
30 January 2026

QFlux: Quantum Circuit Implementations of Molecular

Dynamics. Part II - Closed Quantum Systems

Delmar G A Cabral1, Brandon C Allen1, Cameron Cianci2, Alexander V Soudackov1, Xiaohan Dan1, Nam

P Vu1,3,4, Rishab Dutta1, Sabre Kais5, Eitan Geva6, Victor S Batista1,7

1. Department of Chemistry Yale University

2. Department of Physics University of Connecticut

3. Department of Electrical Engineering and Computer Science Massachusetts Institute of Technology

4. Research Laboratory of Electronics Massachusetts Institute of Technology

5. Department of Electrical and Computer Engineering North Carolina State University

6. Department of Chemistry University of Michigan

7. Yale Quantum Institute Yale University

Abstract

Quantum computers offer a powerful platform for simulating real-time molecular and materials dynamics,

where coherence, entanglement, and many-body correlations govern processes such as charge transport,

tunneling, and spin exchange. Building on the foundations introduced in Part I, this tutorial presents

practical algorithms for quantum dynamical simulation on qubit-based hardware using the open-source QFlux

framework.

We formulate molecular and spin Hamiltonians in the Pauli basis and map their propagators to quantum

circuits using parity-based phase constructions and local basis rotations. Expectation values and state overlaps

are obtained with the Hadamard test, or by direct measurement of Pauli strings, providing a unified protocol

for extracting complex observables and variational quantities.

We introduce the Quantum Split-Operator Fourier Transform (Q-SOFT), the quantum analog of the classical

SOFT method for quantum dynamics simulations, which applies kinetic and potential phase operators

in conjugate bases connected by the Quantum Fourier Transform to implement second-order Trotterized

Posted on 30 January 2026 — CC-BY 4.0 — This is a preprint and has not been peer reviewed. Data may be preliminary. — https://

doi.org/10.26434/chemrxiv.10001766/v1

evolution. A simulation of proton transfer in an asymmetric double-well potential modeling a DNA base pair

reproduces benchmark simulations.

We also present a variational time-evolution scheme based on the McLachlan principle, implemented in

QFlux’s VarQRTE driver. Applied to a two-spin Heisenberg model, it captures coherent spin exchange with

shallow, noise-resilient circuits.

Together, these methods establish a reproducible workflow—from Hamiltonian encoding to circuit execution

and measurement—bridging classical and quantum simulation and providing a practical toolkit for real-time

quantum dynamics on near-term hardware.

Posted on 30 January 2026 — CC-BY 4.0 — This is a preprint and has not been peer reviewed. Data may be preliminary. — https://

doi.org/10.26434/chemrxiv.10001766/v1

QFlux: Quantum Circuit Implementations of

Molecular Dynamics.

Part II – Closed Quantum Systems

Delmar G. A. Cabral,† Brandon C. Allen,† Cameron Cianci,‡ Alexander V.

Soudackov,† Xiaohan Dan,† Nam P. Vu,†,¶,§ Rishab Dutta,† Sabre Kais,∥ Eitan

Geva,⊥ and Victor S. Batista∗,†,#

†Department of Chemistry, Yale University, New Haven, CT 06520, USA

‡Department of Physics, University of Connecticut, Storrs, CT 06268, USA

¶Department of Electrical Engineering and Computer Science, Massachusetts Institute of

Technology, Cambridge, MA 02139, USA

§Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge,

MA 02139, USA

∥Department of Electrical and Computer Engineering, Department of Chemistry, North

Carolina State University, Raleigh, North Carolina 27606, USA

⊥Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA

#Yale Quantum Institute, Yale University, New Haven, CT 06511, USA

E-mail: victor.batista@yale.edu

1

victor.batista@yale.edu

Abstract

Quantum computers offer a powerful platform for simulating real-time molecular

and materials dynamics, where coherence, entanglement, and many-body correlations

govern processes such as charge transport, tunneling, and spin exchange. Building

on the foundations introduced in Part I, this tutorial presents practical algorithms

for quantum dynamical simulation on qubit-based hardware using the open-source

QFlux framework. We formulate molecular and spin Hamiltonians in the Pauli basis

and map their propagators to quantum circuits using parity-based phase constructions

and local basis rotations. Expectation values and state overlaps are obtained with

the Hadamard test, or by direct measurement of Pauli strings, providing a unified

protocol for extracting complex observables and variational quantities. We introduce

the Quantum Split-Operator Fourier Transform (Q-SOFT), the quantum analog of

the classical SOFT method for quantum dynamics simulations, which applies kinetic

and potential phase operators in conjugate bases connected by the Quantum Fourier

Transform to implement second-order Trotterized evolution. A simulation of proton

transfer in an asymmetric double-well potential modeling a DNA base pair reproduces

benchmark simulations. We also present a variational time-evolution scheme based

on the McLachlan principle, implemented in QFlux’s VarQRTE driver. Applied to a

two-spin Heisenberg model, it captures coherent spin exchange with shallow, noise-

resilient circuits. Together, these methods establish a reproducible workflow—from

Hamiltonian encoding to circuit execution and measurement—bridging classical and

quantum simulation and providing a practical toolkit for real-time quantum dynamics

on near-term hardware.

1 Introduction

Quantum computers provide a natural platform for simulating the real-time evolution of

molecular and material systems-phenomena such as charge transport, energy transfer, and

proton tunneling that are difficult to capture with classical algorithms when quantum coher-

2

ence and strong correlations play a central role.1–4 Because quantum hardware manipulates

information according to the same mathematical principles that govern physical wavefunc-

tions, it offers, in principle, a direct route to simulating time-dependent quantum dynamics

rather than approximating them through increasingly expensive numerical schemes. This

potential positions real-time quantum simulation as a promising frontier in computational

chemistry, condensed-matter physics, and quantum information science.

This paper presents Part II of the QFlux5 tutorial series, which develops practical meth-

ods for implementing closed-system quantum dynamics on qubit-based hardware. Building

directly on the conceptual and numerical foundations established in Part I-including clas-

sical time propagation, operator structure, and cross-validation strategies-this installment

advances from physical models to executable quantum algorithms. The emphasis is on

showing how familiar objects from quantum dynamics, such as Hamiltonians, propagators,

and observables, are translated into quantum circuits in a controlled and reproducible way.

A central task in quantum simulation is the representation of physical Hamiltonians in a

form suitable for qubit registers. Accordingly, we begin by showing how molecular and spin

Hamiltonians are rewritten in terms of Pauli strings,

H =
∑

j

ajPj, (1.1)

and how each term can be implemented using elementary gate sequences. This mapping pro-

vides the foundation for constructing time-evolution operators through parity-based phase

circuits and basis-rotation techniques that reduce arbitrary Pauli operators to diagonal in-

teractions. Once this representation is established, we introduce the Hadamard test as a

general and versatile framework for extracting expectation values and state overlaps of the

form ⟨ψ|U |ψ⟩, quantities that play a central role in both explicit and variational quantum

dynamics.

Building on these components, we present the Quantum Split-Operator Fourier Transform

3

(Q-SOFT) algorithm, the quantum analog of the classical split-operator methods introduced

in Part I. In Q-SOFT, potential and kinetic phase operators are applied in complementary

bases connected by the Quantum Fourier Transform (QFT), reproducing the familiar second-

order Trotterized propagation scheme used in grid-based classical simulations. We describe

the construction of diagonal propagators, clarify practical QFT conventions such as endian-

ness and terminal swaps, and discuss numerical accuracy, convergence behavior, and resource

scaling. The method is demonstrated through a detailed case study of proton transfer in

an asymmetric double-well potential modeling a hydrogen bond in a DNA base pair, where

the quantum simulation reproduces tunneling dynamics and population transfer in close

agreement with classical SOFT benchmarks.

To complement this explicit product-formula approach, the tutorial also introduces the

variational formulation of quantum time evolution. Rather than decomposing the propagator

into discrete gates at each time step, the system’s state is represented by a parametrized

ansatz whose parameters evolve according to the McLachlan variational principle. The

resulting equations of motion depend on quantities such as the quantum geometric tensor

and Hamiltonian response, which can be evaluated directly on quantum hardware using

Hadamard-test circuits. These ideas are implemented within the QFlux VarQRTE driver,

which stabilizes parameter updates through truncated singular-value decomposition. As an

illustrative example, we simulate the real-time dynamics of a two-spin Heisenberg model,

demonstrating that the variational approach captures coherent spin exchange using shallow,

noise-resilient circuits suitable for near-term devices.

All simulations presented in this work are implemented using the open-source QFlux

framework,5 which integrates Qiskit,6 QuTiP,7,8 Bosonic Qiskit,9 and Strawberry

Fields10 into a unified environment for quantum dynamics. As introduced in Part I,

QFlux provides a seamless workflow that begins with defining a model Hamiltonian, pro-

ceeds through state preparation and time evolution, and concludes with measurement and

analysis. Its modular design allows users to transition smoothly between classical and quan-

4

tum backends, enabling benchmarking, noise modeling, and visualization of time-dependent

observables within a single interface.

This installment plays a pivotal role in the overall tutorial sequence. Part II estab-

lishes how closed-system dynamics are realized on quantum hardware and introduces the

circuit-level building blocks used throughout the remainder of the series. Part III builds on

these ideas by focusing on state initialization and unitary decomposition, providing system-

atic methods for translating abstract vectors and matrices into executable circuits. Part IV

extends the framework to open quantum systems using Lindblad dynamics and dilation tech-

niques. Part V introduces adaptive variational algorithms designed for noisy intermediate-

scale quantum devices, and Part VI generalizes these approaches to non-Markovian dynam-

ics with explicit memory effects.

Together with Part I, this work provides a complete and reproducible entry point into

quantum simulation of time-dependent dynamics. It is intended both as a pedagogical

resource for students learning how classical intuition carries over to quantum circuits, and as

a practical platform for researchers developing and benchmarking quantum algorithms for

molecular and materials dynamics.

2 Essentials of Qubit-Based Quantum Simulation

Quantum computers simulate physical systems by exploiting the same mathematical prin-

ciples that govern quantum mechanics itself. In this section, we review the fundamental

building blocks of quantum computing-qubits, superposition, entanglement, and quan-

tum gates-and show how they combine in quantum circuits. These concepts form the

computational foundation for the algorithms implemented in QFlux.

5

2.1 Qubits and Superposition States

A qubit (quantum bit) is the fundamental unit of quantum information: a two-level quantum

system that can exist not only in one of two classical states, |0⟩ or |1⟩, but also in any coherent

superposition of both:

|α⟩ = α0 |0⟩ + α1 |1⟩ , (2.1)

where the complex coefficients α0 and α1, called probability amplitudes, satisfy the normal-

ization condition |α0|2 + |α1|2 = 1.

When measured in the computational basis {|0⟩ , |1⟩}, the qubit collapses to |0⟩ with

probability |α0|2 or to |1⟩ with probability |α1|2. This probabilistic nature, combined with

coherent superposition, allows quantum computers to explore many configurations simulta-

neously.

The state of a single qubit can be visualized on the Bloch sphere, where any pure state

is represented as

|α⟩ = cos
(
θ

2

)
|0⟩ + eiϕ sin

(
θ

2

)
|1⟩ , (2.2)

with (θ, ϕ) defining a point on the sphere. The north and south poles correspond to |0⟩ and

|1⟩, respectively, while equatorial points represent balanced superpositions such as |+⟩ =

(|0⟩ + |1⟩)/
√

2 and |−⟩ = (|0⟩ − |1⟩)/
√

2.

2.2 Multi-Qubit Registers

A register of n qubits spans a Hilbert space of dimension 2n:

|ψ⟩ =
∑

s∈{0,1}n

αs |s⟩ , (2.3)

where s = (s1, . . . , sn) is a binary string specifying the computational basis state |s⟩ = |s1⟩⊗

· · · ⊗ |sn⟩. The 2n complex amplitudes {αs} define the full statevector, with corresponding

measurement probabilities Ps = |αs|2.

6

This exponential scaling of state space-n qubits encoding 2n amplitudes-is the origin of

quantum computational advantage. For example, 30 qubits can represent more amplitudes

than can be stored in the memory of a classical supercomputer.

2.3 Entanglement and Quantum Correlations

Unlike classical registers, multi-qubit systems can exhibit entanglement, where the mea-

surement outcomes of different qubits are intrinsically correlated. An entangled state cannot

be written as a product of individual qubit states. A canonical example is the Bell state,

∣∣∣Φ+
〉

= 1√
2

(|00⟩ + |11⟩), (2.4)

in which each qubit has equal probability of being found in |0⟩ or |1⟩, yet the two are

perfectly correlated: measuring one in |0⟩ guarantees that the other is |0⟩, and similarly for

|1⟩. Entanglement is a uniquely quantum resource that underlies quantum teleportation,

quantum error correction, and the speedups achieved in many quantum algorithms.

2.4 Quantum Gates and Circuits

Quantum computations are carried out through sequences of unitary operations, or quan-

tum gates, that act on qubit registers. Each gate corresponds to a reversible linear trans-

formation preserving normalization, such as the Pauli gates:

X =

0 1

1 0

 , Y =

0 −i

i 0

 , Z =

1 0

0 −1

 . (2.5)

7

Here, X performs a bit flip (NOT), and Z a phase flip. Other single-qubit gates include the

Hadamard gate H that creates superpositions, and single-qubit rotations,1

H = 1√
2

1 1

1 −1

 , R(θ, ϕ, λ) =

 cos θ
2 −eiλ sin θ

2

eiϕ sin θ
2 ei(ϕ+λ) cos θ

2

 . (2.6)

Two-qubit gates, including the controlled-NOT (CNOT) and controlled-Z (CZ),

CNOT =



1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0


, CZ =



1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 −1


, (2.7)

generate entanglement by making the target qubit respond to the state of the control qubit:

the CNOT flips the target bit, and the CZ flips its phase, but only when the control qubit

is in |1⟩.

A sequence of quantum gates defines a quantum circuit, as illustrated in Fig. 1 for the

preparation of a Bell state:

|00⟩ H⊗I−−→ |00⟩ + |10⟩√
2

CNOT−−−→ |00⟩ + |11⟩√
2

=
∣∣∣Φ+

〉
. (2.8)

Reading from left to right, the register begins in the |00⟩ state. A Hadamard gate applied

to the first qubit creates a superposition, which is then entangled with the second qubit via

a CNOT gate, where the first qubit acts as the control and the second as the target: This

|0⟩ H

|0⟩

Figure 1: Quantum circuit for preparing the Bell state defined in Eq. (2.8).

simple two-qubit circuit encapsulates the fundamental principles of quantum computation-

8

superposition and entanglement-which form the basis of more complex algorithms.

For a hands-on start, QFlux uses the functionality of Qiskit,6 which provides conve-

nient tools to build and execute circuits on IBM superconducting quantum hardware as

well as on classical computers. In superconducting quantum computers, qubits are real-

ized with Josephson junctions and controlled by microwave-frequency pulses, which can be

programmed, and compiled with Qiskit functionalities integrated in QFlux.

Script S.2.1 shows how to install and import the QFlux in Google Colab.11 As a minimal

example, Script S.2.2 encodes the Bell-state circuit from Fig. 1 and executes it on a simulator,

to produce the output shown in Fig. 2.

Figure 2: Fundamental concepts of qubit-based simulation. (a) The Bloch sphere illus-
trates a qubit’s state as a point on the sphere, with poles corresponding to |0⟩ and |1⟩. (b)
The Bell-state circuit demonstrates how simple gate combinations create superposition and
entanglement-essential ingredients for simulating correlated quantum dynamics.

Figure 2 provides a schematic overview of the Bloch-sphere representation and two-qubit

gate operations used to generate Bell states, showing that the corresponding measurement

outcome distributions display perfect correlations, with both qubits found in the same com-

putational state, |00⟩ or |11⟩, each occurring with equal probability.

With these basics in place, subsequent sections implement circuits that simulate time-

dependent dynamics in model systems.

9

2.5 From Circuits to Simulation

In QFlux, these primitives-qubits, gates, and circuits-form the foundation for simulating

molecular and spin dynamics on quantum hardware.

• State preparation: defines the initial wavefunction of the system, such as a vibra-

tional or spin state.

• Time propagation: applies parameterized gate sequences that emulate the evolution

under a Hamiltonian, e.g., via Trotterized or variational algorithms.

• Measurement: extracts observables such as energy, correlation functions, or popula-

tion transfer probabilities.

Mastering these fundamental concepts enables the design and interpretation of all QFlux

circuits-from harmonic oscillators to spin chains and proton transfer reactions.

3 Hamiltonian Simulation

3.1 Encoding Hamiltonians with Pauli Strings

To simulate quantum dynamics on a qubit-based quantum computer, the system Hamiltonian

must be expressed in terms of operations natively supported by the hardware. Since qubit

control is implemented using the Pauli operators I, X, Y , and Z, any Hamiltonian H acting

on n qubits can be expanded as a linear combination of tensor products of these operators:

H =
∑

j

ajPj. (3.1)

Each Pauli string

Pj =
n⊗

k=1
σ

(j)
k , σ

(j)
k ∈ {I,X, Y, Z},

10

is a tensor product of n single-qubit Pauli (or identity) operators and therefore acts on the

full n-qubit Hilbert space. The amplitudes aj determine the relative contribution of each

Pauli string to the Hamiltonian. This representation-known as the Pauli decomposition-casts

the Hamiltonian into a form that is directly compatible with quantum hardware and serves

as the starting point for circuit-based implementations of time evolution.

The coefficients aj are obtained using the Hilbert-Schmidt inner product,

aj = 1
2n

Tr(PjH). (3.2)

Because the Pauli operators form an orthogonal basis under the trace inner product, this

decomposition is exact: every Hermitian operator admits a unique expansion in terms of

Pauli strings. The formal computational cost of constructing the full decomposition scales

as 4n, reflecting the number of possible Pauli strings on n qubits. In practice, however,

physically relevant Hamiltonians are typically sparse in this basis, allowing small coefficients

to be truncated with minimal loss of accuracy.

Once the Hamiltonian is expressed in the Pauli basis, the remaining task is to implement

the time-evolution operator e−iHt, so we can apply it to the initial state |ψ(0)⟩ to obtain the

time-evolved statevector |ψ(t)⟩, as follows:

|ψ(0)⟩ = e−iHt |ψ(t)⟩ . (3.3)

Because the Pauli strings Pj generally do not commute, the exponential of their sum

cannot be implemented exactly as a product of exponentials. Instead, we employ the Trotter-

Suzuki decomposition,

e−iHt ≈

∏
j

e−iajPjt/m

m

, (3.4)

which converges to the exact evolution in the limit of large Trotter number m. For finite

m, this approximation remains accurate provided the noncommutativity between terms is

11

sufficiently weak over each Trotter time step τ = t/m.

This factorization reduces the simulation of a general Hamiltonian to the implementation

of exponentials of individual Pauli strings. Each unitary e−iajPjt/m can be compiled efficiently

into a short quantum circuit using single-qubit rotations and entangling gates. The full

time-evolution operator is then obtained by sequentially composing these circuits across all

Pauli terms and Trotter steps, yielding a practical and hardware-compatible procedure for

quantum simulation.

3.2 Simulating All-Z Hamiltonians

The simplest example of this process is an “all-Z" Hamiltonian, such as

H = Z ⊗ Z ⊗ Z. (3.5)

The corresponding time-evolution operator e−iτ Z⊗Z⊗Z is diagonal in the computational basis

and applies a phase that depends on the parity of the state. Specifically, for a basis state

|b1b2b3⟩ with bk ∈ {0, 1}, the operator multiplies the state by e−iτ if the number of qubits in

the state |1⟩ is even (even parity), and by eiτ if that number is odd (odd parity).

Instead of manually assigning these phases to every basis state, we can compute the

parity of the register using an ancilla qubit (Fig. 3). By applying a CNOT gate from each

data qubit onto the ancilla, the ancilla flips for every qubit in the |1⟩ state, encoding the total

parity of the system. A single rotation Rz(2τ) on the ancilla then introduces the desired

phase shift. Reversing the sequence of CNOTs “uncomputes" the parity and restores the

ancilla to |0⟩.

This construction is highly efficient: an n-qubit all-Z Hamiltonian can be implemented

using only 2n CNOT gates and one Rz gate as implemented in Script S.2.3. It also illustrates

a general principle of Hamiltonian simulation-global phase operations can be built from local

gates through clever use of parity encoding.

12

a = |0⟩ |0⟩Rz(2τ)

Figure 3: Quantum circuit implementing the propagator e−iτZ⊗Z⊗Z . The ancilla accumulates
the parity information through CNOTs, receives a phase rotation Rz(2τ), and is reset by
reversing the CNOTs.

3.3 Extending to Arbitrary Pauli Strings

Most Hamiltonians are not composed solely of Z operators. To simulate a more general

Pauli string, such as

H = X ⊗ I ⊗ Y ⊗ Z, (3.6)

we make use of basis rotations that convert X and Y into Z. The Hadamard gate H trans-

forms Z into X via conjugation, since X = HZH. Similarly, a rotation about the x-axis by

π/2 maps Z into Y , with Y = Rx(−π/2)ZRx(π/2). By applying these transformations, we

can temporarily express the entire Pauli string in the Z-basis, use the all-Z parity evolution

circuit, and then invert the rotations to return to the original basis (Fig. 4).

This procedure can be formally verified. For instance, the operator eiθ(σx⊗σz) can be

written as

eiθ(σx⊗σz) = (H ⊗ I)eiθ(σz⊗σz)(H ⊗ I), (3.7)

showing that the X-term can be implemented using the all-Z circuit sandwiched between

Hadamards on the first qubit. A similar identity holds for Y -operators when replacing H

with Rx(±π/2). Thus, every Pauli string can be simulated by local basis rotations, an all-Z

propagation, and the inverse rotations.

Script S.2.4 provides a Python implementation that performs these steps automatically-

applying the basis-change gates, invoking the all-Z parity evolution, and restoring the orig-

inal basis. The design also supports an optional control qubit, though in practice the parity

13

can be collected on the final data qubit.

3.4 Building General Hamiltonians

Once we can simulate any individual Pauli string, we can handle general Hamiltonians ex-

pressed as

H =
∑

k

ckPk. (3.8)

Each term e−ickPkt is implemented as described above. Using first-order Trotterization, the

combined evolution

e−iHt ≈
(∏

k

e−ickPkt/m

)m

(3.9)

is realized by repeating the product sequence (m) times. The number of Trotter steps

controls the trade-off between circuit depth and accuracy: larger (m) yields a more faithful

approximation at the cost of more gates.

a = |0⟩ |0⟩

H H

Rx(π/2) Rx(−π/2)

e−iτZ

Figure 4: Quantum circuit representing the propagator e−iτ(X⊗I⊗Y ⊗Z). The operators X and
Y are first mapped to Z via conjugations: X = HZH and Y = Rx(−π/2)ZRx(π/2). The
resulting effective all-Z propagator is implemented using the parity circuit from Section 3.2.

In practice, a quantum software framework like QFlux automates this process. It first

decomposes the Hamiltonian into Pauli strings, computes their coefficients via the Hilbert-

Schmidt inner product, and then constructs a composite circuit by sequentially applying

the corresponding unitary evolutions, as implemented in Script S.2.5, using the exp_pauli

function.

14

Each circuit fragment is hardware-native and composed only of one- and two-qubit gates,

making the resulting simulation compatible with NISQ devices.

3.5 Putting It All Together

To illustrate the complete workflow, consider the Hamiltonian

H = 0.5 Z ⊗ Z + 0.3 Y ⊗ Y. (3.10)

Starting from an initial superposition state, we can apply the Trotterized propagator

generated from this Hamiltonian and then measure the resulting distribution. The first

term, Z ⊗ Z, contributes a phase conditioned on the parity of the qubits, while the Y ⊗ Y

term introduces coherent oscillations between |00⟩ and |11⟩. When simulated using the

Aer backend in Qiskit, the final histogram displays interference patterns characteristic of

entangled spin dynamics (Fig. 5). The Script S.2.6 provides a test simulation for the

Hamiltonian H = 0.5 ZZ + 0.3 YY, preparing a superposition state, evolving it using the

hamiltonian_simulation function, and measuring the outcome. The output should look

similar to Fig. 5 when using plot_histogram (counts).

Through this procedure, QFlux and similar frameworks enable users to move seamlessly

from abstract Hamiltonians to executable quantum circuits. The decomposition into Pauli

strings, the use of parity-based phase circuits, and the modular treatment of each operator

provide a systematic method for simulating a wide variety of physical systems on contempo-

rary quantum hardware. Whether modeling molecular interactions or spin lattices, the same

underlying principle applies: any Hamiltonian can be rewritten in terms of Pauli operators,

and from that foundation, a circuit-level realization naturally follows. It should thus be clear

that quantum circuits do not introduce “new physics" but rather new backends for familiar

quantum-dynamical simulation methods.

15

Figure 5: Output of the test code S.2.6 for Hamiltonian simulation.

3.6 Expectation Values

3.6.1 Hadamard Test: Expectation Values from Measurements of an Ancilla

The Hadamard test is a foundational quantum algorithm used to estimate the real and

imaginary components of an expectation value of a unitary operator U with respect to

a state |ψ⟩: ⟨U⟩ = ⟨ψ|U |ψ⟩. It employs a single ancilla qubit to coherently control the

application of U and extract phase information through interference. Two circuit variants

are typically used: one to measure the real part and another to measure the imaginary part

of the expectation value, as illustrated in Fig. 6.

16

Circuit Description

In the real-part circuit (Fig. 6a), the ancilla is first placed in an equal superposition |+⟩ via

a Hadamard gate. It then controls the application of U on the system prepared in |ψ⟩. After

the operation, a second Hadamard gate recombines the interference paths before measuring

the ancilla in the computational (Z) basis. To obtain the imaginary part (Fig. 6b), a phase

gate P−π/2 is inserted before the controlled-U , introducing a relative phase that shifts the

interference pattern, isolating the imaginary component.

(a)
Ancilla: |0⟩ H H Re[⟨ψ|U |ψ⟩]

System: |ψ⟩ U

(b)
Ancilla: |0⟩ H P−π/2 H Im[⟨ψ|U |ψ⟩]

System: |ψ⟩ U

Figure 6: Circuits for measuring (a) the real and (b) the imaginary parts of ⟨ψ|U |ψ⟩ using
the Hadamard test.

Derivation for the Real Part

1. Initialization. The ancilla starts in |0⟩ and is transformed by a Hadamard gate into

|+⟩ = 1√
2

(|0⟩ + |1⟩). (3.11)

The joint system-ancilla state becomes

|Ψ0⟩ = 1√
2

(|0⟩ + |1⟩) ⊗ |ψ⟩ . (3.12)

17

2. Controlled application of U . A controlled-U acts only when the ancilla is |1⟩:

|Ψ1⟩ = 1√
2

(|0⟩ ⊗ |ψ⟩ + |1⟩ ⊗ U |ψ⟩) . (3.13)

3. Second Hadamard and measurement. Applying another Hadamard on the ancilla

produces

|Ψ2⟩ = 1
2[|0⟩ ⊗ (I + U) |ψ⟩ + |1⟩ ⊗ (I − U) |ψ⟩] . (3.14)

The ancilla’s Z-expectation value is then

⟨σz⟩ = ⟨Ψ2|σz ⊗ I|Ψ2⟩ = Re[⟨ψ|U |ψ⟩]. (3.15)

4. Experimental estimation. In practice, this expectation value is obtained by averaging

measurement outcomes over many shots:

⟨σz⟩ = N|0⟩ −N|1⟩

N|0⟩ +N|1⟩
, (3.16)

where N|0⟩ and N|1⟩ are the counts of ancilla measurements yielding |0⟩ and |1⟩.

Imaginary Part via Phase Shift

For the imaginary component, the procedure is the same except that the ancilla receives a

phase gate

P−π/2 =

1 0

0 e−iπ/2

 , (3.17)

which changes the superposition to

P−π/2 |+⟩ = 1√
2

(|0⟩ − i |1⟩). (3.18)

18

Repeating the same controlled-U and measurement process, the ancilla’s Z-expectation now

yields

⟨σz⟩ = Im[⟨ψ|U |ψ⟩]. (3.19)

Example: Survival Amplitude

A practical example is computing the survival amplitude

ξ(t) = ⟨ψ0|e−iHt/ℏ|ψ0⟩, (3.20)

which can be obtained via the Hadamard test by setting U = e−iHt/ℏ. The ancilla’s mea-

surement outcomes yield both Re[ξ(t)] and Im[ξ(t)], characterizing how the quantum state

evolves under the Hamiltonian H.

In Section 4.5.1, we show how QFlux automates this Hadamard-test-based computation

for spin-chain simulations, enabling efficient estimation of survival amplitudes and correlation

functions (Script S.2.31 and Script S.2.32).12

3.6.2 Expectation Values from Pauli-String Measurements

In many quantum algorithms, particularly variational and Hamiltonian-based simulations,

U corresponds to an observable (a Hermitian operator) rather than a general unitary. As

explained in Section 3.1 for the decomposition of the Hamiltonian as a linear combination

of Pauli strings, any observable O can be decomposed as a weighted sum of Pauli strings:

O =
∑

j

cjPj, (3.21)

Each Pauli string Pj = ⊗n
k=1 σ

(j)
k , with σ

(j)
k ∈ {I,X, Y, Z}, is a tensor product of Pauli

operators acting on individual qubits. Here, cj = 1
2n Tr(PjO).

19

To estimate the expectation value

⟨O⟩ = ⟨ψ|O|ψ⟩ =
∑

j

cj⟨ψ|Pj|ψ⟩, (3.22)

each Pauli string Pj is measured separately:

1. Basis rotation. Rotate qubits so that each Pj can be measured in the computational

(Z) basis. For example:

HXH = Z,

S†HYH†S = Z.

2. Measurement. Perform projective measurements in the Z-basis on all qubits, repeat-

ing the circuit many times.

3. Averaging outcomes. Each measurement shot yields a bitstring b = (b1, . . . , bn),

where bk ∈ {0, 1}. Map each bit to an eigenvalue of Z: zk = (−1)bk . The value of Pj

for that shot is the product of the corresponding zk for the non-identity terms in Pj.

Averaging over all shots gives

⟨Pj⟩ = 1
N

N∑
s=1

p
(s)
j . (3.23)

4. Combining results. Finally, sum over all terms:

⟨O⟩ =
∑

j

cj⟨Pj⟩. (3.24)

This measurement-based approach is equivalent in purpose to the Hadamard test—both

compute expectation values—but it avoids the need for an ancilla qubit or controlled-U

operations (Appendix S.1). The Hadamard test, however, becomes advantageous when eval-

uating complex overlaps, time-evolution amplitudes, or expectation values of non-Hermitian

20

unitaries, where interference between quantum paths directly reveals both real and imaginary

components.

4 Simulating Heisenberg Hamiltonians

Building on the general framework introduced in Section 3 for simulating arbitrary Hamil-

tonians expressed as sums of Pauli strings, we now apply these ideas to a concrete and

physically relevant example: the Heisenberg model. This model serves as a compact yet

powerful case study for implementing, validating, and benchmarking quantum Hamiltonian

dynamics on near-term hardware.

4.1 Two-Spin Heisenberg Dynamics on IBM Quantum Hardware

We begin with the two-spin Heisenberg model, the simplest nontrivial example that captures

key features of spin-spin interactions. It provides a clear demonstration of how a model

Hamiltonian can be encoded into a quantum circuit and its dynamics simulated on actual

quantum devices.

The Hamiltonian for two coupled spin-1
2 particles is

H = 1
2
(
h0σ

z
0 + h1σ

z
1

)
+ J

4
(
σx

0σ
x
1 + σy

0σ
y
1 + σz

0σ
z
1

)
, (4.1)

where h0 = −0.5 and h1 = 0.5 are on-site energy offsets, and J = 1 (in atomic units) is the

exchange coupling constant. The first term describes Zeeman splittings on individual spins,

while the second term introduces isotropic spin-spin coupling, which exchanges excitations

between |01⟩ and |10⟩ and shifts the {|00⟩ , |11⟩} subspace.

In Script S.2.7, we explicitly construct H and compute its short-time propagator U(τ) =

e−iτH, which serves as a numerical reference. This same operator will later be decomposed

into its constituent Pauli terms and compiled into a quantum circuit following the techniques

introduced in Section 3, enabling direct execution on IBM Quantum backends via Qiskit.

21

Classical Simulation. Before deploying the circuit on quantum hardware, we first per-

form a classical simulation to establish a ground-truth reference. For an evolution time of

τ = 1 a.u., we compute the time-evolution operator U = e−iHτ/ℏ via direct matrix exponen-

tiation and apply it to the initial state |00⟩, representing both spins in the up configuration.

The resulting statevector, denoted psi_fin (shown in Script S.2.8), provides a benchmark

for validating the quantum simulation results.

Quantum Implementation on IBM Hardware. We now implement the same evolution

as a quantum circuit using IBM’s Qiskit framework. The process follows three main steps:

(1) quantum state initialization, (2) unitary time propagation, and (3) measurement of the

final state probabilities.

1. Quantum State Initialization. We allocate a two-qubit quantum register together

with a classical register for readout. Since Qiskit initializes all qubits in the |0⟩ state by

default, no additional state preparation is necessary (Script S.2.9).

2. Unitary Propagation. The time-evolution operator U is wrapped in a qiskit.

Operator object and appended to the circuit (Script S.2.10). This step effectively embeds

the continuous-time evolution dictated by H into the discrete quantum gate model.

3. Measurement. Finally, measurement operations are applied to both qubits to obtain

the output probability distribution (Script S.2.11). The resulting circuit can be visualized

with the command entangler.draw().

Execution on IBM Quantum Simulators and Hardware. The constructed circuit can

be executed either on simulators or real devices using IBM’s cloud infrastructure. Before

hardware access, an IBM Quantum account must be authenticated using an API token

(Script S.2.12).

We first execute the circuit on the IBM QASM simulator, which provides a noiseless

reference reproducing ideal quantum behavior (Script S.2.13). We then repeat the same

procedure on a real IBM quantum processor (e.g., ibm_manila) or a noisy simulated backend

22

(e.g., FakeManilaV2), as illustrated in Script S.2.14.

Results and Discussion. The probability distributions obtained from the classical com-

putation, the QASM simulator, and real IBM hardware are compared in Fig. 7. As expected,

the QASM simulator reproduces the classical results exactly, confirming the correctness of

the circuit and the underlying operator decomposition. In contrast, data collected from

physical hardware show deviations due to gate infidelities, decoherence, and readout noise.

These discrepancies highlight the limitations of current NISQ-era devices and emphasize

the importance of error mitigation strategies for achieving quantitatively accurate quantum

simulations.

Figure 7: Comparison of probability distributions obtained from classical calculations,
QASM simulation, and IBM quantum hardware for the two-spin Heisenberg model. The
QASM simulator reproduces the classical benchmark exactly, while real-device data exhibit
deviations caused by gate errors, decoherence, and finite sampling.

23

4.2 Hamiltonian Simulation of an N-Spin Heisenberg Model

We now generalize the discussion to an N -spin Heisenberg model to illustrate how Hamil-

tonians composed of linear combinations of Pauli tensor products can be efficiently encoded

and simulated on quantum hardware.

As a representative case, we consider the Heisenberg spin chain,

H =
N−1∑
n=0

Ωnσ
z
n − 1

2

N−2∑
n=0

(
Jx

n,n+1σ
x
nσ

x
n+1 + Jy

n,n+1σ
y
nσ

y
n+1 + Jz

n,n+1σ
z
nσ

z
n+1

)
, (4.2)

where σx,y,z are Pauli operators acting on site n, Ωn are on-site energy offsets, and Jp
n,n+1

(p ∈ {x, y, z}) represent nearest-neighbor coupling strengths.

This Hamiltonian captures a wide range of physical processes, including electron trans-

port and spin transfer along molecular or solid-state chains. For instance, in functionalized

graphene nanoribbons studied by Wang et al.,13 alternating sites can host unpaired spins

whose stability is modulated by Ωn, while inter-site couplings Jp
n,n+1 depend on linker chem-

istry (e.g., diketone-containing regions) and can be tuned synthetically.

Figure 8: Static versus dynamical views of a Heisenberg spin chain. Left: On-site param-
eters Ωn set the energy cost of spin flips, while couplings Jp

n,n+1 mediate correlations and
entanglement between neighboring spins. Right: Under unitary evolution, the spin configu-
ration evolves in time, while global conserved quantities (e.g., total spin in isotropic models)
remain constant.

24

4.3 Dynamics of a Three-Site Spin Chain

To make things concrete, we adopt parameters from Fiori et al.14 and restrict to a three-site

chain (see Fig. 8). The values are summarized in Table 1.

Table 1: Hamiltonian parameters used in the three-site spin-chain simulation.14

Parameter n = 0 n ̸= 0
Ωn 0.65 1.0

Jx
n,n+1 0.75 1.0
Jy

n,n+1 0.75 1.0
Jz

n,n+1 0.0 0.0

We initialize the system in the same state used by Fiori et al.: spin-up at the first site

and spin-down elsewhere,

|ψ0⟩ = |↑↓↓⟩ = |↑⟩ ⊗ |↓⟩ ⊗ |↓⟩ , |↑⟩ =

1

0

 , |↓⟩ =

0

1

 . (4.3)

Because this model is classically tractable, it provides a convenient benchmark for validating

quantum-circuit results. In practice, the full time evolution can be simulated with QFlux in

just a few lines, as shown in Script S.2.15.

Hamiltonian Encoding in Qiskit: To run the same model on a quantum computer,

we encode its Pauli decomposition using Qiskit.6 Each interaction acts nontrivially only on

adjacent sites, e.g.,

σy
nσ

y
n+1 = I ⊗ · · · ⊗ Yn ⊗ Yn+1 ⊗ · · · ⊗ I. (4.4)

Qiskit’s SparsePauliOp offers a compact representation: each Pauli string is specified as a

string and scaled by its coefficient; the Hamiltonian is the sum of these terms. Script S.2.16

shows a helper function that assembles the site-local contributions.

25

4.4 Constructing the Full Heisenberg Hamiltonian

The full Hamiltonian for an N -site spin chain is constructed iteratively for each site, as shown

in Script S.2.17. This function generates the Hamiltonian based on user-defined interaction

coefficients or assumes uniform coupling if none are provided. The correctness of the Hamil-

tonian can be verified by calling the function and inspecting its operator representation, as

demonstrated in Script S.2.18.

4.4.1 Implementing Real-Time Dynamics with Trotterization

Solving formally the time-dependent Schrödinger equation, we obtain:

|Ψ(t)⟩ = e−iHt/ℏ |Ψ(0)⟩ . (4.5)

However, applying the propagator to the initial state is challenging due to the complexity of

exponentiating the Hamiltonian which is typically a sum of non-commuting operators (e.g.,

H = A+B). A practical approach is to approximate the exponential, as follows:

eδ(A+B) = eδA · eδB +O
(
δ2
)
. (4.6)

For small values of δ, this approximation is sufficiently accurate. The code shown in

Script S.2.19 implements the time evolution operator for the Heisenberg Hamiltonian, which

is generalizable to any Hamiltonian expressed in terms of Pauli matrices.

4.4.2 Compact Trotterization Scheme

While the propagator can be implemented using built-in quantum evolution methods, a more

efficient approach is to manually encode the Trotter decomposition for Hamiltonians with

one- and two-qubit Pauli operators. This method reduces circuit depth while maintaining

accuracy. The key idea is to represent one-qubit terms as rotation gates (A) and two-qubit

terms using an optimal decomposition (B,C). The two-qubit terms are grouped into layers

26

targeting even- and odd- indexed qubits separately. The objective is to construct circuits

corresponding to a single Trotter step:

Figure 9: Quantum circuit implementing the basic and symmetric Trotter decomposition for
Hamiltonians with two-qubit Pauli operators.

Sorting Hamiltonian Terms by Interaction Order: To systematically organize the

Hamiltonian terms, we separate them into one-qubit, even two-qubit, and off two-qubit

terms. This is done using functions that process Qiskit SparsePauliOp Hamiltonians

(Script S.2.20 and Script S.2.21).

Encoding Single-Qubit Terms: Each one-qubit term is implemented using a correspond-

ing rotation gate (RX(θ) = e−i θ
2 X , RY (θ) = e−i θ

2 Y , or RZ(θ) = e−i θ
2 Z), with rotation angle θ

derived from the exponential argument:

e−i θ
2 X =

 cos θ/2 −i sin θ/2

−i sin θ/2 cos θ/2

 , e−i θ
2 Y =

cos θ/2 − sin θ/2

sin θ/2 cos θ/2

 , e−i θ
2 Z =

e−iθ/2 0

0 eiθ/2

 ,
(4.7)

where, θ = 2hiτ .

Encoding Two-Qubit Terms: For two-qubit terms, we use the optimal U(4) decomposi-

tion:

U = (A1 ⊗ A2)N(α, β, γ)(A3 ⊗ A4), (4.8)

where

N(α, β, γ) = exp{i(ασx ⊗ σx + βσy ⊗ σy + γσz ⊗ σz)}. (4.9)

27

The required parameters are:

θ = π

2 − 2γ, ϕ = 2α− π

2 , λ = π

2 − 2β. (4.10)

Figure 10: Quantum circuit for implementing a general two-qubit Pauli operator.

Note that α = Jx
n,n+1τ, β = Jy

n,n+1τ, γ = Jz
n,n+1τ due to the connection to the exponential

argument. We note that this circuit can support disconnected 2-qubit operators as long as

the first index corresponds to the first wire and the second index to the second wire. The

following function in Script S.2.22 implements the most general approach.

Constructing the Full Trotter Circuit: Finally, we assemble the full Trotter cir-

cuit, supporting both basic (BCA) and symmetric (ACBCA) decompositions, as shown in

Script S.2.23.

This method reduces circuit depth per Trotter layer to 15 gates (basic) and 23 gates (sym-

metric) while maintaining compatibility with Qiskit’s built-in methods (see Script S.2.24).

4.4.3 Initializing a Quantum Circuit with Qiskit

The number of quantum bits (qubits) required for a simulation depends on the problem size,

while classical bits are used for recording measurement outcomes. We begin by creating a

quantum circuit initialized in the vacuum state |0⟩ ⊗ |0⟩ ⊗ |0⟩ = |000⟩ (Script S.2.25):

Customizing the Initial State: We can modify the vacuum state by applying bit-flip

operations (X gates) to obtain a specific state. For instance, the state I |0⟩⊗X |0⟩⊗X |0⟩ =

|011⟩ can be prepared from vacuum by applying X gates, as shown in Script S.2.26, or by

amplitude encoding as shown in Script S.2.27.

Applying the Time Evolution Operator: Once the initial state is prepared, we apply

28

the time evolution operator and check the overall structure and depth of the quantum circuit

(Script S.2.28).

This workflow provides a simple example of how to initialize quantum circuits by setting

custom initial states, and how to apply time-evolution operators efficiently. The transpilation

step ensures optimal execution on quantum hardware or simulators.

4.5 Qubit-Based Quantum Experiments

Quantum experiments can be executed either on a quantum computer such as an IBMQ

device, or on a classical simulator, such as the Statevector Simulator, which employs lin-

ear algebra (e.g., matrix-matrix and matrix vector multiplications) to simulate the evolution

of the statevector along the quantum circuit. To ensure computational feasibility, quantum

circuits should maintain a relatively shallow depth (≤ 100 linear operations). When exe-

cuting on quantum hardware, transpilation is necessary to map circuit operations onto the

native gate set of the device.

Statevector-Based Quantum Simulation: We start by implementing an iterative stat-

evector simulation to propagate the quantum state over discrete time steps. The Script S.2.29

initializes a quantum state, applies the desired quantum evolution, and updates the state

iteratively. Since the statevector_simulator backend supports direct state initialization,

reinitialization at each iteration remains computationally feasible. However, this approach

would not be practical for implementation on quantum hardware, since it would require

quantum state tomography which scales exponentially like 4N , with N the number of qubits.

Computing the Survival Amplitude: We now execute the iterative propagation using a

defined initial state and time evolution operator to compute the absolute value of the survival

amplitude:

|⟨ψ0|ψt⟩| =
∣∣∣⟨ψ0| e−iHt/ℏ |ψ0⟩

∣∣∣ . (4.11)

The corresponding simulation code is shown in Script S.2.30. This implementation en-

29

Figure 11: Absolute value of the survival amplitude calculated using the statevector method,
in agreement with the classical benchmark.

ables efficient simulation of quantum state evolution using an iterative statevector approach,

allowing direct computation of dynamical observables for validation against classical bench-

marks.

In summary, the Hadamard test allows us to estimate the real and imaginary parts

of ⟨ψ|U |ψ⟩ by using an ancilla qubit which is measured in the computational basis. By

averaging over multiple measurements, we can accurately estimate expectation values, as well

as correlation functions such as the survival amplitude ξ(t) = ⟨ψ0|ψt⟩ with |ψt⟩ = e−iHt/ℏ |ψ0⟩.

Section 4.5.1 shows how to use QFlux to implement the Hadamard test and obtain the

survival amplitude of a spin chain, based on the dynamics simulation as implemented in

Script S.2.31.12

4.5.1 Hadamard Test Function

The Hadamard test circuit is constructed by setting up the ancilla in an equal superposition,

initializing the wavefunction, and applying a controlled unitary corresponding to the expec-

tation value of interest. Measurement of the ancilla in the computational basis provides

the counts N|0⟩ and N|1⟩ (i.e., numbers of ancilla measurements with outcomes +1 and −1,

respectively) necessary to compute the real and imaginary components of the expectation

30

value, according to Eq. (7.2), as shown in Script S.2.32.

4.5.2 Processing the Hadamard Test Results

The expectation values are obtained from the average of ancilla measurements, according to

Eq. (7.2), as shown in the post-processing procedure given in Script S.2.33.

4.6 Executing the Hadamard test for an Operator

Using the time_evo_op for a small propagation time step, we generate the controlled unitary.

We then execute the Hadamard test for all times by propagating the initial state using the

controlled unitary, and we compute the real and imaginary components of the expectation

value using the Scripts S.2.34 and S.2.35. For comparison, the initial state and time evolution

operators are the same as those used for the spin chain statevector simulation.

Fig. 12 shows that the results of the Hadamard test agree with the calculations based on

statevector simulations. The statistical noise in these noiseless simulations can be eliminated

by increasing the number of shots at the expense of additional execution time.

5 The Q-SOFT Algorithm

The split-operator Fourier transform (SOFT) algorithm15–18 advances a wavefunction over

a short time step τ by alternating between potential- and kinetic-energy propagators that

are diagonal in complementary bases. Classically, fast Fourier transforms (FFTs) shuttle

between position and momentum grids. Its quantum analog, Q-SOFT, uses the quantum

Fourier transform (QFT) to move between computational (position) and momentum bases

on n qubits representing N = 2n grid points.

31

Figure 12: Absolute value of the survival amplitude for spin-chain dynamics, calculated using
the Hadamard test (blue circles) and statevector simulations (dashed line).

5.1 Discretization and Encoding

We discretize a 1D coordinate x ∈ [xmin, xmax) into N points xj = xmin + j,∆x with spacing

∆x = (xmax − xmin)/N . The continuous state ψ(x) is mapped to an N -component vector

|ψ⟩ =
N−1∑
j=0

ψ(xj) |j⟩ ,
N−1∑
j=0

|ψ(xj)|2∆x = 1, (5.1)

encoded in the computational basis of n qubits. The conjugate momentum grid is pk =
2π

N,∆x

(
k − N

2

)
with spacing ∆p = 2π

N∆x
(other phase conventions are possible, Section 5.3).

32

5.2 Time Evolution via Second-Order Trotterization

For a Hamiltonian H = T + V with T = p̂2/2m and V = V (x̂), the order-O(τ 3) Strang

splitting advances the state as15–18

|ψ(t+ τ)⟩ ≈ e−iV τ/2e−iT τ e−iV τ/2 |ψ(t)⟩ . (5.2)

In Q-SOFT, the kinetic step is performed in the momentum basis, reached by the QFT. One

elementary time-step therefore implements

|ψ(t+ τ)⟩ = UV UQFT UT U †
QFT UV |ψ(t)⟩ , UV ≡ e−iV (x̂),τ/2, UT ≡ e−ip̂2τ/2m. (5.3)

Repeating Eq. (5.3) for Nsteps = tmax/τ mirrors classical SOFT propagation.15–18

Figure 13: Circuit schematic of one Q-SOFT time step. Diagonal potential and kinetic
propagators are implemented as phase operators in the position and momentum bases, re-
spectively. The QFT (and its inverse) mediate between the two representations.

5.3 QFT Conventions and Momentum Ordering

We adopt the N -point QFT on n qubits,

UQFT |j⟩ = 1√
N

N−1∑
k=0

e2π i jk/N |k⟩ . (5.4)

33

With do_swaps=True, Qiskit’s QFT includes terminal swaps that restore big-endian order-

ing. Consistency of (i) endianness, (ii) whether swaps are present, and (iii) the definition of

pk is essential so that UT remains diagonal in the QFT basis. If terminal swaps are used,

construct UT = diag
(
e−ip2

kτ/2m
)

in that ordering.

5.4 Constructing Diagonal Propagators

Both UV and UT are diagonal matrices of phases. They can be implemented three equivalent

ways:

1. Direct operator embedding (as in the code snippet): provide the full 2n ×2n matrix

to an Operator and append it. This is convenient for small n and exact in simulation.

2. Walsh / Pauli decomposition: expand the diagonal phases in a Walsh-Hadamard

or Z-Pauli basis and realize them as products of controlled phase rotations. Depth

scales with the number of significant coefficients (Appendix C).

3. Programmable phase gradient: for smooth V (x), approximate UV by a low-degree

polynomial in x mapped to powers of a binary-encoded position register, yielding O(n)

multi-controlled RZ gates.

In all cases, ensure that UV encodes the half-step phase τ/2, while UT encodes the full step

τ , per Eq. (5.2). Using a full-step UV twice per step would overdamp the dynamics.

5.5 Resource Estimates

A naive implementation incurs:

• QFT (and inverse): depth O(n2) with controlled-phase ladders; O(n log n) with

approximate-QFT.19

• Diagonal phases: at most O(2n) one-qubit RZ if embedded; O(n2n) two-qubit controls

in worst-case Pauli/Walsh synthesis, but often far fewer due to structure.

34

• Per time step: 2 × QFT + 2 × UV + 1 × UT .

For statevector simulation (no noise), operator embedding is perfectly acceptable up to

n ∼ 10–12. On hardware, approximate-QFT and sparse phase synthesis reduce depth.

5.6 Numerical Accuracy and Diagnostics

Second-order splitting yields a global error O(tmaxτ
2); reduce τ to check convergence. Addi-

tional best practices:

1. Aliasing: choose x-domain wide enough that probability at boundaries remains neg-

ligible over tmax; otherwise include absorbing layers.

2. Normalization: monitor ∑j |ψj|2∆x; statevector simulators preserve norm exactly,

but resampling/interpolation in analysis must respect ∆x.

3. Momentum convention check: propagate a narrow Gaussian and confirm that

free-particle spreading matches analytics with your pk ordering.

5.7 Implementation Notes

For clarity and reproducibility:

1. Initialize with qc.initialize(psi_0, q[:], normalize=True).

2. Prebuild UV , UT , QFT, and QFT† once and reuse them in the loop.

3. Use the statevector backend for benchmarking; shots are ignored.

4. If you later add measurements, include a classical register explicitly.

35

6 Case Study: Proton Transfer in a Double-Well

We illustrate Q-SOFT by simulating proton transfer in an asymmetric double-well potential

modeling the hydrogen bond in a DNA A-T base pair. The potential is

V (x) = α

[
0.429

(
x

x0

)
− 1.126

(
x

x0

)2
− 0.143

(
x

x0

)3
+ 0.563

(
x

x0

)4
]
, (6.1)

where x0 = 1.9592 represents half the separation between the two minima of the double-well

potential V (x), and α = 0.0367493 in atomic units. In this model, the coordinate x describes

the position of the proton in an individual A-T base pair as it undergoes tautomerization

from the energetically favored amino-keto A-T form to the isomeric imino-enol A∗-T∗

form. This process plays a key role in proton transfer mechanisms responsible for quantum

tunneling effects in biological systems.

6.1 Discretization, Initial State, and Units

We work in atomic units with the proton mass m = mp. The position grid spans [xmin, xmax]

symmetrically around zero to include both wells, with N = 2n points. Let ∆x = (xmax −

xmin)/N and ∆p = 2π/(N∆x). The initial state is a minimum-uncertainty Gaussian centered

in the right well,

ψ0(x) = 1
(πσ2

x)1/4 exp
[
−(x− xc)2

2σ2
x

+ ipc(x− xc)
]
, (6.2)

sampled on the grid and normalized so that ∑j |ψ0(xj)|2∆x = 1. We choose a time step

τ (e.g., ∼ 0.5–1.0 fs) small enough to resolve the highest local curvature of V (x) and the

Nyquist frequency implied by ∆x.

36

6.2 Classical SOFT Baseline

The classical reference uses the same grid and time step as Q-SOFT:

ψ(t+ τ) = e−iV τ/2; FFT−1e−ip2τ/2mFFT; e−iV τ/2ψ(t). (6.3)

We benchmark at t = 30 fs and record the probability density ρ(x, t) = |ψ(x, t)|2.

6.3 Quantum Circuit Realization

Q-SOFT mirrors the classical steps with QFTs:

1. Prepare |ψ0⟩ on n qubits via initialize.

2. For each of the Nsteps time steps, apply

UV ;UQFT;UT ;U †
QFT;UV

where UV = diag
(
e−iV (xj)τ/2

)
and UT = diag

(
e−ip2

kτ/2m
)
.

3. Simulate with the statevector backend and extract ρ(x, t) = |ψ(x, t)|2; normalize by

∆x when comparing to continuous densities.

UV and UT are appended as Operator objects; QFT and QFT† are QFT circuit objects with

do_swaps=True. This matches the classical FFT momentum ordering used to define pk.

The corresponding codes for implementing this model potential are provided in

Script S.2.36. Q-SOFT simulations of adenine–thymine tautomerization can be efficiently

executed using the QFlux framework, as demonstrated in Script S.2.37. This includes di-

rect performance and accuracy comparisons with classical SOFT and Runge–Kutta simu-

lations.20–22 By default, the initial quantum state is a Gaussian wavepacket representing

a coherent state centered at x = 1.5, x0 = 2.939, located near the right minimum of the

double-well potential ω =
[

1
mp

∂2V (x;x0)
∂x2

]1/2
, as shown in Script S.2.38. The position and mo-

mentum operators, together with their exponential propagators, are defined as described in

Script S.2.39.

37

Real-time propagation is then carried out for t = 30 fs using the quantum circuit shown

in Fig. 13. The circuit, constructed as detailed in Script S.2.40 and executed by Script S.2.41,

is initialized in the state |ψ0⟩ and evolves through a series of unitary transformations repre-

senting the kinetic and potential propagators. Transitions between position and momentum

representations are achieved using the Quantum Fourier Transform (QFT) operator from

qiskit, corresponding to the inverse Fourier transform implementation in numpy. The prop-

agation loop performs a fixed number of iterations, updating the quantum state at each time

step.

The Q-SOFT results are benchmarked against classical SOFT simulations performed

on a conventional computer, as shown in Script S.2.42. Finally, Fig. 14 presents a direct

comparison between Q-SOFT and SOFT outcomes, generated using the plotting routines in

Script S.2.43. The strong agreement between the two approaches validates the accuracy of

Q-SOFT in capturing the quantum dynamics of adenine–thymine tautomerization, governed

by proton transfer across the model double-well potential.

Figure 14: Application of Q-SOFT to proton transfer in a DNA A-T base pair model,
described by the asymmetric double-well potential V (x) of Eq. (6.1). Probability densities
at the initial time (red) and after t = 30 fs (blue) obtained by classical SOFT (solid line)
and Q-SOFT (points). The close agreement validates the circuit construction and basis
conventions.

38

6.4 Validation and Best Practices

To ensure correctness:

• Half-/full-step phases: verify that the potential operator is a half-step τ/2 and

the kinetic operator a full step τ . Applying a full-step UV twice per step doubles the

potential kick.

• QFT ordering: keep do_swaps and endianness consistent between the circuit and

how pk are enumerated when constructing UT .

• Grid effects: confirm negligible density at xmin / max at t = 30 fs or add absorbing

boundaries.

• Convergence: halve τ and/or increase n to check that observables (e.g., well popu-

lation) are stable within tolerance.

6.5 What the Comparison Shows

Across identical grids and time steps, the classical and quantum implementations produce

indistinguishable densities at t = 30 fs within plotting resolution. Small pointwise differences

reflect (i) discrete sampling of ρ(x) from the statevector vs. cubic interpolation used for the

classical curve in post-processing and (ii) finite Trotter error controlled by τ . Agreement

confirms that (a) phase operators are correctly parameterized, (b) QFT conventions match

the FFT baseline, and (c) the circuit realizes the intended Strang splitting.

6.6 Scalability and Hardware Outlook

On fault-tolerant hardware, diagonal phase operators admit efficient synthesis lever-

aging problem structure (Walsh/Pauli decompositions with coefficient truncation), and

approximate-QFT reduces depth with bounded error. On NISQ devices, noise-sensitive

QFT layers typically limit usable n and Nsteps. Nonetheless, shallow instances (few qubits,

39

few steps) can serve as calibration and verification targets when paired with high-fidelity

simulators.

Reproducibility checklist (matching the code):

1. Use identical x/p grids and time step τ for classical and quantum runs.

2. Build UV = exp[−iV (x)τ/2] and UT = exp[−ip2τ/2m] with the same ordering used by

QFT/FFT.

3. For plotting on the same axes as V (x), scale densities by a constant and normalize

with ∆x.

7 Variational Quantum Time Evolution

Variational algorithms provide a resource-efficient alternative to explicit Trotterization for

simulating real-time quantum dynamics. Instead of decomposing the evolution operator into

small time steps of unitary gates, the system’s state is approximated by a parametrized ansatz

|ψ(θ)⟩, where the parameters θ evolve according to the McLachlan variational principle.

This principle minimizes the distance between the true time-evolved state and the vari-

ational manifold, leading to the Euler equation of motion,

Mij θ̇j = Vi, (7.1)

with

Mij = Re
[
⟨∂iψ|∂jψ⟩

]
, Vi = Im

[
⟨∂iψ|H|ψ⟩

]
. (7.2)

Here, M is the quantum geometric tensor (or overlap matrix), and V encodes the system’s re-

sponse to the Hamiltonian. These quantities are estimated on a quantum device by preparing

and measuring appropriately constructed circuits.

40

Figure 15: Workflow of the Variational Quantum Time Evolution (VQTE) algorithm. A
parametrized circuit generates trial states; the measured observables are used to compute
the matrices M and V , which feed into a classical solver updating the parameters θ to follow
the quantum dynamics. Figure adapted from Ref.23

7.1 Implementation in QFlux

QFlux automates the variational real-time evolution procedure through its modular VarQRTE

driver. The driver constructs the variational ansatz, performs the required quantum mea-

surements (Measure_A and Measure_C), and updates the parameters iteratively. The update

rule follows an explicit Euler step,

θk+1 = θk − (M−1V) ∆t, (7.3)

where M−1 is computed using a truncated singular-value decomposition (SVD) to stabilize

the inversion. The VarQRTE routine returns the full trajectory of parameters over the specified

time interval, allowing reconstruction of observables such as expectation values or state

fidelities.

A reference implementation of this algorithm is provided in Script S.2.44, using QFlux to

simulate the real-time evolution of a two-qubit system described in Sec. 7.2. The simulation

applies the McLachlan variational principle through the VarQRTE function, demonstrating

41

how variational techniques can efficiently capture quantum dynamics within shallow, noise-

resilient circuits (Figure 16).

The ansatz circuit is defined using the Construct_Ansatz function, defined by a gen-

erator G = ∑
j θjGj, such that |ψ(θ)⟩ = e−iG(θ) |0⟩. This modular design enables rapid

adaptation to different Hamiltonians and system sizes while maintaining low circuit depth

and physical interpretability. The derivatives of the quantum state with respect to the

variational parameters are linked to the generators Gi of the ansatz:

∂ |ψ(θ(t))⟩
∂θi

= −iGi |ψ(θ(t))⟩ . (7.4)

7.1.1 Example: Single-Qubit Z-Rotation

As a simple illustration, consider the case of a single-qubit Z-rotation:

∂

∂θ
e−iθσZ |ψ⟩ = −i σZ e−iθσZ |ψ⟩ . (7.5)

This expression shows that taking the derivative of a parameterized unitary operation with

respect to its angle introduces the corresponding generator-in this case, the Pauli operator

σZ-multiplied by −i. In general, for any parameterized gate of the form U(θ) = e−iθG, the

generator G naturally appears when differentiating with respect to θ.

Therefore, the expectation values defined in Eqs. (7.2) can be evaluated in two main ways

(Section 3.6):

1. by directly measuring the relevant Pauli operators on the quantum state, or

2. by performing Hadamard tests on the corresponding generators of the ansatz circuit.

Example: Evaluating matrix elements Aij. To determine the elements of the matrix

Aij, one must evaluate the expectation values involving both the Hermitian conjugate of

the generator associated with parameter θi, denoted G†
i , and the generator corresponding to

42

θj, denoted Gj. These quantities can be estimated using a single ancilla qubit within the

Hadamard test framework.

The procedure is as follows:

1. Initialize the ancilla qubit in the |0⟩ state.

2. To measure G†
i , apply a pair of NOT (X) gates to the ancilla-one before and one after

the controlled application of Gi. This effectively inverts the control, allowing access to

the Hermitian conjugate.

3. Perform a standard Hadamard test on the same ancilla qubit to measure Gj.

By combining these measurements, both G†
i and Gj can be evaluated consistently using

the same ancilla, providing the quantities required for constructing the matrix Aij.

This approach generalizes naturally to multi-parameter variational circuits, where each gen-

erator Gk corresponds to a controllable rotation or interaction term in the ansatz.

7.2 Heisenberg Spin Chain

Spin systems provide compact yet nontrivial examples for testing quantum time-evolution

algorithms. The Heisenberg Hamiltonian for a two-spin system is

H = J(X1X2 + Y1Y2 + Z1Z2), (7.6)

where J determines the interaction strength between neighboring spins. Starting from an

initial superposition or product state, real-time evolution under this Hamiltonian generates

oscillatory spin correlations, observable through quantities such as

⟨Zi(t)⟩ = ⟨ψ(t)|Zi|ψ(t)⟩. (7.7)

When implemented with the VarQRTE driver, the algorithm iteratively measures the M

43

and V matrices for this two-qubit system and updates the circuit parameters to reproduce

the spin dynamics. The resulting trajectories of ⟨Z1(t)⟩ and ⟨Z2(t)⟩ match closely with

classical reference solutions, confirming the ability of the variational approach to capture

coherent spin-exchange processes even with shallow quantum circuits.

Figure 16: VarQRTE simulation of a two-spin Heisenberg model. The measured spin po-
larization ⟨Zi(t)⟩ follows the expected sinusoidal pattern of coherent quantum evolution
demonstrating the capabilities of QFlux’s variational circuits for modeling interacting quan-
tum systems.

Implementation Overview. The QFlux implementation of VarQRTE follows a modular

design where each stage of the McLachlan update is separated into code components that

measure and propagate variational parameters. The three central routines are:

• Utility functions that apply parameters and measure circuit derivatives in a given basis

(apply_param, measure_der, pauli_measure),

• Construction of Aij and Ci measurement circuits (A_Circuit, C_Circuit), and

44

• The main variational update routines (VarQRTE and VarQITE).

This separation opens the black box of the variational loop and allows users to inspect, mod-

ify, or extend the low-level circuit structure governing the variational principle. The code

snippets detail this structure (Script S.2.45–Script S.2.48). The first defines apply_param,

measure_der and pauli_measure functions, the foundational routines that apply parame-

ters and probe their generators in the ansatz (Script S.2.45). Next, the construction of the Aij

and Ci circuits is modularized in A_Circuit and C_Circuit functions, each coupled with cor-

responding measurement wrappers Measure_A and Measure_C (Script S.2.46, Script S.2.47).

Finally, the top-level VarQRTE these lower-level routines are integrated to evolve parameters

in time (Script S.2.48).

7.3 Imaginary-Time Evolution

Analogous to the problem of dynamics is the problem of finding eigenstates of a Hamiltonian,

which can also be approached with the Variational Quantum Imaginary-Time Evolution

(VarQITE). This algorithm follows a protocol analogous to VarQRTE and can be invoked

similarly within QFlux.

An initial state, which has a non-zero overlap with the ground state, can be evolved in

imaginary time to reach the ground state. During the real time evolution, the eigenstates

accumulate a phase |ψ(t)⟩ = e−iEt |ψ(t = 0)⟩, while the evolution in imaginary time τ = it

suppresses states with higher energies, |ψ(τ)⟩ = e−Eτ |ψ(τ = 0)⟩.

The imaginary time evolution can be performed very similarly to VarQRTE described

above, except with one change in calculating the elements of Ci,

Ci = − Re
[
∂ ⟨ψ(θ(t))|

∂θi

H |ψ(θ(t))⟩
]
. (7.8)

Building upon the same framework as VarQRTE, one can measure the Aij and Ci matrices

on a quantum computer, and use them to change the parameters θ(t+ dt) = θ(t) + θ̇dt.

45

Within QFlux, VarQITE function reuses the same modular components while invoking

Measure_C function with the argument evolution_type=’imaginary’. This structural par-

allel highlights how both real- and imaginary-time algorithms are implemented through iden-

tical circuit primitives.

In Script S.2.49, we demonstrate the module-based QFlux implementation of the Var-

QITE algorithm for a representative example of a model Hamiltonian for 3 interacting spins

defined as

H = 0.65Z1 + Z2 + Z3 + 0.75(X1X2 + Y1Y2) +X2X3 + Y2Y3 (7.9)

Thus, we can find the ground state for this spin-chain (Figure 17), which has the same

parameters as outlined in Table 1.

Figure 17: VarQITE drives the system toward the ground state as imaginary time increases,
provided the ansatz is expressive enough. This enables estimation of the ground-state energy
by sampling the long-time behavior.

7.4 Variational Quantum Eigensolver

An alternative approach to the QITE method is the Variational Quantum Eigensolver (VQE)

algorithm, which is also a hybrid quantum-classical algorithm designed to approximate

the ground state energy of a quantum system.24,25 It is particularly well-suited for noisy

intermediate-scale quantum (NISQ) devices since it limits the use of the quantum computer

46

to generation of ansatz for measurements of Pauli operators, while the classical computer

adjusts the parameters of the ansatz to minimize the energy (Fig. 18).

VQE is grounded in the variational principle, which guarantees that for any normalized

trial state |ψ(θ)⟩, the expectation value of the Hamiltonian H is an upper bound of the true

ground state energy E0:

E0 ≤ ⟨ψ(θ)| H |ψ(θ)⟩
⟨ψ(θ)|ψ(θ)⟩ (7.10)

The algorithm proceeds by preparing a parameterized quantum state |ψ(θ)⟩ using an

ansatz circuit. The quantum computer measures the expectation value of the Pauli terms

in the system Hamiltonian, and a classical computer updates the parameters θ using an

optimizer (e.g., COBYLA or SPSA) to iteratively lower the estimated energy.

Pauli String
Measurement

State
Preparation

Ψ(θ)

Compute
Energy

E0

Classical Optimizer
(SPSA,

COBYLA…)

Quantum Computer Classical Computer

Figure 18: Overview of the Variational Quantum Eigensolver (VQE) workflow.

Upon convergence to optimal parameters θf , the quantum state |ψ(θf)⟩ approximates

the ground state |ψ0⟩, and its energy ⟨H⟩θf
approximates the ground state energy E0.

A critical component of VQE is the choice of ansatz, which defines the expressivity

and optimization landscape. Physically motivated ansätze that respect symmetries of the

47

Hamiltonian (e.g., particle number, spin parity) can reduce the parameter space and improve

convergence. For example, selecting an ansatz that conserves excitation number for fermionic

systems ensures the search remains within a physically relevant subspace.

The implementation in Script S.2.50 demonstrates VQE applied to the two-qubit Hamil-

tonian:

H = 1
2Z1 + 1

2Z2 + 1
5X1X2, (7.11)

where Zi and Xi are the Pauli operators for the i-th qubit. The script utilizes the Qiskit

function SparsePauliOp to define the Hamiltonian, EfficientSU2 as the ansatz, and the

Estimator primitive for calculation of the expectation value. The classical optimizer used

is COBYLA from the SciPy library.

8 Conclusions

This tutorial has demonstrated how quantum computers can be used to simulate real-time

molecular and material dynamics by constructing executable circuits that mirror the funda-

mental operations of quantum mechanics. Building on the theoretical foundations established

in Part I, we advanced from basic concepts-qubits, gates, and circuits-to full algorithms for

quantum time evolution implemented in the open-source QFlux framework. Through this

progression, we established a unified workflow that connects Hamiltonian encoding, circuit

construction, time propagation, and measurement within a single reproducible environment.

Two complementary methods for quantum dynamical simulation were developed and

benchmarked. The first, the Quantum Split-Operator Fourier Transform (Q-SOFT) algo-

rithm, provides an explicit and physically transparent approach to propagating wavefunc-

tions on qubit registers. By alternating potential and kinetic phase operators in conjugate

bases connected by the Quantum Fourier Transform, Q-SOFT reproduces the structure and

accuracy of the classical SOFT method while remaining compatible with quantum hard-

ware. Its successful application to proton transfer in a DNA base-pair potential illustrates

48

that meaningful molecular dynamics can already be modeled using modest circuit depths on

contemporary quantum devices.

The second approach, the variational quantum time-evolution method based on the

McLachlan variational principle, offers a resource-efficient alternative to explicit propaga-

tion. Implemented in QFlux through the VarQRTE driver, it enables real-time evolution

within low-depth, parameterized circuits that are robust to noise and well suited to near-term

processors. Its accurate description of coherent spin exchange in the two-spin Heisenberg

model highlights the versatility of variational strategies for capturing correlated quantum

motion.

Together, these techniques establish a coherent bridge between classical simulation meth-

ods and their quantum counterparts, demonstrating that qubit-based hardware can now

perform nontrivial dynamical simulations with quantitative fidelity. The QFlux framework

provides both a pedagogical entry point and a flexible research platform for extending these

capabilities to larger and more complex systems.

Looking ahead, Part III of the QFlux tutorial series will introduce general-purpose

algorithms for quantum state initialization and arbitrary unitary decomposition. These

developments will complete the foundation for constructing fully programmable quantum

simulations, enabling users to prepare custom initial states, implement complex operators,

and explore a broader class of quantum dynamical phenomena across chemistry, physics, and

materials science.

Supporting Information

Detailed Jupyter notebooks implementing Q-SOFT and VQTE algorithms, code for Hamil-

tonian decomposition, and benchmark data are available in the Supporting Information and

corresponding Google Colab notebook as well as through the QFlux Documentation site.

49

https://colab.research.google.com/github/batistagroup/qflux/blob/master/demos/manuscript/SI_II.ipynb
https://qflux.batistalab.com

Acknowledgements

This work was supported by the National Science Foundation under Award No. 2124511 (CCI

Phase I: NSF Center for Quantum Dynamics on Modular Quantum Devices, CQD-MQD) and

Award No. 2302908 (Engines Development Award: Advancing Quantum Technologies, CT).

The authors also acknowledge the use of IBM Quantum services and open-source software

packages, including Qiskit, Bosonic Qiskit, Strawberry Fields, QuTiP, and MPSQD.

References

(1) Nielsen, M. A.; Chuang, I. L. Quantum computation and quantum information; Amer-

ican Mathematical Society, 2010.

(2) Dutta, R.; Cabral, D. G. A.; Lyu, N.; Vu, N. P.; Wang, Y.; Allen, B.; Dan, X.; Cor-

tiñas, R. G.; Khazaei, P.; Schäfer, M.; Albornoz, A. C. C. d.; Smart, S. E.; Nie, S.;

Devoret, M. H.; Mazziotti, D. A.; Narang, P.; Wang, C.; Whitfield, J. D.; Wilson, A. K.;

Hendrickson, H. P.; Lidar, D. A.; Pérez-Bernal, F.; Santos, L. F.; Kais, S.; Geva, E.;

Batista, V. S. Simulating Chemistry on Bosonic Quantum Devices. Journal of Chemical

Theory and Computation 2024, 20, 6426–6441.

(3) Dan, X.; Geva, E.; Batista, V. S. Simulating Non-Markovian Quantum Dynamics on

NISQ Computers Using the Hierarchical Equations of Motion. Journal of Chemical

Theory and Computation 2025, 21, 1530–1546.

(4) Vu, N. P.; Dong, D.; Dan, X.; Lyu, N.; Batista, V.; Liu, Y. A Computational Frame-

work for Simulations of Dissipative Nonadiabatic Dynamics on Hybrid Oscillator-Qubit

Quantum Devices. Journal of Chemical Theory and Computation 2025, 21, 6258–6279.

(5) Allen, B. C.; Batista, V. S.; Cabral, D. G. A.; Cianci, C.; Dan, X.; Dutta, R.; Geva, E.;

Hu, Z.; Kais, S.; Khazaei, P.; Lyu, N.; Mulvihill, E.; Shivpuje, S.; Soudackov, A. V.;

50

Vu, N. P.; Wang, Y.; Wilson, C. QFlux — An Open-Source Python Package for Quan-

tum Dynamics Simulations. https://qflux.batistalab.com, 2025; (accessed: 2025-

10-12).

(6) Aleksandrowicz, G.; Alexander, T.; Barkoutsos, P.; Bello, L.; Ben-Haim, Y.; Bucher, D.;

Cabrera-Hernández, F. J.; Carballo-Franquis, J.; Chen, A.; Chen, C.-F.; Chow, J. M.;

Córcoles-Gonzales, A. D.; Cross, A. J.; Cross, A.; Cruz-Benito, J.; Culver, C.;

González, S. D. L. P.; Torre, E. D. L.; Ding, D.; Dumitrescu, E.; Duran, I.; Eende-

bak, P.; Everitt, M.; Sertage, I. F.; Frisch, A.; Fuhrer, A.; Gambetta, J.; Gago, B. G.;

Gomez-Mosquera, J.; Greenberg, D.; Hamamura, I.; Havlicek, V.; Hellmers, J.; Łukasz

Herok; Horii, H.; Hu, S.; Imamichi, T.; Itoko, T.; Javadi-Abhari, A.; Kanazawa, N.;

Karazeev, A.; Krsulich, K.; Liu, P.; Luh, Y.; Maeng, Y.; Marques, M.; Martín-

Fernández, F. J.; McClure, D. T.; McKay, D.; Meesala, S.; Mezzacapo, A.; Moll, N.;

Rodríguez, D. M.; Nannicini, G.; Nation, P.; Ollitrault, P.; O’Riordan, L. J.; Paik, H.;

Pérez, J.; Phan, A.; Pistoia, M.; Prutyanov, V.; Reuter, M.; Rice, J.; Davila, A. R.;

Rudy, R. H. P.; Ryu, M.; Sathaye, N.; Schnabel, C.; Schoute, E.; Setia, K.; Shi, Y.;

Silva, A.; Siraichi, Y.; Sivarajah, S.; Smolin, J. A.; Soeken, M.; Takahashi, H.; Taver-

nelli, I.; Taylor, C.; Taylour, P.; Trabing, K.; Treinish, M.; Turner, W.; Vogt-Lee, D.;

Vuillot, C.; Wildstrom, J. A.; Wilson, J.; Winston, E.; Wood, C.; Wood, S.; Wörner, S.;

Akhalwaya, I. Y.; Zoufal, C. Qiskit: An Open-source Framework for Quantum Com-

puting. 2019.

(7) Johansson, J. R.; Nation, P. D.; Nori, F. QuTiP: An open-source Python framework

for the dynamics of open quantum systems. Computer Physics Communications 2012,

183, 1760–1772.

(8) Johansson, J. R.; Nation, P. D.; Nori, F. QuTiP 2: A Python framework for the

dynamics of open quantum systems. Computer Physics Communications 2013, 184,

1234–1240.

51

https://qflux.batistalab.com

(9) Stavenger, T. J.; Crane, E.; Smith, K. C.; Kang, C. T.; Girvin, S. M.; Wiebe, N. C2qa-

bosonic qiskit. 2022 IEEE High Performance Extreme Computing Conference (HPEC).

2022; pp 1–8.

(10) Killoran, N.; Izaac, J.; Quesada, N.; Bergholm, V.; Amy, M.; Weedbrook, C. Strawberry

Fields: A Software Platform for Photonic Quantum Computing. Quantum 2019, 3, 129.

(11) Bisong, E. Building machine learning and deep learning models on google cloud platform:

a comprehensive guide for beginners; Springer, 2019; pp 59–64.

(12) Cabral, D. Simulation of the Heisenberg Model Dynamics Tutorial. https://www.

youtube.com/watch?v=fm4bH9B0Ikw, year = 2024, note = (accessed: 2024-03-05).

(13) Wang, T.; Sanz, S.; Castro-Esteban, J.; Lawrence, J.; Berdonces-Layunta, A.;

Mohammed, M. S. G.; Vilas-Varela, M.; Corso, M.; Peña, D.; Frederiksen, T.;

de Oteyza, D. G. Magnetic Interactions Between Radical Pairs in Chiral Graphene

Nanoribbons. Nano Letters 2022, 22, 164–171, PMID: 34936370.

(14) Fiori, E. R.; Pastawski, H. M. Non-Markovian decay beyond the Fermi Golden Rule:

Survival collapse of the polarization in spin chains. Chemical Physics Letters 2006,

420, 35–41.

(15) Feit, M. D.; Jr., J. A. F.; Steiger, A. Solution of the Schrödinger Equation by a Spectral

Method. Journal of Computational Physics 1982, 47, 412–433.

(16) Feit, M. D.; Fleck Jr., J. A. Solution of the Schrödinger equation by a spectral method

II: Vibrational energy levels of triatomic molecules. Journal of Chemical Physics 1983,

78, 301–308.

(17) Greene, S. M.; Batista, V. S. Tensor-train split-operator Fourier transform (TT-SOFT)

method: Multidimensional nonadiabatic quantum dynamics. Journal of Chemical The-

ory and Computation 2017, 13, 4034–4042.

52

https://www.youtube.com/watch?v=fm4bH9B0Ikw
https://www.youtube.com/watch?v=fm4bH9B0Ikw

(18) Lyu, N.; Soley, M. B.; Batista, V. S. Tensor-train split-operator KSL (TT-SOKSL)

method for quantum dynamics simulations. Journal of Chemical Theory and Compu-

tation 2022, 18, 3327–3346.

(19) Coppersmith, D.; Feig, E.; Linzer, E. Hadamard transforms on multiply/add architec-

tures. IEEE Transactions on Signal Processing 1994, 42, 969–970.

(20) Runge, C. Über die numerische Auflöung von Differentialgleichungen. Mathematische

Annalen 1895, 46, 167–178.

(21) Kutta, W. Beitrag zur näerungsweisen Integration totaler Differentialgleichungen.

Zeitschrift für Mathematik und Physik 1901, 46, 435–453.

(22) Ascher, U. M.; Petzold, L. R. Computer methods for ordinary differential equations and

differential-algebraic equations; SIAM: Society for Industrial and Applied Mathematics,

1998.

(23) Kyaw, T. H.; Soley, M. B.; Allen, B.; Bergold, P.; Sun, C.; Batista, V. S.; Aspuru-

Guzik, A. Boosting quantum amplitude exponentially in variational quantum algo-

rithms. Quantum Science and Technology 2023, 9, 01LT01.

(24) Peruzzo, A.; McClean, J.; Shadbolt, P.; Yung, M.-H.; Zhou, X.-Q.; Love, P. J.; Aspuru-

Guzik, A.; O’Brien, J. L. A variational eigenvalue solver on a photonic quantum pro-

cessor. Nature Communications 2014, 5, 4213.

(25) Tilly, J.; Chen, H.; Cao, S.; Picozzi, D.; Setia, K.; Li, Y.; Grant, E.; Wossnig, L.;

Rungger, I.; Booth, G. H.; Tennyson, J. The Variational Quantum Eigensolver: A

review of methods and best practices. Physics Reports 2022, 986, 1–128.

53

Supporting Information for

QFlux: Quantum Circuit Implementations of
Molecular Dynamics.

Part II - Closed Quantum Systems

Delmar G. A. Cabral†, Brandon C. Allen†, Cameron Cianci‡, Alexander V. Soudackov†,

Xiaohan Dan†,

Nam P. Vu†, Rishab Dutta†,

Sabre Kais¶, Eitan Geva§ and Victor S. Batista∗,∥,⊥

†Department of Chemistry, Yale Quantum Institute, Yale University, New Haven, CT

06511, USA
‡Department of Physics, University of Connecticut, Storrs, CT 06268, USA

¶Department of Electrical and Computer Engineering, Department of Chemistry, North

Carolina State University, Raleigh, North Carolina 27606, USA
§Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA

∥Department of Chemistry, Yale University, New Haven, CT 06520, USA
⊥Yale Quantum Institute, Yale University, New Haven, CT 06511, USA

E-mail: victor.batista@yale.edu

S1

Contents

S.1 Pauli Average and the Hadamard Test Equivalency S4

S.1.1 Pauli strings P with P 2 = I . S4

S.1.2 General Hermitian observables via Pauli decomposition S5

S.1.3 Optional: smooth-angle variant for general Hermitian O S5

S.2 Tutorial Scripts S6

S.2.1 Installing Qiskit and Importing Packages S6

S.2.2 Bell State: Circuit and Simulation . S7

S.2.3 Spin-1/2 Heisenberg Model . S8

S.2.4 Circuit for e−it Z⊗···⊗Z . S8

S.2.5 Circuit for e−itP . S9

S.2.6 First-Order Trotterization of e−iHt . S9

S.2.7 Test: Hamiltonian Simulation . S10

S.2.7.1 2-site Hamiltonian and Propagator S11

S.2.7.2 Quantum Circuit Construction and Measurement S12

S.2.7.3 IBM Runtime Setup and Execution S13

S.2.7.4 QFlux Spin-Chain Simulation (Statevector) S14

S.2.7.5 Heisenberg Hamiltonian Assembly S15

S.2.7.6 Trotterized Time Evolution . S17

S.2.7.7 Manual Circuit Patterns for Pauli Exponentials S18

S.2.7.8 Manual Trotterization of the Propagator S20

S.2.7.9 Circuit Initialization and State Preparation S22

S.2.7.10 Statevector-Based Quantum Simulation Helpers S24

S.2.7.11 QFlux Spin-Chain Simulation (Hadamard Test) S27

S.2.7.12 Explicit Hadamard Test Construction and Analysis S27

S.2.8 1D Potential for A–T Tautomerization S31

S2

S.2.9 QFlux Simulation Using QSOFT . S31

S.2.10 Gaussian Initial Wavepacket . S32

S.2.11 Split-Operator Propagators (V and K) S33

S.2.12 Quantum SOFT Circuit Construction . S33

S.2.13 Quantum SOFT: Execution . S34

S.2.14 Classical SOFT Benchmark . S35

S.2.15 Plotting Wavefunctions and Potential . S35

S.2.16 VarQRTE Driver Example . S36

S.2.16.1 VQRTE Utilities . S37

S.2.16.2 VQRTE: Construct and Measure A S38

S.2.16.3 VQRTE: Construct and Measure C S39

S.2.16.4 VQRTE Driver and Ansatz Construction S40

S.2.17 Quantum Imaginary Time Evolution . S41

S.2.18 Variational Quantum Eigensolver . S42

S3

S.1 Pauli Average and the Hadamard Test Equivalency

This section collects the derivations establishing the equivalence between Pauli-string averag-

ing and the Hadamard test applied to eiπP/2, and extends the discussion to general Hermitian

observables via Pauli decompositions and smooth-angle variants.

S.1.1 Pauli strings P with P 2 = I

We first consider Pauli strings P that are Hermitian, unitary, and square to the identity. For

such operators, the exponential eiπP/2 reduces to a simple multiple of P , which leads to a

direct identification between Pauli averages and the imaginary-part output of the Hadamard

test.

Let P be a Pauli string (hence Hermitian and unitary) so that P 2 = I and the spectrum

is {±1}. Then

ei π
2 P = cos

(
π

2

)
I + i sin

(
π

2

)
P = iP.

For any state |ψ⟩,

⟨ψ|ei π
2 P |ψ⟩ = i ⟨ψ|P |ψ⟩.

Applying the Hadamard test with U = eiπP/2 therefore yields

Re
[
⟨ψ|U |ψ⟩

]
= 0, Im

[
⟨ψ|U |ψ⟩

]
= ⟨ψ|P |ψ⟩.

Hence, for Pauli strings, the imaginary-part Hadamard test with U = eiπP/2 returns exactly

the Pauli expectation value ⟨P ⟩.

On the other hand, direct Pauli-string measurement proceeds by rotating each local factor

of P to Z, measuring in the computational basis, mapping outcomes to eigenvalues ±1, and

averaging over shots:

⟨P ⟩ = 1
N

N∑
s=1

p(s), p(s) ∈ {±1}.

S4

Thus, for any Pauli string P , Pauli averaging and the Hadamard test on eiπP/2 are opera-

tionally different but mathematically equivalent estimators of the same real number ⟨P ⟩.

S.1.2 General Hermitian observables via Pauli decomposition

Next, we extend the equivalence to general Hermitian observables by expressing them as real

linear combinations of Pauli strings and using linearity of expectation values.

Let a Hermitian observable O be expanded as a linear combination of Pauli strings,

O =
∑

j

cjPj, P 2
j = I, cj ∈ R.

Linearity of expectation values gives

⟨O⟩ =
∑

j

cj⟨Pj⟩.

Each ⟨Pj⟩ can be obtained either by (i) direct Pauli averaging (basis rotations to Z, measure,

and average) or by (ii) the Hadamard test on Uj = eiπPj/2 = iPj, extracting the imaginary

part:

⟨Pj⟩ = Im
[
⟨ψ|ei π

2 Pj |ψ⟩
]
.

Therefore

⟨O⟩ =
∑

j

cj Im
[
⟨ψ|ei π

2 Pj |ψ⟩
]

=
∑

j

cj⟨Pj⟩

establishing the equivalence between (a) averaging measurement outcomes of Pauli strings

and (b) applying the Hadamard test to eiπPj/2 term-by-term.

S.1.3 Optional: smooth-angle variant for general Hermitian O

Finally, we comment on a smooth-angle (derivative-based) variant that, in principle, allows

extraction of ⟨O⟩ from small-angle unitaries eiθO, even when O does not square to the identity.

S5

For a general Hermitian O (not necessarily unitary), define

f(θ) = ⟨ψ|eiθO|ψ⟩.

Then f ′(0) = i⟨O⟩, so

⟨O⟩ = lim
θ→0

Im[f(θ)]
θ

.

Thus, in principle, ⟨O⟩ can be extracted from Hadamard tests of eiθ O at small θ (via a

derivative/parameter-shift evaluation). In practice, the decomposition O = ∑
j cjPj with

term-wise estimation (Section 3.6.1, “Expectation Values from Pauli-String Measurements”)

is preferred on contemporary hardware, while exact single-shot extraction from eiπ O/2 holds

exactly whenever O2 = I (e.g., Pauli strings).

S.2 Tutorial Scripts

This section organizes the code listings as short, task-oriented subsections. Each snippet

is self-contained and tied to the narrative in the main text (e.g., Figs. 1 and 2) and now

includes a brief explanation of its purpose and usage.

S.2.1 Installing Qiskit and Importing Packages

This script sets up the Python environment in a Jupyter/Colab notebook, installs qflux,

and imports Qiskit, Aer, and other utilities used throughout the quantum-circuit examples.

Script S.2.1 shows a minimal Colab setup.

Script S.2.1: Installing Qiskit and Importing Packages 2 3

!pip install qflux

import numpy as np
import matplotlib.pyplot as plt
from matplotlib import axes

S6

https://colab.research.google.com/github/batistagroup/qflux/blob/master/demos/manuscript/SI_II.ipynb

import scipy.linalg as LA

from qiskit.circuit.library import QFT
from qiskit_aer import Aer
from qiskit import QuantumCircuit, ClassicalRegister, QuantumRegister
from qiskit.quantum_info.operators import Operator
from qiskit_ibm_runtime import QiskitRuntimeService, Options, SamplerV2

S.2.2 Bell State: Circuit and Simulation

The next script constructs a two-qubit Bell circuit, runs it on the Aer simulator, and plots

the measurement histogram, reproducing the Bell state example in Figs. 1 and 2.

Script S.2.2 implements the Bell circuit from Fig. 1 and produces the histogram in Fig. 2.

Script S.2.2: Quantum Circuit of a Bell State 2 3

from qiskit_aer import Aer
from qiskit import QuantumCircuit, transpile
from qiskit.visualization import plot_histogram
import matplotlib.pyplot as plt
from IPython.display import display

qc = QuantumCircuit(2, 2)
qc.h(0)
qc.cx(0, 1)
qc.measure([0, 1], [0, 1])
display(qc.draw(’mpl’))

simulator = Aer.get_backend(’aer_simulator’)
compiled_circuit = transpile(qc, simulator)
result = simulator.run(compiled_circuit).result()
counts = result.get_counts()
plot_histogram(counts)

S7

https://colab.research.google.com/github/batistagroup/qflux/blob/master/demos/manuscript/SI_II.ipynb

S.2.3 Spin-1/2 Heisenberg Model

This group of scripts builds and propagates a two-site Heisenberg spin chain, constructs the

corresponding quantum circuit, and demonstrates how to run it on simulators and (mock)

IBM hardware.

S.2.4 Circuit for e−it Z⊗···⊗Z

This helper constructs a Qiskit circuit implementing the unitary e−it Z⊗···⊗Z (optionally con-

trolled by an ancilla) on a subset of qubits, using a chain of CNOTs and a single Rz or CRz

rotation.

Script S.2.3: Quantum Circuit for e−itZ⊗···⊗Z 2 3

from qiskit import QuantumCircuit, QuantumRegister

def exp_all_z(circuit, quantum_register, pauli_indexes, control_qubit=None, t=1):
if control_qubit and control_qubit.register not in circuit.qregs:

circuit.add_register(control_qubit.register)
if not pauli_indexes:

if control_qubit:
circuit.p(t, control_qubit)

return circuit
for i in range(len(pauli_indexes) - 1):

circuit.cx(quantum_register[pauli_indexes[i]],
quantum_register[pauli_indexes[i + 1]])

target = quantum_register[pauli_indexes[-1]]
angle = -2 * t
if control_qubit:

circuit.crz(angle, control_qubit, target)
else:

circuit.rz(angle, target)
for i in reversed(range(len(pauli_indexes) - 1)):

circuit.cx(quantum_register[pauli_indexes[i]],
quantum_register[pauli_indexes[i + 1]])

return circuit

S8

https://colab.research.google.com/github/batistagroup/qflux/blob/master/demos/manuscript/SI_II.ipynb

S.2.5 Circuit for e−itP

This function exp_pauli builds a circuit for e−itP where P is a general Pauli string, by

conjugating to a multi-Z operator, calling exp_all_z, and then undoing the basis change.

Script S.2.4: Quantum Circuit for e−itP 2 3

import numpy as np
from qiskit import QuantumCircuit, QuantumRegister

def exp_pauli(pauli, quantum_register, control_qubit=None, t=1):
if len(pauli) != len(quantum_register):

raise ValueError("Pauli string length must match register size.")
pauli_indexes = []
pre_circuit = QuantumCircuit(quantum_register)
for i, op in enumerate(pauli):

if op == ’I’:
continue

elif op == ’X’:
pre_circuit.h(i); pauli_indexes.append(i)

elif op == ’Y’:
pre_circuit.rx(np.pi/2, i); pauli_indexes.append(i)

elif op == ’Z’:
pauli_indexes.append(i)

else:
raise ValueError(f"Invalid Pauli operator ’{op}’ at position {i}.")

circuit = QuantumCircuit(quantum_register)
circuit.compose(pre_circuit, inplace=True)
circuit = exp_all_z(circuit, quantum_register, pauli_indexes, control_qubit, t)
circuit.compose(pre_circuit.inverse(), inplace=True)
return circuit

S.2.6 First-Order Trotterization of e−iHt

This routine builds a first-order Trotterized circuit for e−iHt given a dictionary of Pauli

strings and coefficients, optionally with a control qubit and multiple Trotter steps.

S9

https://colab.research.google.com/github/batistagroup/qflux/blob/master/demos/manuscript/SI_II.ipynb

Script S.2.5: Quantum Circuit for e−iHt 2 3

from qiskit import QuantumCircuit, QuantumRegister

def hamiltonian_simulation(hamiltonian, quantum_register=None, control_qubit=None,
t=1, trotter_number=1):

if not hamiltonian:
raise ValueError("Hamiltonian must contain at least one term.")

n_qubits = len(next(iter(hamiltonian)))
if quantum_register is None:

quantum_register = QuantumRegister(n_qubits)
delta_t = t / trotter_number
circuit = QuantumCircuit(quantum_register)
for pauli_str, coeff in hamiltonian.items():

term_circuit = exp_pauli(pauli_str, quantum_register, control_qubit, coeff *
delta_t)

circuit.compose(term_circuit, inplace=True)
full_circuit = QuantumCircuit(quantum_register)
for _ in range(trotter_number):

full_circuit.compose(circuit, inplace=True)
return full_circuit

S.2.7 Test: Hamiltonian Simulation

This test script applies the Hamiltonian simulation routine to a simple two-qubit Hamilto-

nian, prepares an initial superposition, performs the time evolution, and measures the output

distribution on a simulator.

Script S.2.6: Test Code for Hamiltonian Simulation 2 3

from qiskit_aer import Aer
from qiskit import QuantumCircuit, transpile
from qiskit.visualization import plot_histogram
qr=QuantumRegister(2)
qc = QuantumCircuit(qr)
hamiltonian = {"ZZ": 0.5, "YY": 0.3}
t = np.pi / 4
trotter_steps = 1
U = hamiltonian_simulation(hamiltonian, quantum_register=qr, t=t,

trotter_number=trotter_steps)
qc.h(qr)
qc.append(U,qr)
qc.measure_all()

S10

https://colab.research.google.com/github/batistagroup/qflux/blob/master/demos/manuscript/SI_II.ipynb
https://colab.research.google.com/github/batistagroup/qflux/blob/master/demos/manuscript/SI_II.ipynb

sim = Aer.get_backend("aer_simulator")
qobj = transpile(qc, sim)
result = sim.run(qobj).result()
counts = result.get_counts()
print("Measurement counts:", counts)
qc.decompose().draw()

S.2.7.1 2-site Hamiltonian and Propagator

The first cell defines Pauli matrices, constructs the 2-site Heisenberg Hamiltonian, and com-

putes the corresponding unitary propagator U = e−iH via a matrix exponential.

Script S.2.7: 2-site Heisenberg spin chain Hamiltonian and propagator 2

3

J = 1
h0 = -0.5
h1 = 0.5
X = np.array([[0,1],[1,0]], dtype = complex)
Y = np.array([[0,1j],[-1j,0]], dtype = complex)
Z = np.array([[1,0],[0,-1]], dtype = complex)
I = np.eye(2, dtype = complex)
H = 0.5*(h0*np.kron(Z, I) + h1*np.kron(I, Z)) + J/4*(np.kron(X, X) + np.kron(Y, Y) +

np.kron(Z, Z))
U = LA.expm(-1j * H)

The next snippet applies the propagator to an initial basis state, performing a purely

classical propagation of the two-spin system.

Script S.2.8: Classical propagation of 2-site Heisenberg chain 2 3

psi_init = np.array([1,0,0,0],dtype = complex)
psi_fin = U @ psi_init

S11

https://colab.research.google.com/github/batistagroup/qflux/blob/master/demos/manuscript/SI_II.ipynb
https://colab.research.google.com/github/batistagroup/qflux/blob/master/demos/manuscript/SI_II.ipynb

S.2.7.2 Quantum Circuit Construction and Measurement

The following cell initializes the quantum circuit that will implement the two-site Heisenberg

time evolution on a quantum backend (or simulator).

Script S.2.9: Quantum circuit initialization 2 3

qreg = QuantumRegister(2)
creg = ClassicalRegister(2, ’creg’)
entangler = QuantumCircuit(qreg, creg)
Qiskit initializes qubits in |00> by default

Here, the precomputed unitary U is wrapped as a Qiskit Operator and appended to the

circuit as a custom gate acting on the two qubits.

Script S.2.10: Quantum circuit unitary propagation 2 3

U_gate = Operator(U)
entangler.append(U_gate, [0,1])

The next cell adds measurements on both qubits, preparing the circuit for sampling on

a simulator or real device.

Script S.2.11: Quantum circuit measurement 2 3

entangler.measure(0,0)
entangler.measure(1,1)

S12

https://colab.research.google.com/github/batistagroup/qflux/blob/master/demos/manuscript/SI_II.ipynb
https://colab.research.google.com/github/batistagroup/qflux/blob/master/demos/manuscript/SI_II.ipynb
https://colab.research.google.com/github/batistagroup/qflux/blob/master/demos/manuscript/SI_II.ipynb

S.2.7.3 IBM Runtime Setup and Execution

This script configures access to IBM Quantum services via an API token and defines a

convenience function run_IBM_session that transpiles, runs, and collects results for a given

circuit and backend.

Script S.2.12: Accessing IBM account with API token 2 3

from qiskit_ibm_runtime import QiskitRuntimeService

MY_API_TOKEN = "INSERT_YOUR_API_TOKEN_HERE"

service = QiskitRuntimeService(channel="local",
token=MY_API_TOKEN)

from qiskit_ibm_runtime import SamplerV2 as Sampler
from qiskit_ibm_runtime import Session
from qiskit.transpiler.preset_passmanagers import generate_preset_pass_manager

def run_IBM_session(circuit, backend, nshots=2048, opt_level=1):
Transpilation to device gate-set/architecture
pm = generate_preset_pass_manager(backend=backend,

optimization_level=opt_level)
transpiled_circuit = pm.run(circuit)

Circuit execution
with Session(backend=backend) as session:

sampler = Sampler(mode=session)
sampler.options.default_shots = nshots
job = sampler.run([transpiled_circuit])

Result retrieval
print(f"Job ID is {job.job_id()}")
pub_result = job.result()[0]
result_dict = pub_result.data.creg.get_counts()

return result_dict

The next cell demonstrates how to execute the entangler circuit on a QASM simulator

using the IBM Runtime helper defined above, returning the measurement statistics.

S13

https://colab.research.google.com/github/batistagroup/qflux/blob/master/demos/manuscript/SI_II.ipynb

Script S.2.13: Execute Quantum Circuit on QASM simulator 2 3

from qiskit_aer import AerSimulator
result_dict = run_IBM_session(entangler, backend=AerSimulator())
print("Counts per state:", result_dict)

The final two-site example shows how to run the same circuit on a noisy backend (a fake

device model) to emulate realistic hardware noise.

Script S.2.14: Execute Quantum Circuit on Quantum Hardware 2 3

from qiskit_ibm_runtime.fake_provider import FakeManilaV2
noisy_backend = FakeManilaV2()
noisy_result_dict = run_IBM_session(entangler, backend=noisy_backend)
print("Counts per state (noisy backend):", noisy_result_dict)

S.2.7.4 QFlux Spin-Chain Simulation (Statevector)

This script uses the SpinDynamicsS class from qflux to simulate a three-site Heisenberg spin

chain using Trotterized statevector propagation and to save and plot the resulting dynamics.

Script S.2.15: QFlux Simulation for Spin Chain using Statevector 2 3

from qflux.closed_systems.spin_dynamics_oo import SpinDynamicsS

num_q = 3
evolution_timestep = 0.1
n_trotter_steps = 1
hamiltonian_coefficients = [[0.75 / 2, 0.75 / 2, 0.0, 0.65]] + [

[0.5, 0.5, 0.0, 1.0] for _ in range(num_q - 1)
]
initial_state = "011" # Specify the initial state as a binary string

csimulation = SpinDynamicsS(
num_q,
evolution_timestep,

S14

https://colab.research.google.com/github/batistagroup/qflux/blob/master/demos/manuscript/SI_II.ipynb
https://colab.research.google.com/github/batistagroup/qflux/blob/master/demos/manuscript/SI_II.ipynb
https://colab.research.google.com/github/batistagroup/qflux/blob/master/demos/manuscript/SI_II.ipynb

n_trotter_steps,
hamiltonian_coefficients,

)
csimulation.run_dynamics(nsteps=250, state_string=initial_state)
csimulation.save_results(f"{num_q}_spin_chain")
csimulation.plot_results(f"{num_q}_spin_chain_statevector")

S.2.7.5 Heisenberg Hamiltonian Assembly

The next helper builds the local Hamiltonian terms for a given bond in an N -site Heisenberg

chain, using Qiskit’s SparsePauliOp representation.

Script S.2.16: Heisenberg Hamiltonian for site n 2 3

from qiskit.quantum_info import SparsePauliOp

def get_hamiltonian_n_site_terms(n, coeff, n_qubits):
’’’

Assemble each term in the Hamiltonian using its Pauli-string
representation and multiply by the corresponding coefficient.
coeff = [Jxx, Jyy, Jzz, Oz]

’’’
XX_coeff, YY_coeff, ZZ_coeff, Z_coeff = coeff

XX_term = SparsePauliOp("I"*n + "XX" + "I"*(n_qubits - 2 - n)) * XX_coeff
YY_term = SparsePauliOp("I"*n + "YY" + "I"*(n_qubits - 2 - n)) * YY_coeff
ZZ_term = SparsePauliOp("I"*n + "ZZ" + "I"*(n_qubits - 2 - n)) * ZZ_coeff
Z_term = SparsePauliOp("I"*n + "Z" + "I"*(n_qubits - 1 - n)) * Z_coeff

return XX_term + YY_term + ZZ_term + Z_term

Using the per-site builder, the following function assembles the full even and odd com-

ponents of an N -site Heisenberg Hamiltonian, returning them as separate SparsePauliOp

objects for use in Trotter decompositions.

S15

https://colab.research.google.com/github/batistagroup/qflux/blob/master/demos/manuscript/SI_II.ipynb

Script S.2.17: Heisenberg Hamiltonian for N Sites 2 3

def get_heisenberg_hamiltonian(n_qubits, coeff=None):
’’’
Constructs the Heisenberg Hamiltonian for an N-site spin chain.

H = \sum _i ^N h_z Z_i
+ \sum _i ^{N-1} (h_xx X_iX_{i+1}

+ h_yy Y_iY_{i+1}
+ h_zz Z_iZ_{i+1}
)

Parameters:
n_qubits (int): Number of spins/qubits.
coeff (list of lists, optional): A list of sublists containing the coefficients

[XX, YY, ZZ, Z] for each site. The last sublist contains only the Z
component.

Defaults to uniform coefficients if not provided.

Returns:
list: Two components of the Hamiltonian (even and odd terms).

’’’

Three qubits because for 2 we get H_O = 0
assert n_qubits >= 3

if coeff == None:
’Setting default values for the coefficients’
coeff = [[1.0, 1.0, 1.0, 1.0] for i in range(n_qubits)]

Even terms of the Hamiltonian
(summing over individual pair-wise elements)
H_E = sum((get_hamiltonian_n_site_terms(i, coeff[i], n_qubits)

for i in range(0, n_qubits-1, 2)))

Odd terms of the Hamiltonian
(summing over individual pair-wise elements)
H_O = sum((get_hamiltonian_n_site_terms(i, coeff[i], n_qubits)

for i in range(1, n_qubits-1, 2)))

adding final Z term at the Nth site
final_term = SparsePauliOp("I" * (n_qubits - 1) + "Z")
final_term *= coeff[n_qubits-1][3]
if (n_qubits % 2) == 0:

H_E += final_term
else:

H_O += final_term

Returns the list of the two sets of terms
return [H_E, H_O]

S16

https://colab.research.google.com/github/batistagroup/qflux/blob/master/demos/manuscript/SI_II.ipynb

The following diagnostic cell constructs a 3-site Heisenberg Hamiltonian using the helper

above and prints its even/odd components, as well as the combined Hamiltonian.

Script S.2.18: Heisenberg Hamiltonian 3 Sites 2 3

num_q = 3
XX YY ZZ, Z
ham_coeffs = ([[0.75/2, 0.75/2, 0.0, 0.65]]+

[[0.5, 0.5, 0.0, 1.0] for _ in range(num_q-1)])

spin_chain_hamiltonian = get_heisenberg_hamiltonian(num_q, ham_coeffs)

print(’Hamiltonian (even and odd components):’,spin_chain_hamiltonian)
print(’Combined Hamiltonian:’, sum(spin_chain_hamiltonian))

S.2.7.6 Trotterized Time Evolution

This script builds the Trotterized time-evolution operator e−iHτ using Qiskit’s

PauliEvolutionGate with a Suzuki–Trotter synthesis strategy.

Script S.2.19: Trotterized Time Evolution Operator 2 3

from qiskit.circuit.library import PauliEvolutionGate
from qiskit.synthesis import SuzukiTrotter
from qiskit import QuantumCircuit, QuantumRegister
import numpy as np
from itertools import groupby
import re

def get_time_evolution_operator(num_qubits, tau, trotter_steps, coeff=None):
’’’
Generates the Trotterized time-evolution operator for a Heisenberg spin chain

Inputs:
num_qubits (int): number of qubits, which should be equal to the

number of spins in the chain
evo_time (float): time parameter in time-evolution operator
trotter_steps (int): number of time steps for the Suzuki-Trotter

decomposition

S17

https://colab.research.google.com/github/batistagroup/qflux/blob/master/demos/manuscript/SI_II.ipynb
https://colab.research.google.com/github/batistagroup/qflux/blob/master/demos/manuscript/SI_II.ipynb

coeff (list of lists): parameters for each term in the Hamiltonian
for each site ie ([[XX0, YY0, ZZ0, Z0], [XX1, YY1, ZZ1, Z1], ...])

Returns:
evo_op.definition: Trotterized time-evolution operator

’’’
Heisenberg_hamiltonian = [H_E, H_O]
heisenberg_hamiltonian = get_heisenberg_hamiltonian(num_qubits, coeff)

e^ (-i*H*evo_time), with Trotter decomposition
exp[(i*evo_time)*(IIIIXXIIII + IIIIYYIIII + IIIIZZIIII + IIIIZIIIII)]
evo_op = PauliEvolutionGate(heisenberg_hamiltonian, tau,

synthesis=SuzukiTrotter(order=2,
reps=trotter_steps))

return evo_op.definition

num_shots = 100
num_q = 3
evolution_timestep = 0.1
n_trotter_steps = 1
XX YY ZZ, Z
ham_coeffs = ([[0.75/2, 0.75/2, 0.0, 0.65]]

+ [[0.5, 0.5, 0.0, 1.0]
for i in range(num_q-1)])

time_evo_op = get_time_evolution_operator(
num_qubits=num_q, tau=evolution_timestep,
trotter_steps=n_trotter_steps, coeff=ham_coeffs)

S.2.7.7 Manual Circuit Patterns for Pauli Exponentials

The next helper generates the circuit pattern implementing exp(−i ∆t h σα) for single-qubit

Pauli terms, using appropriate rotation gates.

Script S.2.20: Circuit for Exponential of 1-Qubit Pauli Term 2 3

def generate_circ_pattern_1qubit(circ, term, delta_t):
coeff = 2 * term[1] * delta_t
if term[3] == ’X’:

circ.rx(coeff, term[2])
elif term[3] == ’Y’:

circ.ry(coeff, term[2])
elif term[3] == ’Z’:

circ.rz(coeff, term[2])

S18

https://colab.research.google.com/github/batistagroup/qflux/blob/master/demos/manuscript/SI_II.ipynb

return circ

The following helper identifies the positions of Pauli operators in a string label and orga-

nizes Hamiltonian terms by interaction order and qubit index, which is useful for structured

Trotter orderings.

Script S.2.21: Sorting Terms by Interaction order 2 3

def find_string_pattern(pattern, string):
match_list = []
for m in re.finditer(pattern, string):

match_list.append(m.start())
return match_list

def sort_Pauli_by_symmetry(ham):
Separates a qiskit PauliOp object terms into 1 and 2-qubit
operators. Furthermore, 2-qubit operators are separated according
to the parity of the index first non-identity operation.
one_qubit_terms = []
two_qubit_terms = []
separating the one-qubit from two-qubit terms
for term in ham:

matches = find_string_pattern(’X|Y|Z’, str(term.paulis[0]))
pauli_string = term.paulis[0]
coeff = np.real(term.coeffs[0])
str_tag = pauli_string.to_label().replace(’I’, ’’)
if len(matches) == 2:

two_qubit_terms.append((pauli_string, coeff, matches, str_tag))
elif len(matches) == 1:

one_qubit_terms.append((pauli_string, coeff, matches, str_tag))

sorting the two-qubit terms according to index on which they act
two_qubit_terms = sorted(two_qubit_terms, key=lambda x: x[2])
separating the even from the odd two-qubit terms
even_two_qubit_terms = list(filter(lambda x: not x[2][0]%2, two_qubit_terms))
odd_two_qubit_terms = list(filter(lambda x: x[2][0]%2, two_qubit_terms))

even_two_qubit_terms = [list(v) for i, v in groupby(even_two_qubit_terms, lambda
x: x[2][0])]

odd_two_qubit_terms = [list(v) for i, v in groupby(odd_two_qubit_terms, lambda
x: x[2][0])]

return one_qubit_terms, even_two_qubit_terms, odd_two_qubit_terms

S19

https://colab.research.google.com/github/batistagroup/qflux/blob/master/demos/manuscript/SI_II.ipynb

The following function constructs the circuit block implementing the exponential of a two-

qubit Pauli interaction, parameterized by effective angles for XX, YY, and ZZ contributions.

Script S.2.22: Circuit for Exponential of 2-Qubit Pauli Term 2 3

def generate_circ_pattern_2qubit(circ, term, delta_t):

wires to which to apply the operation
wires = term[0][2]

angles to parameterize the circuit,
based on exponential argument
if any(’XX’ in sublist for sublist in term):

g_phi = (2 * (-1) * term[0][1] * delta_t - np.pi / 2)
else:

g_phi = - np.pi / 2
if any(’YY’ in sublist for sublist in term):

g_lambda = (np.pi/2 - 2 * (-1) * term[1][1] * delta_t)
else:

g_lambda = np.pi/2
if any(’ZZ’ in sublist for sublist in term):

g_theta = (np.pi/2 - 2 * (-1) * term[2][1] * delta_t)
else:

g_theta = np.pi/2

circuit
circ.rz(-np.pi/2, wires[1])
circ.cx(wires[1], wires[0])
circ.rz(g_theta, wires[0])
circ.ry(g_phi, wires[1])
circ.cx(wires[0], wires[1])
circ.ry(g_lambda, wires[1])
circ.cx(wires[1], wires[0])
circ.rz(np.pi/2, wires[0])
return circ

S.2.7.8 Manual Trotterization of the Propagator

This function builds a full Trotter step circuit from the sorted Pauli terms, supporting both

basic and symmetric (Strang-like) orderings and optional repetition of the Trotter step.

S20

https://colab.research.google.com/github/batistagroup/qflux/blob/master/demos/manuscript/SI_II.ipynb

Script S.2.23: Manual Trotterization of Propagator 2 3

def get_manual_Trotter(num_q, pauli_ops, timestep, n_trotter=1,
trotter_type=’basic’, reverse_bits=True):

sorts the Pauli strings according to qubit number they affect and symmetry
one_q, even_two_q, odd_two_q = sort_Pauli_by_symmetry(pauli_ops)
scales the timestep according to the number of trotter steps
timestep_even_two_q = timestep / n_trotter
timestep_odd_two_q = timestep / n_trotter
timestep_one_q = timestep / n_trotter
symmetric places 1/2 of one_q and odd_two_q before and after even_two_q
if trotter_type == ’symmetric’:

timestep_odd_two_q /= 2
timestep_one_q /= 2

constructs circuits for each segment of the operators
qc_odd_two_q, qc_even_two_q, qc_one_q = QuantumCircuit(num_q),
QuantumCircuit(num_q), QuantumCircuit(num_q)

for i in even_two_q:
qc_even_two_q = generate_circ_pattern_2qubit(qc_even_two_q, i,

timestep_even_two_q)
for i in odd_two_q:

qc_odd_two_q = generate_circ_pattern_2qubit(qc_odd_two_q, i,
timestep_odd_two_q)

for i in one_q:
qc_one_q = generate_circ_pattern_1qubit(qc_one_q, i, timestep_one_q)

assembles the circuit for Trotter decomposition of exponential
qr = QuantumRegister(num_q)
qc = QuantumCircuit(qr)
if trotter_type == ’basic’:

qc = qc.compose(qc_even_two_q)
qc = qc.compose(qc_odd_two_q)
qc = qc.compose(qc_one_q)

elif trotter_type == ’symmetric’:
qc = qc.compose(qc_one_q)
qc = qc.compose(qc_odd_two_q)
qc = qc.compose(qc_even_two_q)
qc = qc.compose(qc_odd_two_q)
qc = qc.compose(qc_one_q)

repeats the single_trotter circuit several times to match n_trotter
for i in range(n_trotter-1):

qc = qc.compose(qc)
if reverse_bits:

return qc.reverse_bits()
else:

return qc

The next cell prints example manual Trotter circuits for different numbers of steps and

for basic vs symmetric Trotter schemes, illustrating the circuit depth trade-offs.

S21

https://colab.research.google.com/github/batistagroup/qflux/blob/master/demos/manuscript/SI_II.ipynb

Script S.2.24: Manual Trotter Circuits 2 3

spin_chain_hamiltonian = get_heisenberg_hamiltonian(num_q, ham_coeffs)

spin_chain_hamiltonian = sum(spin_chain_hamiltonian)
print(get_manual_Trotter(num_q, spin_chain_hamiltonian, 0.1).draw())
print(get_manual_Trotter(num_q, spin_chain_hamiltonian, 0.1, n_trotter=2).draw())
print(get_manual_Trotter(num_q, spin_chain_hamiltonian, 0.1,

trotter_type=’symmetric’).draw())
print(get_manual_Trotter(num_q, spin_chain_hamiltonian, 0.1, n_trotter=2,

trotter_type=’symmetric’).draw())

S.2.7.9 Circuit Initialization and State Preparation

This script sets up a generic N -qubit circuit with matching quantum and classical registers,

which will be used for spin-chain dynamics.

Script S.2.25: Quantum Circuit Initialization 2 3

from qiskit import QuantumCircuit
from qiskit import QuantumRegister, ClassicalRegister
from qiskit import transpile

specifying a quantum register with specific number of qubits
qr = QuantumRegister(num_q)
classical register used for measurement of qubits
cr = ClassicalRegister(num_q)
quantum circuit combining quantum and classical registers
qc = QuantumCircuit(qr, cr) # instantiated here
qc.draw(style=’iqp’)
print(qc)

The next cell prepares a specific spin configuration (one spin-up and the rest spin-down)

by applying X gates selectively, then verifies the initialized state on a statevector simulator.

S22

https://colab.research.google.com/github/batistagroup/qflux/blob/master/demos/manuscript/SI_II.ipynb
https://colab.research.google.com/github/batistagroup/qflux/blob/master/demos/manuscript/SI_II.ipynb

Script S.2.26: Quantum Circuit for Vacuum State Initialization 2 3

specifying initial state by flipping qubit states
for qubit_idx in range(num_q):

if qubit_idx == 0:
generate only one spin-up at first qubit
qc.id(qubit_idx)

else:
make all other spins have the spin-down state
qc.x(qubit_idx)

qc.barrier()
qc.draw(style=’iqp’)
print(qc)

checking the initial state
device = Aer.get_backend(’statevector_simulator’)
qc_init_state = execute(qc, backend=device).result()
qc_init_state = qc_init_state.get_statevector()
print(qc_init_state)

This helper uses Qiskit’s initialize instruction to encode a computational basis state

(here, “011”) as an amplitude-encoded initial state and appends it to the main circuit.

Script S.2.27: State Initialization: Amplitude Encoding 2 3

qr_init = QuantumRegister(num_q)
qc_init = QuantumCircuit(qr_init)
qc_init.initialize(’011’)
qc.append(qc_init, qc.qubits)

The next block appends the time-evolution operator to the prepared circuit, shows the

circuit depth before and after transpilation, and illustrates the structure of the Trotterized

dynamics circuit.

S23

https://colab.research.google.com/github/batistagroup/qflux/blob/master/demos/manuscript/SI_II.ipynb
https://colab.research.google.com/github/batistagroup/qflux/blob/master/demos/manuscript/SI_II.ipynb

Script S.2.28: Applying Time Evolution Operator to Circuit 2 3

generating the time evolution operator for a specific set of
hamiltonian parameters and timestep
time_evo_op = get_time_evolution_operator(num_qubits=num_q,

tau=evolution_timestep,
trotter_steps=n_trotter_steps,
coeff=ham_coeffs)

appending the Hamiltonian evolution to the circuit
qc.append(time_evo_op, list(range(num_q)))
qc.barrier()
qc.draw(style=’iqp’)
print(qc)

Depth check
print(’Depth of the circuit is’, qc.depth())
transpiled circuit to statevector simulator
qct = transpile(qc, device, optimization_level=2)
qct.decompose().decompose()
qct.draw(style=’iqp’)
print(qct)

print(’Depth of the circuit after transpilation is ’
f’{qct.depth()}’)

S.2.7.10 Statevector-Based Quantum Simulation Helpers

This helper function qsolve_statevector encapsulates a single time step of statevector

propagation by appending a given evolution circuit to the current state and returning the

updated statevector.

Script S.2.29: Execution of Quantum Experiment 2 3

import numpy as np
from qiskit import QuantumCircuit, QuantumRegister
from qiskit_aer import Aer

def qsolve_statevector(psin, qc):
r’’’

Performs iterative quantum state propagation using a statevector simulator.

S24

https://colab.research.google.com/github/batistagroup/qflux/blob/master/demos/manuscript/SI_II.ipynb
https://colab.research.google.com/github/batistagroup/qflux/blob/master/demos/manuscript/SI_II.ipynb

The initial state is the statevector from the prior iteration:

| \psi _t \rangle = e^{i*\tau*H/hbar} e^{i*\tau*H/hbar} ... | \psi _0 \rangle
-> | \psi _t \rangle = e^{i*\tau*H/hbar} | \psi _{t-\tau} \rangle

Args:
psin (array): Initial quantum state.
qc (QuantumCircuit): Circuit representing the time evolution operator.

Returns:
psin (statevector): final statevector after execution

’’’
Determining number of qubits from the length of the state vector
n=np.size(psin)
num_qubits=int(np.log2(np.size(psin)))
Circuit preparation
qreg = QuantumRegister(num_qubits)
circ = QuantumCircuit(qreg)

circ.initialize(psin,qreg)
circ.barrier()
circ.append(qc, qreg)
circ.barrier()

Circuit execution
device = Aer.get_backend(’statevector_simulator’)
psin = execute(circ, backend=device).result()
return psin.get_statevector()

The next script performs a full survival-amplitude experiment: it initializes a basis state,

repeatedly applies the time-evolution operator, records overlaps with the initial state, and

stores and plots the resulting survival amplitude vs time.

Script S.2.30: Statevector Experiment 2 3

Qubit basis states
zero_state = np.array([[1],[0]])
one_state = np.array([[0],[1]])

Prepare an initial state (e.g., |011>), as follows
psin = zero_state # for the first spin
iterates over the remaining spins, by performing

S25

https://colab.research.google.com/github/batistagroup/qflux/blob/master/demos/manuscript/SI_II.ipynb

Kronecker Product
for i in range(num_q-1):

psin = np.kron(psin, one_state)
psin0 = psin.flatten()
print(psin0)

time evolution operator
time_evo_op = get_time_evolution_operator(num_qubits=num_q,

tau=evolution_timestep,
trotter_steps=n_trotter_steps,
coeff=ham_coeffs)

number of steps for which to propagate
(totaling 25 units of time)
nsteps = 250
psin_list = []
psin_list.append(psin0)
correlation_list = []

Perform propagation by statevector re-initialization
for k in range(nsteps):

#print(f’Running dynamics step {k}’)
if k > 0:

psin = qsolve_statevector(psin_list[-1], time_evo_op)
removes the last initial state to save memory
psin_list.pop()
stores the new initial state
psin_list.append(psin)

correlation_list.append(np.vdot(psin_list[-1],psin0))

time = np.arange(0, evolution_timestep*(nsteps),
evolution_timestep)

np.save(f’{num_q}_spin_chain_time’, time)
sa_observable = np.abs(correlation_list)
np.save(f’{num_q}_spin_chain_SA_obs’, sa_observable)

Plot survival amplitude
plt.plot(time, sa_observable, ’-o’)
plt.xlabel(’Time’)
plt.ylabel(’Absolute Value of Survival Amplitude, ’

r’$\left|\langle \psi | \psi \rangle \right|$’)
plt.xlim((min(time), max(time)))
plt.yscale(’log’)
plt.legend()
plt.show()

S26

S.2.7.11 QFlux Spin-Chain Simulation (Hadamard Test)

This script uses the SpinDynamicsH class from qflux to run a Hadamard-test-based simu-

lation of the same spin chain, saving and plotting observables extracted from ancilla mea-

surements.

Script S.2.31: QFlux Simulation for Spin Chain using Hadamard Test 23

from qflux.closed_systems.spin_dynamics_oo import SpinDynamicsH

num_q = 3
evolution_timestep = 0.1
n_trotter_steps = 1
hamiltonian_coefficients = [[0.75 / 2, 0.75 / 2, 0.0, 0.65]] + [

[0.5, 0.5, 0.0, 1.0] for _ in range(num_q - 1)
]

initial_state = "011" # Specify the initial state as a binary string

qsimulation = SpinDynamicsH(
num_q,
evolution_timestep,
n_trotter_steps,
hamiltonian_coefficients,
)

qsimulation.run_simulation(state_string=initial_state, total_time=25,
num_shots=100)

qsimulation.save_results(’hadamard_test’)
qsimulation.plot_results(’hadamard_test’)

S.2.7.12 Explicit Hadamard Test Construction and Analysis

The following function constructs a Hadamard-test circuit on num_q system qubits and one

ancilla, optionally including a phase gate on the ancilla to extract imaginary parts of expec-

tation values.

S27

https://colab.research.google.com/github/batistagroup/qflux/blob/master/demos/manuscript/SI_II.ipynb

Script S.2.32: Hadamard Test Function 2 3

import numpy as np
from qiskit_aer import Aer
from qiskit import QuantumCircuit
from qiskit import QuantumRegister, ClassicalRegister

def get_hadamard_test(num_q, initial_state, control_operation,
control_repeats=0, imag_expectation=False):

Create circuit with quantum and classical registers
qr_hadamard = QuantumRegister(num_q+1)
cr_hadamard = ClassicalRegister(1)
qc_hadamard = QuantumCircuit(qr_hadamard, cr_hadamard) # instantiated here

Initialize the computation qubits
qc_hadamard.append(initial_state, qr_hadamard[1:]) # initial psi
qc_hadamard.barrier()

Hadamard test on the ancilla qubit
qc_hadamard.h(0)
if imag_expectation:

qc_hadamard.p(-np.pi/2, 0) # qc_hadamard.s(0).inverse() may be equivalent

iterates over the number of times the control operation should be added
for i in range(control_repeats):

qc_hadamard.append(control_operation, qr_hadamard[:])
qc_hadamard.h(0)
qc_hadamard.barrier()

Measuring the ancilla
qc_hadamard.measure(0,0)

return qc_hadamard

This helper converts single-bit measurement counts into an average spin value ⟨σz⟩, map-

ping classical outcomes {0, 1} 7→ {+1,−1} and averaging over shots.

Script S.2.33: Hadamard Test Post-Processing 2 3

def get_spin_correlation(counts):
qubit_to_spin_map = {

’0’: 1,
’1’: -1,

S28

https://colab.research.google.com/github/batistagroup/qflux/blob/master/demos/manuscript/SI_II.ipynb
https://colab.research.google.com/github/batistagroup/qflux/blob/master/demos/manuscript/SI_II.ipynb

}
total_counts = 0
values_list = []
for k,v in counts.items():

values_list.append(qubit_to_spin_map[k] * v)
total_counts += v

print(values_list)
average_spin = (sum(values_list)) / total_counts
return average_spin

The following script sets up the Hadamard-test dynamics: it defines the Hamiltonian,

builds the controlled time-evolution operator, initializes the system, and prepares for the

time loop.

Script S.2.34: Hadamard Test Propagation 2 3

IMPORTANT: Use qasm_simulator to obtain meaningful statistics
simulator = Aer.get_backend(’qasm_simulator’)

num_q = 3
n_trotter_steps = 1
XX YY ZZ, Z
hamiltonian_coefficients = ([[0.75/2, 0.75/2, 0.0, 0.65]]

+ [[0.5, 0.5, 0.0, 1.0]
for i in range(num_q-1)])

num_shots = 100 # increase to check for convergence

evolution_timestep = 0.1
total_time = 25
time_range = np.arange(0, total_time+evolution_timestep,

evolution_timestep)

time evolution operator
time_evo_op = get_time_evolution_operator(num_qubits=num_q,

tau=evolution_timestep,
trotter_steps=n_trotter_steps,
coeff=hamiltonian_coefficients)

controlled_time_evo_op = time_evo_op.control()
print(controlled_time_evo_op.decompose())

init_state_list = ’1’ + ’0’ * (num_q-1)

S29

https://colab.research.google.com/github/batistagroup/qflux/blob/master/demos/manuscript/SI_II.ipynb

init_circ = get_initialization(num_q, init_state_list)
init_circ.draw(style=’iqp’)
print(init_circ)

Finally, this loop runs the Hadamard test over a range of times to reconstruct the complex

survival amplitude, compares it to the statevector benchmark, and plots the absolute value

vs time.

Script S.2.35: Hadamard Test Execution 2 3

it takes >1hr for 3 spins, with the parameters defined above
lists t store observables
real_amp_list = []
imag_amp_list = []
for idx,time in enumerate(time_range):

print(f’Running dynamics step {idx}’)
Real component ------------------------------
qc_had_real = get_hadamard_test(num_q, init_circ,

controlled_time_evo_op,
control_repeats=idx,
imag_expectation=False)

had_real_counts = get_circuit_execution_counts(
qc_had_real, simulator, n_shots=num_shots)

real_amplitude = get_spin_correlation(had_real_counts)
real_amp_list.append(real_amplitude)

Imag component ------------------------------
qc_had_imag = get_hadamard_test(num_q, init_circ,

controlled_time_evo_op,
control_repeats=idx,
imag_expectation=True)

had_imag_counts = get_circuit_execution_counts(
qc_had_imag, simulator, n_shots=num_shots)

imag_amplitude = get_spin_correlation(had_imag_counts)
imag_amp_list.append(imag_amplitude)
print(f’Finished step {idx}, where ’

f’Re = {real_amplitude:.3f} ’
f’Im = {imag_amplitude:.3f}’)

real_amp_array = np.array(real_amp_list)
imag_amp_array = np.array(imag_amp_list)

np_abs_correlation_with_hadamard_test = np.abs(real_amp_array + 1j*imag_amp_array)

S30

https://colab.research.google.com/github/batistagroup/qflux/blob/master/demos/manuscript/SI_II.ipynb

plotting the data
plt.plot(time_range, np_abs_correlation_with_hadamard_test,

’.’, label=’Hadamard Test’)

sa_statevector = np.load(f’data/Part_I_SpinChain/{num_q}_spin_chain_SA_obs.npy’)
time = np.load(f’{num_q}_spin_chain_time.npy’)
plt.plot(time, sa_statevector, ’-’, label=’Statevector’)

plt.xlabel(’Time’)
plt.ylabel(’Absolute Value of Survival Amplitude’)
plt.legend()
plt.show()

S.2.8 1D Potential for A–T Tautomerization

This script defines a one-dimensional double-well potential model for A–T tautomerization,

along with its second derivative, in atomic units. These functions serve as the potential

energy surface in subsequent SOFT/QSOFT simulations.

Script S.2.36: 1D PES for A-T tautomerization 2 3

from qflux.closed_systems.utils import convert_fs_to_au, convert_eV_to_au,
convert_au_to_fs

ev2au = convert_eV_to_au(1.0)

def get_doublewell_potential(x, x0=1.9592, f=ev2au, a0=0.0, a1=0.429, a2=-1.126,
a3=-0.143, a4=0.563):

xi = x/x0
return f*(a0 + a1*xi + a2*xi**2 + a3*xi**3 + a4*xi**4)

def get_doublewell_potential_second_deriv(x, x0=1.9592, f=ev2au, a0=0.0, a1=0.429,
a2=-1.126, a3=-0.143, a4=0.563):

return f*(2*a2/x0**2 + 6*a3*x/x0**3 + 12*a4*x**2/x0**4)

S.2.9 QFlux Simulation Using QSOFT

This cell sets up and runs a QSOFT-based QFlux simulation of A–T tautomerization using

a discretized coordinate grid, automatically initializing operators, states, and propagation

S31

https://colab.research.google.com/github/batistagroup/qflux/blob/master/demos/manuscript/SI_II.ipynb

parameters.

Script S.2.37: QFlux Simulation using QSOFT 2 3

from qflux.closed_systems import QubitDynamicsCS
from qflux.closed_systems.utils import get_proton_mass
from qiskit_aer import Aer

proton_mass = get_proton_mass()
x0 = 1.9592
N_steps = 3000

omega = np.sqrt(get_doublewell_potential_second_deriv(x0)/proton_mass)
AT_dyn_obj = QubitDynamicsCS(n_basis=64, xo=1.5*x0, mass=proton_mass, omega=omega)

AT_dyn_obj.set_coordinate_operators(x_min=-4.0, x_max=4.0)
AT_dyn_obj.initialize_operators()
AT_dyn_obj.set_initial_state(wfn_omega=omega)

total_time = 30.0 * convert_fs_to_au(1.0)
AT_dyn_obj.set_propagation_time(total_time, N_steps)
AT_dyn_obj.set_hamiltonian(potential_type=’quartic’)

AT_dyn_obj.propagate_SOFT()
AT_dyn_obj.propagate_qt()

backend = Aer.get_backend(’statevector_simulator’)
AT_dyn_obj.propagate_qSOFT(backend=backend)

S.2.10 Gaussian Initial Wavepacket

This script builds a Gaussian (coherent-state) initial wavepacket for the double-well potential

using the same grid conventions as the SOFT helper functions.

Script S.2.38: Gaussian initial wavepacket 2 3

mass_proton = 1836.15
x0 = 1.9592
x_0 = 1.5*x0
p_0 = 0.0
xmin, xmax = -4., 4.
Nq = 6
N_xpts = 2**Nq

S32

https://colab.research.google.com/github/batistagroup/qflux/blob/master/demos/manuscript/SI_II.ipynb
https://colab.research.google.com/github/batistagroup/qflux/blob/master/demos/manuscript/SI_II.ipynb

xgrid = get_xgrid(xmin, xmax, N_xpts)
omega = np.sqrt(get_doublewell_potential_second_deriv(x0)/proton_mass)

psi_0 = get_coherent_state(xgrid, p_0, x_0, proton_mass, omega)

S.2.11 Split-Operator Propagators (V and K)

This cell constructs diagonal potential and kinetic energy propagators for the double-well

system, sets up the time grid, and defines the effective shifted potential for use in SOFT and

QSOFT propagation.

Script S.2.39: Preparation of potential and kinetic split propagators 2 3

from qflux.closed_systems.utils import convert_fs_to_au, convert_au_to_fs

au2fs = convert_au_to_fs(1.0)
fs2au = convert_fs_to_au(1.0)

pgrid = get_pgrid(xmin, xmax, N_xpts, reorder=True)
dx = xgrid[1] - xgrid[0]
dp = pgrid[1] - pgrid[0]

Vx_DW = get_doublewell_potential(xgrid)
VV = Vx_DW - get_doublewell_potential(x0) - omega/2

tmin, tmax = 0.0, 30.0*fs2au
iterations = 3000
mass = mass_proton

tgrid = np.linspace(tmin, tmax, iterations)
time_step = tgrid[1] - tgrid[0]

VVd_prop = np.diag(np.exp(-1j*Vx_DW/2*time_step))
KEd_prop = np.diag(np.exp(-1j*pgrid**2/2/mass*time_step))

S.2.12 Quantum SOFT Circuit Construction

This script builds the QSOFT quantum circuit for the double-well dynamics, initializing the

wavepacket and then iteratively applying the split-operator sequence with QFT and inverse

S33

https://colab.research.google.com/github/batistagroup/qflux/blob/master/demos/manuscript/SI_II.ipynb

QFT at each time step.

Script S.2.40: Quantum SOFT Circuit Preparation 2 3

import scipy.linalg as LA
from qiskit.circuit.library import QFT
from qiskit_aer import Aer
from qiskit import QuantumCircuit, ClassicalRegister, QuantumRegister
from qiskit.quantum_info.operators import Operator
from qiskit_ibm_runtime import QiskitRuntimeService, Options, SamplerV2

nqubits = Nq
q_reg = QuantumRegister(nqubits)
c_reg = ClassicalRegister(nqubits)
qc = QuantumCircuit(q_reg)

qc.initialize(psi_0, q_reg[:],normalize=True)

for k in range(iterations):
V_op = Operator(VVd_prop)
qc.append(V_op, q_reg)
qc.append(QFT(nqubits,do_swaps=True,inverse=False),q_reg)
K_op = Operator(KEd_prop)
qc.append(K_op, q_reg)
qc.append(QFT(nqubits,do_swaps=True,inverse=True),q_reg)
qc.append(V_op, q_reg)

S.2.13 Quantum SOFT: Execution

This cell runs the QSOFT circuit on a statevector simulator and extracts the final wavefunc-

tion amplitudes for later comparison with the classical SOFT benchmark.

Script S.2.41: Quantum SOFT circuit execution 2 3

from qiskit import QuantumCircuit, transpile
from qiskit_aer import Aer
from qflux.closed_systems.custom_execute import execute

backend = Aer.get_backend(’statevector_simulator’)
executed_circuit = execute(qc, backend=backend, shots=1024)
psin = executed_circuit.result().get_statevector().data

S34

https://colab.research.google.com/github/batistagroup/qflux/blob/master/demos/manuscript/SI_II.ipynb
https://colab.research.google.com/github/batistagroup/qflux/blob/master/demos/manuscript/SI_II.ipynb

S.2.14 Classical SOFT Benchmark

This benchmark script performs a standard SOFT propagation in coordinate and momentum

space to generate a classical reference trajectory for the double-well wavepacket.

Script S.2.42: Classical SOFT Benchmark 2 3

V_prop = np.exp(-1j*Vx_DW/2*time_step)
K_prop = np.exp(-1j*pgrid**2/2/mass*time_step)

propagated_states = [psi_0]
psi_t = psi_0
print("For ",tmax*au2fs," fs using a timestep of ",time_step*au2fs," fs =

",time_step," a.u.")

for tstep_idx in range(len(tgrid)):
psi_t = do_SOFT_propagation(psi_t, K_prop, V_prop)
propagated_states.append(psi_t)

propagated_states = np.asarray(propagated_states)[:-1]

S.2.15 Plotting Wavefunctions and Potential

This final A–T tautomerization script compares the potential profile, initial wavepacket,

classical SOFT final state, and QSOFT final state on a common plot, providing a visual

benchmark between quantum and classical propagation.

Script S.2.43: Plotting initial and final wavefunctions 2 3

from scipy.interpolate import interp1d
def get_prob_density(psi):

return np.real(np.conjugate(psi) * psi)

x_dense = np.linspace(xgrid[0], xgrid[-1], 512)
f_interp = interp1d(xgrid, get_prob_density(propagated_states[-1]), kind=’cubic’)
rho_interp = f_interp(x_dense)

fig, ax = plt.subplots()
ax.plot(xgrid, VV, ’-’,color=’black’,label=’A-T pair potential’)

S35

https://colab.research.google.com/github/batistagroup/qflux/blob/master/demos/manuscript/SI_II.ipynb
https://colab.research.google.com/github/batistagroup/qflux/blob/master/demos/manuscript/SI_II.ipynb

ax.plot(xgrid,
0.04*np.real(get_prob_density(psi_0)),’--’,color=’red’,label=’Initial coherent
state’)

ax.plot(x_dense, 0.04*rho_interp,’-’,color=’blue’,label=’(SOFT) State at t = 30
fs’,zorder=0,markeredgecolor=’blue’,fillstyle=’full’,markerfacecolor=’white’)

ax.plot(xgrid, 0.04*np.real(psin.conj()*psin/dx),’o’,color=’blue’,label=’(Qiskit)
State at t = 30 fs’, markevery=1, alpha=0.25)

ax.axhline(0, lw=0.5, color=’black’, alpha=1.0)
ax.axvline(-x0, lw=0.5, color=’black’, alpha=0.5)
ax.axvline(x0, lw=0.5, color=’black’, alpha=0.5)
ax.axvline(x0*1.5, lw=0.5, color=’red’, alpha=0.5)
ax.set_xlabel(’x, Bohr’,fontsize=14)
ax.set_ylabel(’Energy, Hartrees’,fontsize=14)
ax.tick_params(labelsize=12, grid_alpha=0.5)
plt.ylim(-0.03,0.07)
plt.legend(fontsize=12,loc=’upper center’)
plt.show()

S.2.16 VarQRTE Driver Example

This example uses the VarQRTE driver to perform variational real-time evolution of a single-

qubit system under a simple Hamiltonian, measuring the spin expectation value as a function

of time.

Script S.2.44: Variation Quantum Real Time Evolution 2 3

import matplotlib.pyplot as plt
from qiskit import QuantumCircuit
from qiskit.quantum_info import SparsePauliOp
from qiskit_aer.primitives import EstimatorV2 as Estimator
from qflux.closed_systems.VarQTE import VarQRTE, Construct_Ansatz

H = SparsePauliOp.from_list([("X", 1.0)])
qc = QuantumCircuit(1)
qc.x(0)

layers = 1
total_time = 12
timestep = 0.1
params = VarQRTE(layers, H, total_time, timestep, init_circ=qc)

estimator = Estimator()

S36

https://colab.research.google.com/github/batistagroup/qflux/blob/master/demos/manuscript/SI_II.ipynb

observable = SparsePauliOp.from_list([("Z", 1.0)])
spin_values = []

for i in range(len(params)):
ansatz = Construct_Ansatz(qc, params[i], H.num_qubits)
result = estimator.run([(ansatz, observable)]).result()
spin_values.append(result[0].data.evs)

plt.title("Spin Expectation Value Over Time")
plt.plot([i*timestep for i in range(int(total_time/timestep)+1)], spin_values)
plt.xlabel("Time")
plt.ylabel("Expectation Value")
plt.show()

S.2.16.1 VQRTE Utilities

The following utilities implement parameter application and derivative measurement pat-

terns used internally by the VarQTE routines to build the A and C matrices.

Script S.2.45: Utility Functions for Variation Quantum Time Evolution 2

3

import numpy as np
from qiskit import QuantumCircuit
from qiskit_aer.primitives import EstimatorV2 as Estimator
from qiskit.quantum_info import SparsePauliOp
import numpy.typing as npt

def apply_param(params: npt.NDArray[np.float64], i: int, qc: QuantumCircuit, N:
int) -> None:

qc.rx(params[i], i % N)
if i % N == N - 1 and i != len(params) - 1:

for i in range(N - 1):
qc.cz(i, i + 1)

def measure_der(i: int, qc: QuantumCircuit, N: int) -> None:
qc.cx(N, i % N)

def pauli_measure(qc: QuantumCircuit, pauli_string: str) -> None:
N = len(pauli_string)
for i in range(len(pauli_string)):

if str(pauli_string[i]) == "X": qc.cx(N, i)
if str(pauli_string[i]) == "Y": qc.cy(N, i)

S37

https://colab.research.google.com/github/batistagroup/qflux/blob/master/demos/manuscript/SI_II.ipynb

if str(pauli_string[i]) == "Z": qc.cz(N, i)

S.2.16.2 VQRTE: Construct and Measure A

These routines construct and measure the entries of the A matrix in the McLachlan vari-

ational principle, using an ancilla-based measurement scheme and Qiskit’s EstimatorV2

primitive.

Script S.2.46: Construction and Measurement of A Matrix 2 3

def A_Circuit(params: npt.NDArray[np.float64], i: int, j: int, N: int) ->
QuantumCircuit:

qc = QuantumCircuit(N + 1, 1)
qc.h(N)
for parameter in range(len(params)):

if parameter == i:
qc.x(N); measure_der(parameter, qc, N); qc.x(N)

if parameter == j:
measure_der(parameter, qc, N)

apply_param(params, parameter, qc, N)
qc.h(N)
return qc

def Measure_A(init_circ: QuantumCircuit, params: npt.NDArray[np.float64], N: int,
shots: int = 2**10, noisy: bool = False) -> npt.NDArray[np.float64]:

A = [[0.0 for i in range(len(params))] for j in range(len(params))]
for i in range(len(params)):

for j in range(len(params) - i):
qc = QuantumCircuit(N + 1, 1)
ansatz = A_Circuit(params, i, i + j, N)
qc = qc.compose(init_circ, [k for k in range(N)])
qc = qc.compose(ansatz, [k for k in range(N + 1)])
observable = SparsePauliOp.from_list([("Z" + "I" * N, 1.0)])
if noisy:

device_backend = FakeSherbrooke()
noise_model = NoiseModel.from_backend(device_backend)
estimator = Estimator(options={"backend_options":{"noise_model":

noise_model},
"run_options":{"shots": shots}})

else:
estimator = Estimator(options={"run_options":{"shots": shots}})

result = estimator.run([(qc, observable)]).result()
A[i][i + j] = result[0].data.evs

S38

https://colab.research.google.com/github/batistagroup/qflux/blob/master/demos/manuscript/SI_II.ipynb

return np.array(A)

S.2.16.3 VQRTE: Construct and Measure C

These routines build and measure the C vector associated with the Hamiltonian, again using

ancilla-based circuits and Pauli measurements to obtain the contributions of each term in

the Pauli expansion of H.

Script S.2.47: Construction and Measurement of C Matrix 2 3

def C_Circuit(params: npt.NDArray[np.float64], i: int, pauli_string: str, N: int,
evolution_type: str = "real") -> QuantumCircuit:

qc = QuantumCircuit(N + 1, 1)
qc.h(N)
if evolution_type == "imaginary":

qc.s(N)
else:

qc.z(N)
for parameter in range(len(params)):

if parameter == i:
qc.x(N); measure_der(parameter, qc, N); qc.x(N)

apply_param(params, parameter, qc, N)
pauli_measure(qc, pauli_string)
qc.h(N)
return qc

def Measure_C(init_circ: QuantumCircuit, params: npt.NDArray[np.float64], H:
SparsePauliOp, N: int, shots: int = 2**10, evolution_type: str = "real", noisy:
bool = False) -> npt.NDArray[np.float64]:

C = [0.0 for i in range(len(params))]
for i in range(len(params)):

for pauli_string in range(len(H.paulis)):
qc = QuantumCircuit(N + 1, 1)
ansatz = C_Circuit(params, i, H.paulis[pauli_string], N,

evolution_type=evolution_type)
qc = qc.compose(init_circ, [k for k in range(N)])
qc = qc.compose(ansatz, [k for k in range(N + 1)])
observable = SparsePauliOp.from_list([("Z" + "I" * N, 1.0)])
if noisy:

device_backend = FakeSherbrooke()
noise_model = NoiseModel.from_backend(device_backend)
estimator = Estimator(options={"backend_options":{"noise_model":

noise_model},

S39

https://colab.research.google.com/github/batistagroup/qflux/blob/master/demos/manuscript/SI_II.ipynb

"run_options":{"shots": shots}})
else:

estimator = Estimator(options={"run_options":{"shots": shots}})
result = estimator.run([(qc, observable)]).result()
C[i] -= 0.5 * H.coeffs[pauli_string].real * result[0].data.evs

return np.array(C)

S.2.16.4 VQRTE Driver and Ansatz Construction

The final VarQRTE routines implement the full time-stepping procedure: at each time step,

they measure A and C, compute the parameter updates via a pseudo-inverse, and build the

corresponding ansatz circuit for subsequent estimation or visualization.

Script S.2.48: Variational Quantum Real-Time Evolution Driver 2 3

from typing import Optional, List

def VarQRTE(n_reps_ansatz: int, hamiltonian: SparsePauliOp, total_time: float =
1.0, timestep: float = 0.1, init_circ: Optional[QuantumCircuit] = None, shots:
int = 2**10, noisy: bool = False) -> List[npt.NDArray[np.float64]]:

if init_circ is None:
init_circ = QuantumCircuit(hamiltonian.num_qubits)

initial_params = np.zeros(hamiltonian.num_qubits * (n_reps_ansatz + 1))
num_timesteps = int(total_time / timestep)
all_params = [np.copy(initial_params)]
my_params = np.copy(initial_params)
for i in range(num_timesteps):

print(f"Simulating Time={str(timestep*(i+1))} ", end="\r")
A = Measure_A(init_circ, my_params, hamiltonian.num_qubits, shots=shots,

noisy=noisy)
C = Measure_C(init_circ, my_params, hamiltonian, hamiltonian.num_qubits,

shots=shots, evolution_type="real", noisy=noisy)
u, s, v = np.linalg.svd(A)
for j in range(len(s)):

if s[j] < 1e-2:
s[j] = 1e8

A_inv = (v.T) @ np.diag(s**-1) @ (u.T)
theta_dot = A_inv @ C
my_params -= theta_dot * timestep
all_params.append(np.copy(my_params))

return all_params

S40

https://colab.research.google.com/github/batistagroup/qflux/blob/master/demos/manuscript/SI_II.ipynb

def Construct_Ansatz(init_circ: QuantumCircuit, params: npt.NDArray[np.float64],
N: int) -> QuantumCircuit:

qc = QuantumCircuit(N, 0)
qc = qc.compose(init_circ, [k for k in range(N)])
ansatz = QuantumCircuit(N, 0)
for parameter in range(len(params)):

apply_param(params, parameter, ansatz, N)
qc = qc.compose(ansatz, [k for k in range(N)])
return qc

S.2.17 Quantum Imaginary Time Evolution

This example applies the VarQITE driver to a three-qubit Hamiltonian, starting from a

simple product state, and tracks the energy expectation value as a function of (imaginary)

time, illustrating convergence toward the ground state.

Script S.2.49: Variation Quantum Imaginary Time Evolution 2 3

import matplotlib.pyplot as plt
from qiskit import QuantumCircuit
from qiskit.quantum_info import SparsePauliOp

from qflux.closed_systems.VarQTE import VarQITE, ansatz_energy

--- Define the Hamiltonian ---
H = SparsePauliOp.from_list([("IIZ", 1.0), ("IZI", 1.0), ("ZII", 0.65), ("IXX",

1.0), ("IYY", 1.0), ("XXI", 0.75), ("YYI", 0.75)])

--- Define the Initial State ---
qc = QuantumCircuit(3)
qc.rx(0.5, 0)
qc.rx(0.5, 1)
qc.rx(0.5, 2)

--- Perform Variational Real-Time Evolution ---
layers = 0
total_time = 10
timestep = 0.1
params = VarQITE(layers, H, total_time, timestep, init_circ=qc)
Params now holds the parameter values for the ansatz at each timestep for

Imaginary-Time Evolution

S41

https://colab.research.google.com/github/batistagroup/qflux/blob/master/demos/manuscript/SI_II.ipynb

--- Get the Expectation Value of the Energy ---
all_energies = []
for i in range(len(params)):

print(f"Timestep {i} Energy: {ansatz_energy(qc, params[i], H)}")
all_energies.append(ansatz_energy(qc, params[i], H)[0])

--- Plot Expectation Values Over Time ---
plt.title("VarQITE Energy Over Imaginary Time")
plt.plot([i*timestep for i in range(int(total_time/timestep)+1)], all_energies)
plt.xlabel("Imaginary Time")
plt.ylabel("Energy (eV)")
plt.show()

S.2.18 Variational Quantum Eigensolver

This final script demonstrates a basic VQE workflow using Qiskit’s EfficientSU2 ansatz and

StatevectorEstimator to find the ground-state energy of a simple two-qubit Hamiltonian.

Script S.2.50: Variational Quantum Eigensolver 2 3

-- Imports --
- EfficientSU2: A parameterized quantum circuit (ansatz) often used in VQE.
- SparsePauliOp: Efficient representation of Hamiltonians in terms of Pauli

strings.
- StatevectorEstimator: Estimates expectation values
import numpy as np
from scipy.optimize import minimize
from qiskit.circuit.library import EfficientSU2
from qiskit.primitives import StatevectorEstimator
from qiskit.quantum_info import SparsePauliOp

--- Define the Hamiltonian ---
H = 0.5 * Z_0 + 0.5 * Z_1 + 0.2 * X_0 * X_1
hamiltonian = SparsePauliOp.from_list([("ZI", 0.5), ("IZ", 0.5), ("XX", 0.2)])

--- Initialize the Estimator Primitive ---
StatevectorEstimator: Ideal, noiseless estimator
using statevectors (no sampling noise).
Computes expectation value exactly.
estimator = StatevectorEstimator()

S42

https://colab.research.google.com/github/batistagroup/qflux/blob/master/demos/manuscript/SI_II.ipynb

--- Define the Ansatz ---
Use EfficientSU2 as a general-purpose parameterized ansatz.
EfficientSU2 is expressive and hardware-efficient, using layers
of single-qubit rotations and entangling gates.
ansatz = EfficientSU2(num_qubits=hamiltonian.num_qubits)

--- Define the Energy Evaluation Function ---
Given parameters params, assigns them to the ansatz circuit and evaluates
the expectation value of the Hamiltonian. Returns the energy to the optimizer.
Includes basic exception handling for robustness.
def energy(params, ansatz, hamiltonian, estimator):

"""Evaluate energy for given ansatz parameters."""
try:

result = estimator.run([(ansatz, hamiltonian, params)]).result()
energy_estimate = result[0].data.evs
print(f"Energy: {energy_estimate}")
return energy_estimate

except Exception as e:
print(f"Estimator failed: {e}")
return np.inf

--- Initialize Parameters ---
Random initialization of ansatz parameters in the full 0-2 pi range.
Good starting point for global exploration of energy landscape.
initial_params = np.random.uniform(0, 2 * np.pi, size=ansatz.num_parameters)

--- Classical Optimization ---
Minimize energy using COBYLA, a derivative-free classical optimizer.
Minimizes the energy function over the variational parameters.
Hybrid quantum-classical loop: quantum subroutine evaluates energy,
classical subroutine updates parameters.
opt_result = minimize(

energy,
initial_params,
args=(ansatz, hamiltonian, estimator),
method="COBYLA",
options={"maxiter": 200, "disp": True}

)

--- Output Results ---
Outputs the final optimized parameters and estimated ground state energy.
final_params = opt_result.x
final_energy = energy(final_params, ansatz, hamiltonian, estimator)

print(f"\nFinal Optimized Energy: {final_energy}")
print(f"Optimized Parameters: {final_params}")

S43

	Introduction
	Essentials of Qubit-Based Quantum Simulation
	 Qubits and Superposition States
	 Multi-Qubit Registers
	 Entanglement and Quantum Correlations
	 Quantum Gates and Circuits
	 From Circuits to Simulation

	Hamiltonian Simulation
	 Encoding Hamiltonians with Pauli Strings
	 Simulating All-Z Hamiltonians
	 Extending to Arbitrary Pauli Strings
	 Building General Hamiltonians
	 Putting It All Together
	 Expectation Values
	 Hadamard Test: Expectation Values from Measurements of an Ancilla
	 Circuit Description
	Derivation for the Real Part
	Imaginary Part via Phase Shift
	Example: Survival Amplitude
	Expectation Values from Pauli-String Measurements

	Simulating Heisenberg Hamiltonians
	 Two-Spin Heisenberg Dynamics on IBM Quantum Hardware
	 Hamiltonian Simulation of an N-Spin Heisenberg Model
	 Dynamics of a Three-Site Spin Chain
	 Constructing the Full Heisenberg Hamiltonian
	Implementing Real-Time Dynamics with Trotterization
	Compact Trotterization Scheme
	Initializing a Quantum Circuit with Qiskit

	 Qubit-Based Quantum Experiments
	Hadamard Test Function
	Processing the Hadamard Test Results

	 Executing the Hadamard test for an Operator

	The Q-SOFT Algorithm
	 Discretization and Encoding
	 Time Evolution via Second-Order Trotterization
	 QFT Conventions and Momentum Ordering
	 Constructing Diagonal Propagators
	 Resource Estimates
	 Numerical Accuracy and Diagnostics
	 Implementation Notes

	Case Study: Proton Transfer in a Double-Well
	 Discretization, Initial State, and Units
	 Classical SOFT Baseline
	 Quantum Circuit Realization
	 Validation and Best Practices
	 What the Comparison Shows
	 Scalability and Hardware Outlook

	Variational Quantum Time Evolution
	 Implementation in QFlux
	Example: Single-Qubit Z-Rotation

	 Heisenberg Spin Chain
	 Imaginary-Time Evolution
	 Variational Quantum Eigensolver

	Conclusions
	Supporting Information
	Acknowledgements
	References
	Pauli Average and the Hadamard Test Equivalency
	Pauli strings P with P**2=I
	General Hermitian observables via Pauli decomposition
	Optional: smooth-angle variant for general Hermitian O

	Tutorial Scripts
	Installing Qiskit and Importing Packages
	Bell State: Circuit and Simulation
	Spin-1/2 Heisenberg Model
	Circuit for exp(-i t Z...Z)
	Circuit for exp(-it P)
	First-Order Trotterization of exp(-i H t)
	Test: Hamiltonian Simulation
	2-site Hamiltonian and Propagator
	Quantum Circuit Construction and Measurement
	IBM Runtime Setup and Execution
	QFlux Spin-Chain Simulation (Statevector)
	Heisenberg Hamiltonian Assembly
	Trotterized Time Evolution
	Manual Circuit Patterns for Pauli Exponentials
	Manual Trotterization of the Propagator
	Circuit Initialization and State Preparation
	Statevector-Based Quantum Simulation Helpers
	QFlux Spin-Chain Simulation (Hadamard Test)
	Explicit Hadamard Test Construction and Analysis

	1D Potential for A–T Tautomerization
	QFlux Simulation Using QSOFT
	Gaussian Initial Wavepacket
	Split-Operator Propagators (V and K)
	Quantum SOFT Circuit Construction
	Quantum SOFT: Execution
	Classical SOFT Benchmark
	Plotting Wavefunctions and Potential
	VarQRTE Driver Example
	VQRTE Utilities
	VQRTE: Construct and Measure A
	VQRTE: Construct and Measure C
	VQRTE Driver and Ansatz Construction

	Quantum Imaginary Time Evolution
	Variational Quantum Eigensolver

