Givens rotations to triangularize U.
Returns R @ Uphase with a det-phase adjustment.
"""
ndim = U.shape[0]
n = int(np.log2(ndim))
R = np.eye(ndim, dtype=U.dtype)

Global phase adjustment so the final triangular form is the identity.
detU = np.linalg.det(U)
phase = np.exp(-1j * np.angle(detU) / ndim)
Uphase = phase * np.eye(ndim, dtype=U.dtype)

S8

https://colab.research.google.com/github/batistagroup/qflux/blob/master/demos/manuscript/SI_III.ipynb
https://colab.research.google.com/github/batistagroup/qflux/blob/master/demos/manuscript/SI_III.ipynb

Um = Uphase @ U

Perform eliminations column by column
if print_sequence:

print("U = D", end=’ ’)
gray_list = list(graycode.gen_gray_codes(n)) if gray else None
for i in range(ndim - 1):

for j in range(ndim - 1, i, -1):
if gray:

ii = int(bin(gray_list[i]), 2)
jj = int(bin(gray_list[j]), 2)
kk = int(bin(gray_list[j-1]), 2)

else:
ii, jj, kk = i, j, j-1

if print_sequence:
print(f"G^+[{ii+1},{jj+1},{kk+1}]", end=’ ’)

G = GivensRotation(ii, jj, kk, Um)
R = G @ R
Um = G @ Um

if print_sequence:
print("\nD = (", np.conjugate(phase), ")*I")

return R @ Uphase

S.2.4 Example: Decomposition of a Random 4× 4 Unitary

This test script generates a random 4× 4 unitary matrix, applies the Givens-based decom-

position with Gray ordering, and confirms that RU is numerically equal to the identity by

printing the transformed matrix and its Frobenius norm deviation.

S9

Script S.2.4: Decomposition of a Random [4×4] Unitary 2 3

from scipy.stats import unitary_group
import numpy as np

def format_complex(z):
return f"{z.real: .4f}{z.imag:+.4f}j"

def print_nicely(M):
for row in M:

print(" ".join(f"{format_complex(x):>16s}" for x in row))

Reproducible random unitary
rng = np.random.default_rng(43)
ndim = 4
U = unitary_group.rvs(ndim, random_state=rng)

print("\nTarget unitary matrix U:")
print("------------------------")
print_nicely(U)

Decomposition with Gray ordering
print("\nDecomposition:")
print("--------------")
RU = Gmatrix(U, gray=True, print_sequence=True)

U_transformed = RU @ U

print("\nTransformed matrix R @ U (should be identity):")
print("--")
print_nicely(U_transformed)

Numerical check
err = np.linalg.norm(U_transformed - np.eye(ndim))
print(f"\n||R @ U - I||_F = {err:.3e}")
assert np.allclose(U_transformed, np.eye(ndim), atol=1e-10)

The Givens sequence R is constructed so that RU is upper triangular and, after removing

a global phase, numerically equal to the identity within floating-point precision.

S10

https://colab.research.google.com/github/batistagroup/qflux/blob/master/demos/manuscript/SI_III.ipynb

S.3 Walsh Decomposition of Diagonal Unitaries

This section provides helper routines for decomposing diagonal unitaries into a product

of Pauli-Z strings with single-qubit RZ rotations, using a fast Walsh-Hadamard transform

(FWHT) to extract expansion coefficients and a Gray-ordered circuit synthesis.

S.3.1 Binary and Gray-Code Utilities

These helper functions manipulate bit strings in MSB-first convention, compute Gray-code

indices, and locate the most significant nonzero bit in a bit vector. They are used when

organizing Walsh-string indices and assigning control/target qubits.

Script S.3.1: MSB-First Bits and Gray Code 2 3

import numpy as np

def bits_msb(x, n):
"""MSB-first bit vector of length n."""
return np.fromiter(f"{x:0{n}b}", dtype=’U1’).astype(int)

def gray_index(i):
"""Integer Gray code index: i ^ (i >> 1)."""
return i ^ (i >> 1)

def msb_pos(bits):
"""Index (0..n-1, MSB-first) of highest-order 1, or -1 if all zero."""
idx = np.where(bits == 1)[0]
return -1 if idx.size == 0 else idx[-1]

S.3.2 Walsh Coefficients via FWHT

The following routines implement an in-place FWHT to map a vector of real phases fk (as-

sociated with diagonal entries eifk) to Walsh coefficients aj. These coefficients parameterize

the diagonal unitary as exp
(
i∑j ajwj

)
in the Walsh basis.

S11

https://colab.research.google.com/github/batistagroup/qflux/blob/master/demos/manuscript/SI_III.ipynb

Script S.3.2: Walsh Coefficients via FWHT 2 3

def fwht_inplace(a):
"""In-place Fast Walsh-Hadamard Transform (Hadamard ordering)."""
h = 1
n = a.shape[0]
while h < n:

for i in range(0, n, h << 1):
j_end = i + h
for j in range(i, j_end):

x = a[j]
y = a[j + h]
a[j] = x + y
a[j + h] = x - y

h <<= 1
return a

def walsh_coefficients_from_phases(f):
"""
Given real phases f_k (length 2**n), return a_j per Eq. (\\ref{eq:walsh_coef}).
"""
f = np.asarray(f, dtype=float).copy()
a = fwht_inplace(f) / f.size
return a

def phases_from_diagonal(U_diag):
"""
Accept a 1D array of diagonal entries of U (|U_kk|=1) and return principal phases
f_k.

"""
U_diag = np.asarray(U_diag, dtype=complex)
return np.angle(U_diag) # principal branch (-pi, pi]

S.3.3 Walsh Strings and Gate List

Given the coefficients aj, this function constructs a Gray-ordered list of CNOT and RZ gates

realizing the diagonal unitary U = exp
(
i∑j ajwj

)
. Each nonzero Walsh term is mapped to

a parity network (CNOT ladder) feeding a single RZ rotation on the highest-order nonzero

qubit, followed by uncomputation.

S12

https://colab.research.google.com/github/batistagroup/qflux/blob/master/demos/manuscript/SI_III.ipynb

Script S.3.3: Walsh Gate List (Gray-Ordered) 2 3

def walsh_gate_list(a, n_qubits, eps=1e-9):
"""
Produce a Gray-ordered list of (’C’, c, t) CNOTs and (’R’, q, theta) Rz for
U=exp(i sum a_j w_j).

Qubit indices use MSB-first order: q=0 is the most significant qubit.
"""
assert len(a) == 2**n_qubits
gates = []

Iterate Gray order over j=1..2^n-1 (the j=0 term is a global phase Rz on no
qubit)

for i in range(1, 2**n_qubits):
j = gray_index(i)
aj = a[j]
if abs(aj) < eps:

continue
bits = bits_msb(j, n_qubits) # MSB-first
t = msb_pos(bits) # target = highest one bit
if t < 0: # shouldn’t happen for j>=1

continue

forward parity ladder onto target
for c in range(0, t):

if bits[c] == 1:
gates.append((’C’, c, t))

the single-qubit Z rotation: \ee^{\ii a Z} = Rz(-2 a)
gates.append((’R’, t, -2.0 * aj))

uncompute parity
for c in range(t-1, -1, -1):

if bits[c] == 1:
gates.append((’C’, c, t))

return gates

S.3.4 Circuit Construction and Peephole Optimization

The next helper cancels immediately repeated CNOTs and converts the gate list into a

Qiskit QuantumCircuit. This simple peephole optimization reduces entangling depth in the

synthesized diagonal circuit.

S13

https://colab.research.google.com/github/batistagroup/qflux/blob/master/demos/manuscript/SI_III.ipynb

Script S.3.4: Build and Peephole-Optimize Circuit 2 3

from qiskit import QuantumRegister, QuantumCircuit

def cx_cancel(gates):
"""Cancel adjacent identical CNOTs."""
out = []
for g in gates:

if out and g[0]==’C’ and g == out[-1]:
out.pop()

else:
out.append(g)

return out

def build_qiskit(gates, n_qubits):
qr = QuantumRegister(n_qubits, ’q’)
qc = QuantumCircuit(qr)
for tag,*args in gates:

if tag == ’C’:
c, t = args
qc.cx(c, t)

elif tag == ’R’:
q, theta = args
qc.rz(theta, q)

else:
raise ValueError(f"Unknown gate {tag}")

return qc

S.3.5 Walsh Decomposition Circuit End-to-End Test

This script starts from a random diagonal unitary U = diag(eifk), computes aj via FWHT,

generates and optimizes the Gray-ordered circuit, and prints its depth.

Script S.3.5: Build and Peephole-Optimize Circuit 2 3

Example: 3-qubit diagonal unitary
n = 3
rng = np.random.default_rng(7)
f = rng.uniform(-np.pi, np.pi, size=2**n) # phases f_k
a = walsh_coefficients_from_phases(f) # a_j via FWHT

Gate list -> small peephole optimization -> circuit
gates = walsh_gate_list(a, n)

S14

https://colab.research.google.com/github/batistagroup/qflux/blob/master/demos/manuscript/SI_III.ipynb
https://colab.research.google.com/github/batistagroup/qflux/blob/master/demos/manuscript/SI_III.ipynb

gates_opt = cx_cancel(gates)
qc = build_qiskit(gates_opt, n)

print("Walsh coefficients a_j:", np.round(a, 6))
print("\nOptimized circuit:")
print(qc)
print("\nCircuit depth:", qc.depth(), " # quick proxy for entangling depth")

S.3.6 Solution: Walsh Synthesis for a Double-Well Potential

Setup. We consider a single nuclear degree of freedom x evolving on a symmetric double-

well potential

V (x) = V0

(
x2

x2
0
− 1

)2

, (S.1)

with barrier height V0 and minima at x = ±x0.

The coordinate is discretized on a uniform grid encoded by n = 4 qubits,

xj = xmin + j∆x, j = 0, 1, . . . , 2n − 1, (S.2)

where ∆x = (xmax − xmin)/(2n − 1). In the computational basis {|j⟩}, the potential-energy

operator is diagonal,

V =
2n−1∑
j=0

V (xj) |j⟩⟨j| . (S.3)

The corresponding time-evolution operator is

UV (t) = e−iV t. (S.4)

Walsh (Pauli-Z) expansion. Any diagonal operator on n qubits admits an exact expan-

sion in the Walsh (Pauli-Z) basis,

HV =
∑

S⊆{1,...,n}
cS

∏
k∈S

Zk, (S.5)

S15

where the coefficients cS are obtained from the Walsh–Hadamard transform of the sampled

values {V (xj)}.

For n = 4, this expansion contains at most 24 = 16 diagonal Pauli strings,

V = c∅I +
∑

i

ciZi +
∑
i<j

cijZiZj +
∑

i<j<k

cijkZiZjZk + c1234Z1Z2Z3Z4. (S.6)

The identity term contributes only a global phase and is omitted in what follows.

Factorized time evolution. Because all Pauli-Z strings commute, the potential-energy

propagator factorizes exactly:

UV (t) =
∏
S ̸=∅

exp
−it cS

∏
k∈S

Zk

 . (S.7)

As a result, UV (t) can be implemented without Trotter error.

Circuit cost per term. A unitary of the form

exp(−iθZi1Zi2 · · ·Zim)

is implemented by computing the parity of the m qubits onto a single target qubit, applying

an Rz(2θ) rotation, and uncomputing the parity. This requires 2(m − 1) CNOT gates and

one single-qubit Rz rotation (Part II, Sec. 3). Therefore:

• m = 1 (single-qubit terms): 0 CNOTs,

• m = 2 (two-qubit terms): 2 CNOTs,

• m = 3 (three-qubit terms): 4 CNOTs,

• m = 4 (four-qubit term): 6 CNOTs.

S16

Total CNOT count. If the Walsh expansion contains N1 single-qubit terms, N2 two-qubit

terms, N3 three-qubit terms, and N4 four-qubit terms, the total number of CNOT gates is

NCNOT = 2N2 + 4N3 + 6N4. (S.8)

The total number of single-qubit rotations is

NRz = N1 +N2 +N3 +N4. (S.9)

Comparison to generic synthesis. A fully generic four-qubit unitary requires on the

order of O(4n) ∼ 400 CNOT gates, while even a generic four-qubit diagonal unitary requires

several tens to hundreds of entangling gates (105–536 CNOT gates, as shown in Table 2).

In contrast, according to Eq. (S.8), the Walsh-based synthesis requires only 56 CNOT gates

for this problem and scales with the number of nonzero Walsh coefficients, which for smooth

potential-energy surfaces such as the double-well is typically far smaller than 2n.

Physical interpretation. The resulting circuit implements the exact phase accumulation

|xj⟩ −→ e−iV (xj)t |xj⟩ ,

corresponding to the potential-energy step in split-operator quantum dynamics, as discussed

in Part II (Sec. 5). When alternated with the kinetic-energy propagator, this enables

simulation of tunneling, vibrational level splitting, and coherent wavepacket transfer between

the two wells.

Conclusion. This solution illustrates how Walsh-based synthesis exploits the diagonal and

chemically structured nature of discretized potential energy surfaces to achieve dramatic re-

ductions in entangling-gate counts. Such structure-aware compilation is essential for scalable

quantum simulations of molecular dynamics on NISQ-era and early fault-tolerant devices.

S17

	Introduction
	Method Selection
	State Initialization Algorithms
	Quantum Multiplexors
	Step 1: Decomposing the Target Quantum State
	Step 2: Aligning the Last Qubit on the Bloch Sphere
	Step 3: Defining the Quantum Multiplexor
	Step 4: Recursive Disentanglement
	Supporting Functions for State Preparation
	Example: Three-Qubit State Preparation
	Example: Coherent Wavepacket State Preparation on a 6-Qubit System
	Quantum Circuit Implementation

	Uniformly Controlled Rotations

	Decomposition of an Arbitrary Unitary Gate
	Decomposition Using Givens Rotations
	Real-parameter Givens variant

	Column-by-Column Decomposition
	Recursive Cosine–Sine and Quantum Shannon Decompositions

	Walsh Decomposition of Diagonal Unitaries
	Exercise: Walsh Synthesis for a Double-Well Potential

	Conclusions
	Supporting Information
	Acknowledgements
	References
	State Preparation via Quantum Multiplexors
	Bloch Sphere Angles
	Single-Qubit Rotation Matrices
	Block-Diagonal Multiplexor Construction
	Recursive Transformation to the Vacuum State
	Example: Three-Qubit State Preparation
	Example: Coherent Wavepacket State Preparation on a 6-Qubit System

	Givens-Based Decomposition of Unitaries
	Imports and Setup
	Single Givens Rotation
	Full Givens Sequence and Triangularization
	Example: Decomposition of a Random 4x4 Unitary

	Walsh Decomposition of Diagonal Unitaries
	Binary and Gray-Code Utilities
	Walsh Coefficients via FWHT
	Walsh Strings and Gate List
	Circuit Construction and Peephole Optimization
	Walsh Decomposition Circuit End-to-End Test
	Solution: Walsh Synthesis for a Double-Well Potential

