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across multiple levels of theory using a unified classical and quantum computational framework. QFlux

integrates deterministic wavefunction propagation, Lindblad master equations, generalized quantum master

equations (GQMEs), operator-splitting techniques, and variational quantum algorithms within a modular

architecture designed for systematic benchmarking and hybrid classical-quantum execution. The framework

supports both closed-and open-system dynamics, including Markovian and non-Markovian regimes, and

provides explicit mappings between classical propagators and quantum circuit constructions executable on

NISQ hardware. Built atop established scientific and quantum software ecosystems, QFlux emphasizes

reproducibility, interoperability, and controlled cross-validation between numerical approximations and

hardware-oriented algorithms. Part I in this series of papers presents the theoretical foundations, software

design principles, and methodological scope of QFlux, and positions it within the broader landscape of
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Abstract

We introduce QFlux, an open-source Python package for simulating quantum dy-

namics in chemical systems across multiple levels of theory using a unified classical and

quantum computational framework. QFlux integrates deterministic wavefunction prop-

agation, Lindblad master equations, generalized quantum master equations (GQMEs),

operator-splitting techniques, and variational quantum algorithms within a modular

architecture designed for systematic benchmarking and hybrid classical-quantum ex-

ecution. The framework supports both closed- and open-system dynamics, including

Markovian and non-Markovian regimes, and provides explicit mappings between clas-

sical propagators and quantum circuit constructions executable on NISQ hardware.

Built atop established scientific and quantum software ecosystems, QFlux emphasizes

reproducibility, interoperability, and controlled cross-validation between numerical ap-

proximations and hardware-oriented algorithms. Part I in this series of papers presents

the theoretical foundations, software design principles, and methodological scope of

QFlux, and positions it within the broader landscape of classical, tensor-network,

and quantum-circuit-based simulation platforms. The series is designed to serve as

a teaching reference for graduate students, a practical guide for researchers implement-

ing custom quantum simulations, and a foundational reference for the broader QFlux

ecosystem.

1 Introduction

Accurate simulation of quantum dynamics is a cornerstone of chemical physics, linking mi-

croscopic quantum motion to experimentally accessible observables. Phenomena such as

vibrational coherence, electronic energy transfer, nonadiabatic transitions, and environmen-

tally induced decoherence are unified by a single mechanism: the time evolution of quantum

amplitudes and phases. Through correlation functions and response properties, this evolu-

tion shapes spectroscopic signatures and governs dynamical mechanisms relevant to chemical
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reactivity, from ultrafast excitonic transport in light-harvesting assemblies to long-time re-

laxation and thermalization in condensed phases. Quantitative simulation, however, quickly

becomes difficult as Hilbert spaces expand with system size and as environmental couplings

introduce additional degrees of freedom, competing timescales, and memory effects. Quan-

tum dynamics methods can be viewed as a hierarchy of physical descriptions, each defined by

controlled assumptions with clear numerical consequences. At the most fundamental level,

closed-system dynamics follow the time-dependent Schrödinger equation, where direct prop-

agation provides high-fidelity reference results for small to moderate Hilbert spaces. In real-

istic chemical environments, coupling to vibrational, solvent, or phononic modes induces dis-

sipation and decoherence, motivating reduced descriptions in terms of density matrices and

quantum master equations. Under weak coupling and negligible memory, Markovian dynam-

ics are accurately captured by Gorini–Kossakowski–Sudarshan–Lindblad generators, which

ensure complete positivity and trace preservation.1–3 When these assumptions fail-owing to

structured spectral densities, slow bath modes, strong coupling, or low temperatures-non-

Markovian effects become essential, and projection-operator approaches such as Nakajima–

Zwanzig naturally yield generalized quantum master equations (GQME) with explicit mem-

ory kernels.4–7 In parallel, quantum information science has produced algorithmic approaches

for simulating dynamics that, in principle, mitigate classical scaling bottlenecks.8,9 In the

noisy intermediate-scale quantum (NISQ) regime,10 however, near-term devices remain con-

strained by finite coherence times, circuit-depth limits, and sampling overhead. Practical

simulation workflows are therefore hybrid: classical computation remains indispensable for

model construction, baseline validation, and error analysis, while quantum circuits are used

selectively to implement dynamical primitives-approximate unitary evolution, dilations of

non-unitary channels, or variational updates-under realistic hardware constraints.11,12 De-

spite rapid progress in both classical and quantum approaches, the software ecosystem re-

mains fragmented across these regimes. QuTiP provides mature operator representations and

classical propagation tools for wavefunctions and master equations.13 Tensor-network frame-
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works exploit compressibility and low-entanglement structure to enable scalable reduced dy-

namics.14 Quantum circuit toolkits supply compilation and execution pipelines for unitary

simulation and variational algorithms.15 What is often missing is a unified environment in

which a physical model is specified once, propagated across multiple dynamical descriptions

under consistent conventions, and benchmarked systematically across classical and quantum

backends. To address this gap, we introduce QFlux,16 an open-source Python framework for

multilevel quantum dynamics in chemical systems. QFlux adopts a model-centric philosophy:

the same physical Hamiltonian, initial state, and observables should remain portable across

levels of theory and computational paradigms. Accordingly, QFlux supports closed-system

Schrödinger dynamics, Markovian Lindblad evolution, non-Markovian GQME propagation,

and multiple hardware-motivated simulation strategies within a shared workflow. Its imple-

mentation builds on established numerical libraries (NumPy and SciPy17,18), classical quan-

tum dynamics tooling (QuTiP13), tensor-network capabilities (MPSQD14), and quantum

circuit infrastructure (Qiskit15). A central design goal of QFlux is interoperability without

sacrificing methodological breadth. The same Hamiltonian model can be propagated using

deterministic ODE solvers, split-operator Fourier transform (SOFT) methods for grid-based

wavepacket dynamics,19 product-formula Hamiltonian simulation via Trotter–Suzuki decom-

positions,20,21 randomized compilation strategies such as qDRIFT,22 or variational quantum

dynamics based on time-dependent variational principles.23,24 For open-system dynamics,

QFlux pairs classical master-equation solvers with circuit-oriented constructions based on

Kraus representations and Stinespring dilations, enabling controlled comparisons between re-

duced non-unitary dynamics and their unitary embeddings on extended Hilbert spaces.25,26

Beyond providing implementations, QFlux is explicitly structured as a benchmarking and

research platform. Identical physical models can be propagated using multiple formalisms

and backends, enabling systematic assessment of discretization error, Trotterization error,

memory-kernel truncation, variational expressivity limits, and hardware-induced noise. This

benchmark-centric perspective is particularly important in the NISQ era, where accuracy
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must be evaluated alongside circuit depth, compilation overhead, and sampling cost.10 This

tutorial series develops QFlux through a deliberately pedagogical progression. Part I estab-

lishes the theoretical and numerical foundations of time-dependent quantum dynamics us-

ing classical propagation methods, emphasizing physical interpretation and cross-validation.

Part II translates these ideas to closed-system quantum simulations on qubit-based hard-

ware. Part III focuses on state preparation and unitary decomposition. Part IV extends

the framework to open quantum systems using Lindblad dynamics and dilation techniques.

Part V introduces adaptive variational algorithms tailored to near-term hardware. Finally,

Part VI addresses non-Markovian dynamics through generalized quantum master equations

with explicit memory effects. QFlux is not presented as a source of fundamentally new quan-

tum dynamics algorithms. Rather, its contribution lies in unifying, validating, and system-

atically comparing established methods within a single, consistent framework. QFlux does

not replace classical propagators, tensor-network techniques, or quantum-circuit primitives

available in packages such as QuTiP, MPSQD, and Qiskit. Instead, it enforces a common

abstraction in which the same physical Hamiltonian, initial state, and observables are prop-

agated unchanged across classical wavefunction dynamics, open-system descriptions, tensor-

network representations, and quantum-ready formulations. This design enables benchmark

symmetry, allowing numerical, physical, and hardware-motivated approximations to be com-

pared directly and their errors disentangled in a controlled manner.

2 QFlux: Scope, Design Philosophy, and Capabilities

QFlux is designed as a general-purpose research and benchmarking environment for quantum

dynamics simulations in chemical and molecular systems (Fig. 1). Rather than privileging

a single propagation strategy, QFlux is organized to make systematic comparisons routine:

users can hold the physical model fixed while varying the dynamical description (closed vs.

open, Markovian vs. non-Markovian) and the numerical or hardware-motivated propagation
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scheme.

At the workflow level, QFlux centers on four reusable components:

• model specification (Hamiltonians, dissipators, bath structure, and kernel inputs);

• state preparation (pure states, mixed states, and thermally purified constructions);

• time propagation (interchangeable classical propagators and quantum-ready methods);

• analysis (expectation values, correlation functions, populations/coherences, and spec-

tral observables).

This modular structure mirrors standard practice in quantum dynamics while keeping the

computational backend-dense linear algebra, tensor networks, or quantum circuits-an imple-

mentation choice rather than a conceptual constraint.

QFlux builds on widely used libraries for numerical computing and quantum simula-

tion. NumPy and SciPy provide array primitives, linear algebra routines, FFTs, and robust

ODE solvers.17,18 QuTiP supplies operator and state abstractions together with mature clas-

sical propagation utilities.13 Qiskit provides circuit construction, transpilation, and access

to IBM Quantum backends.15 Where scalability is critical, QFlux incorporates tensor-train

(matrix product state) representations through MPSQD,14,27 enabling compressed propa-

gation in selected regimes. The intent is not to replace these ecosystems, but to provide

a coherent interface layer that makes them interoperable within a single simulation work-

flow. In contrast to workflows based on QuTiP augmented by method-specific scripts, QFlux

enforces a strictly model-centric abstraction in which the same Hamiltonian, initial state,

and observables are propagated unchanged across classical solvers, tensor-network meth-

ods, and quantum-circuit–ready algorithms. This benchmark symmetry enables controlled,

apples-to-apples comparisons that disentangle physical approximations, numerical error, and

hardware-driven constraints within a single reproducible framework.

Methodologically, QFlux spans a hierarchy of dynamical descriptions. Closed-system dy-

namics are supported via direct Schrödinger propagation and operator-splitting approaches
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tensor train thermo-field dynamics
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qflux.variational_methods.qmad

qmad.solver.solve_avq_vect 
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UAVQD classes 
SSE classesqmad.solver.solve_avq_trajectory 

Dynamics via Stochas%c Schrodinger Equa%on (SSE)

qmad.effh 
Model systems: 
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FMO complex

qflux

qflux.closed_systems

VarQTE 
varia%onal dynamics on quantum computers

classical_methods.DynamicsCS 
closed system dynamics on classical computers

qubit_methods.QubitDynamicsCS 
closed system dynamics on quantum computers

spin_dynamics_oo.SpinDynamicsS 
spin system dynamics on quantum computers spin_propagators
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direct_method 
Pauli string Hamiltonians on quantum computers qiskit
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potential_type=“harmonic” 
potential_type=“quartic”
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dilation_circuit 
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quantum_simulation.QubitDynamicsOS 
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trans_basis 
basis transforma%ons

walsh_gray_optimization 
Walsh-Gray for diagonal unitaries

params 
parameters/constants

qiskit

qutip

testsdocs

Figure 1: Complete package tree of QFlux. The diagram shows the organization of the
codebase rooted at the top-level qflux package. The APIs are contained within four core
modules closed_systems, open_systems, GQME, variational_methods, and testing and
documentation are isolated in tests and docs. Directed edges indicate containment and
dependency relationships, and red boxes indicate the external packages.
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such as SOFT.19 Markovian open-system dynamics are treated using Lindblad master

equations,1–3 paired where appropriate with circuit-oriented unitary embeddings.25,26 Non-

Markovian reduced dynamics are supported through GQME workflows rooted in projection-

operator theory.4–6 Hardware-motivated strategies for unitary evolution include Trotter–

Suzuki product formulas,20,21 randomized decompositions such as qDRIFT,22 and variational

quantum dynamics based on McLachlan-type time-dependent variational principles.23,24 To-

gether, these capabilities enable consistent exploration of accuracy–cost tradeoffs across clas-

sical and quantum paradigms.

A defining feature of QFlux is its emphasis on validation. By allowing the same model

to be propagated using multiple solvers, QFlux makes it straightforward to isolate phys-

ical assumptions (e.g., Markovianity), numerical approximations (time-step and splitting

errors), and hardware-driven limitations (sampling noise and compilation constraints). This

capability is particularly important for near-term quantum simulation studies, where re-

producibility and cross-verification against trusted classical references are often the limiting

factors in interpreting hardware results.10

In this tutorial series, QFlux serves as the unifying framework through which propaga-

tion methods are introduced, tested, and interpreted. Part I emphasizes foundations-closed-

system propagation, operator structure, and benchmarking-to build intuition and establish

reference workflows. These same operator decompositions and validation strategies on con-

ventional classical computers then provide a direct conceptual bridge to the quantum circuit

constructions and hybrid quantum–classical simulations developed in subsequent parts.

3 Workflow for Quantum Dynamics Simulations

Regardless of whether a simulation runs on a laptop or a quantum processor, the QFlux

workflow is the same: initialization, time propagation, and analysis (Fig. 2).
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exp (ℒΔt) Updated 
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measure 
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Figure 2: Top: QFlux workflow for quantum dynamics simulations: state preparation, time
propagation, and analysis of observables. Color-coded modules show classical (blue) and
quantum-ready (green) components. Bottom: Runtime data flow in QFlux for closed and
open quantum systems. For closed systems (Bottom lane), the state vector |ψ(t)⟩ is prop-
agated by a time-step propagator U(∆t) constructed from discretized kinetic and potential
operators derived from the Hamiltonian and grid/basis representation. For open systems
(top lane), the density operator ρ(t) evolves under a completely positive trace-preserving
(CPTP) map E(∆t) obtained from the Liouvillian, using either Kraus or vectorized-density
representations. In both cases, time evolution is simulated through abstract ports that
dispatch to concrete numerical or quantum backends (e.g., NumPy, SciPy, Qiskit), and ob-
servables are evaluated from the updated state at each time step.

1. Initialization: Define the system and choose a representation – grid, Fock basis, or

harmonic oscillator basis. For example, the ground vibrational state of a diatomic molecule

can be represented as a Gaussian (coherent-state) wavepacket centered near equilibrium.

2. Propagation: Evolve the state under the chosen Hamiltonian using a suitable numerical
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method, such as a ODE solver, or SOFT for efficiency on uniform grids. In both cases, the

formal propagator U(t) = e−iHt/ℏ is realized either by direct integration of the TDSE or by

short-time operator splitting.

3. Analysis: Compute observables such as ⟨x(t)⟩, ⟨p(t)⟩, populations in a chosen basis, and

correlation functions like the survival amplitude ξ(t) = ⟨ψ(0)|ψ(t)⟩, which connects directly

to spectroscopy.

4 Dynamics of Pure Quantum States

The time-dependent Schrödinger equation (TDSE),

iℏ ∂
∂t
|ψ(t)⟩ = H|ψ(t)⟩, (4.1)

governs the time evolution of a pure quantum state described by the wavefunction |ψ(t)⟩

under the action of the Hamiltonian H. When the Hamiltonian is time-independent, the

formal solution can be written in closed form as

|ψ(t)⟩ = e−iHt/ℏ|ψ(0)⟩, (4.2)

where e−iHt/ℏ is the unitary time-evolution operator. Consequently, as introduced in Sec. 3,

the dynamics simulation may be viewed as a two-step procedure: preparation of an initial

state |ψ(0)⟩ (i.e., initialization), followed by its propagation in time through application of

the evolution operator e−iHt/ℏ (i.e., time-propagation). This perspective underlies numerical

propagation schemes with both conventional computers and their quantum-circuit-based

counterparts.

Hamiltonians in molecular problems. For molecular systems, the Hamiltonian H =

T + V combines kinetic and potential energy operators that govern nuclear and electronic
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motion. This split is not just notation: it is what makes SOFT possible (Sec. 5.2).

From states to observables. From |ψ(t)⟩, measurable observables follow as expectation

values

⟨O(t)⟩ = ⟨ψ(t)|O|ψ(t)⟩. (4.3)

In practice, tracking a small set of observables is also a numerical check: conserved norm

and physically sensible ⟨x(t)⟩ and ⟨p(t)⟩ are early indicators that the simulation is behaving

correctly.

From dynamics to spectra. A particularly useful correlation function is the survival

amplitude,

ξ(t) = ⟨ψ(0) | ψ(t)⟩, (4.4)

whose Fourier transform yields the photoabsorption spectrum, directly connecting micro-

scopic time evolution with spectroscopic observables.

Wavepacket intuition. Intuitively, |ψ(t)⟩ can be pictured as a wavepacket moving across

a potential energy landscape. Tracking its motion reveals vibrational oscillations, tunneling,

and coherence – behaviors that determine chemical reactivity and spectroscopy.

5 Classical Simulations of Quantum Dynamics

In the following sections, we separate physical interpretation, numerical algorithms, and

software implementation to clarify how each layer contributes to a reliable quantum-dynamics

workflow.
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5.1 ODE solver Integration

From a physics perspective, expanding the wavefunction in a chosen basis converts the

Schrödinger equation into coupled equations of motion for probability amplitudes. This

formulation makes conservation laws, phase relationships, and analytical benchmarks explicit

and readily accessible.

For low-dimensional quantum systems, the time-dependent Schrödinger equation (TDSE)

can be integrated efficiently on classical computers by expanding the state in a fixed basis

{|j⟩},

|ψ(t)⟩ =
∑

j

cj(t)|j⟩, (5.1)

with initial amplitudes cj(0) = ⟨j|ψ(0)⟩. Substitution into the TDSE yields a system of

coupled linear ordinary differential equations,

dck

dt
= − i

ℏ
∑

j

⟨k|Ĥ|j⟩ cj(t), (5.2)

which can be propagated numerically using high-order adaptive integrators such as Runge–

Kutta methods,28–32 VODE,33 CVODE,34 and related multistep schemes.35–37 Implementa-

tions in packages such as SciPy (RK45, DOP853, LSODA)18 and QuTiP (vern7, vern9,

Adams, BDF)38,39 employ adaptive step-size control to maintain prescribed error toler-

ances, enabling accurate propagation in the presence of fast oscillations and widely separated

timescales.

The choice of basis – such as a truncated Fock basis or any other convenient representation

– determines the dimensionality and numerical efficiency of the resulting propagation but

does not alter the underlying physical description.

Benchmark: harmonic oscillator. The harmonic oscillator, described by the following

Hamiltonian:

Ĥ = p2

2m + V (x), (5.3)
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with V (x) = 1
2mω

2x2, serves as a stringent benchmark since its analytical solution is known,

with time-dependent expectation values of position and momentum:

⟨x(t)⟩ = x0 cos(ωt) + p0

mω
sin(ωt)

⟨p(t)⟩ = −mωx0 sin(ωt) + p0 cos(ωt)
(5.4)

Matching Eq. (5.4) is a useful first diagnostic because it checks the full pipeline: operator

construction, state preparation, propagation, and expectation value evaluation.

What to look for in the numerical result. A correct propagation reproduces (i) the

oscillation frequency ω, (ii) the correct phase relationship between ⟨x(t)⟩ and ⟨p(t)⟩, and (iii)

constant norm. If any of these fail, refine timestep and basis size before moving on to more

complex models.

Additional implementation details are provided in the Supporting Information, including

a description of Scipy’s RK45 (Section S.1).18 As a hands-on implementation, Script S.2.1

illustrates the simulation workflow by using a ODE solver with QuTiP,38,39 which can be

accessed through the QFlux framework.40 The script initializes a harmonic oscillator, con-

structs its Hamiltonian, and propagates the wavefunction in time using a ODE solver. The

resulting time evolution can then be analyzed to compute expectation values of observables

and compared with the exact analytical expressions, as shown in Script S.2.2.

Fig. 3 shows excellent agreement between the numerical propagation and the analytical

results for both ⟨x(t)⟩ and ⟨p(t)⟩, confirming the accuracy of the ODE solver integration im-

plemented in QuTiP. This example establishes a solid foundation for studying more complex

quantum systems within the same QFlux framework.

5.2 Split-Operator Fourier Transform (SOFT)

The SOFT method41–44 propagates quantum states by alternating between potential and

kinetic operators, using fast Fourier transforms (FFTs) to switch between position and mo-
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Figure 3: Time-dependent expectation values of position and momentum for the harmonic
oscillator, computed using a ODE solver integrator in QuTiP. The results show excellent
agreement with the analytical expressions in Eq. (5.4).

mentum representations. One full SOFT time step of size τ = ti+1 − ti reads

ψ(x, ti+1) = e
−iV (x)τ

2ℏ F−1
[
e

−ip2τ
2mℏ F

(
e

−iV (x)τ
2ℏ ψ(x, ti)

)]
, (5.5)

where F and F−1 denote the Fourier and inverse Fourier transforms, respectively. From an

algorithmic perspective, each SOFT time step consists of alternating diagonal operations in

position and momentum space, with fast Fourier transforms providing the basis changes at

O(N logN) cost.

How to read Eq. (5.5). It helps to interpret the SOFT step as a sequence of unitary

substeps: (i) apply a half-step potential phase in x-space, (ii) transform to momentum space,

(iii) apply a kinetic phase in p-space, (iv) transform back, (v) apply the second half-step

potential phase. This picture will be reused directly in Part II when mapping propagation

to quantum circuits.

Benchmark against ODE solver and analytics. From a benchmarking perspective,

the split-operator Fourier transform (SOFT) method should reproduce the same physical
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observables as high-order ODE solvers when both approaches are numerically converged.

Agreement between the two therefore serves as a validation of numerical correctness, rather

than as a comparison of algorithmic performance.

Indeed, Fig. 4 demonstrates that properly converged SOFT and ODE solver simulations

yield indistinguishable results, in excellent agreement with the analytical expressions for the

time-dependent expectation values of position and momentum of the harmonic oscillator

described in Section 5.1. This benchmark validates the SOFT implementation and estab-

lishes it as a reliable reference before extending the analysis to anharmonic systems, such as

asymmetric double-well potentials relevant to proton-transfer dynamics.

Figure 4: Comparison of time-dependent expectation values of position and momentum
obtained from SOFT propagation and analytical solutions for the harmonic oscillator.

When SOFT is the right tool. From a software-workflow perspective, SOFT is particu-

larly efficient for grid-based representations and integrates naturally into QFlux as an inter-

changeable propagator alongside ODE solvers. On uniform grids, SOFT is often faster and

more memory-efficient, whereas ODE solver methods provide fine-grained adaptive time-step

control and can be more convenient in operator-diagonal or compact basis representations.

In practice, the choice between these approaches is guided by (i) the underlying repre-
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sentation (uniform grids versus compact bases), (ii) the desired mode of error control (fixed

versus adaptive time stepping), and (iii) how naturally the propagation scheme maps onto

a quantum implementation. Care must be taken to control grid resolution, boundary con-

ditions, and spectral aliasing in SOFT calculations, as inadequate grids or poorly chosen

boundaries can introduce nonphysical artifacts.

Together, ODE solvers and SOFT provide complementary classical references: the former

emphasizes numerical control, while the latter exposes operator structure that anticipates

quantum-circuit implementations.

Takeaway statement: Split-Operator Fourier Transform (SOFT)

What insight have we gained? At this point, the reader should understand why

SOFT reproduces exact dynamics when converged, and how its operator structure an-

ticipates quantum circuit layouts.

5.3 Connecting Classical and Quantum Simulations

As we will see in Part II, the SOFT method forms a conceptual bridge to quantum comput-

ing. From a quantum-computing perspective, the SOFT sequence directly mirrors quantum-

circuit structure: diagonal operators correspond to phase rotations, and Fourier transforms

correspond to quantum Fourier transforms (QFT). This analogy makes SOFT an ideal ped-

agogical and practical on-ramp to quantum algorithms: one can prototype classically, verify

against analytical results, and then translate to qubit-based propagation within the QFlux

framework.

The following section introduces more advanced techniques required for finite-

temperature simulations and systems with many degrees of freedom. Readers primarily

interested in pure-state dynamics may skip ahead to Sec. 7 without loss of continuity.
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6 Quantum Dynamics Simulations of Mixed States

Realistic chemical systems rarely evolve in isolation. Instead, they are typically embedded

in an environment-such as a solvent, lattice, or radiation field-that exchanges energy with

the system and maintains it at a finite temperature. Under these conditions, the system

generally occupies a statistical ensemble of quantum states, and its dynamics can no longer

be described by a single wave function evolving unitarily according to the time-dependent

Schrödinger equation. While the propagation schemes introduced in the previous sections

are therefore adequate for pure quantum states, finite-temperature and open-system effects

call for a more general description in terms of mixed states, represented by density matrices

rather than statevectors.

As described in the following subsections, Thermo-Field Dynamics (TFD) provides a nu-

merically exact and efficient framework that maps the thermal density matrix onto a pure

thermal state that evolves under the time-dependent Schrödinger equation in an enlarged,

doubled Hilbert space. This construction allows one to retain standard wave-function propa-

gation techniques, which in practice are typically combined with low-rank tensor-train (TT)

or matrix-product-state (MPS) representations of the evolving density matrix, as discussed

below.44–46

6.1 Motivation and background

For a system with Hamiltonian Ĥ, the canonical thermal density matrix at inverse temper-

ature β = (kBT )−1 is

ρ̂(0; β) = Z−1
β e−βĤ , Zβ = Tr

[
e−βĤ

]
. (6.1)

Although this form is compact, it is not directly amenable to the wavefunction-based propa-

gation methods introduced in previous sections of this tutorial because it describes a mixed

state that does not evolve according to the Schrödinger equation but according to the quan-
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tum Liouville equation:

∂ρ̂(t)
∂t

= − i
ℏ

[Ĥ, ρ̂(t)]. (6.2)

Thermo-Field Dynamics (TFD) addresses this by enlarging the system with fictitious

variables and forming a pure thermal wavefunction. This state evolves according to a time-

dependent Schrödinger equation which is equivalent to Eq. (6.2) once the fictitious variables

are traced out, as shown in subsequent subsections.

6.2 Thermal wavefunction construction

The purified thermal wavefunction is defined as

|ψ(0; β)⟩ = Z
−1/2
β

∑
n

e−βEn/2 |n, ñ⟩, (6.3)

where {|n⟩} are eigenstates of Ĥ with energies En, and |ñ⟩ are the corresponding states in

the auxiliary space. Equivalently, this can be written as

|ψ(0; β)⟩ = Z
−1/2
β e−βĤ/2∑

n

|n, ñ⟩. (6.4)

Example: harmonic oscillator. For a single bosonic mode with creation operators a†

and ã†, the thermal wavefunction becomes

|ψ(0; β)⟩ = Z
−1/2
β

∑
n

e−βnω/2 1
n! (a

†ã†)n|0vib, 0̃vib⟩

=
√

1− e−βω exp
[
e−βω/2a†ã†

]
|0vib, 0̃vib⟩. (6.5)

This exponential form shows that each physical mode is entangled with its fictitious partner,

encoding the correct thermal occupation n(ω, β) = 1/(eβω − 1).
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6.3 Thermal ensemble averages

Expectation values of observables at temperature T can be computed directly as pure-state

averages:

⟨F̂ ⟩β = ⟨ψ(0; β)|F̂ |ψ(0; β)⟩

= Z−1
β

∑
n,m

e−β(En+Em)/2⟨n|F̂ |m⟩⟨ñ|m̃⟩

= Z−1
β

∑
n

e−βEn⟨n|F̂ |n⟩, (6.6)

which recovers the standard canonical ensemble result ⟨F̂ ⟩β = Tr[ρ̂(0; β)F̂ ].

6.4 Thermal density matrix recovery

Tracing out the fictitious subsystem returns the physical mixed density operator:

Trf̃ [|ψ(0; β)⟩⟨ψ(0; β)|] = Trf̃

[
Z−1

β e−βĤ
∑

n

|n, ñ⟩⟨n, ñ|
]

= Z−1
β e−βĤ = ρ̂(0; β). (6.7)

Hence, the purified wavefunction faithfully reproduces the thermal density matrix upon

tracing over the auxiliary space.

6.5 Dynamics: the TF Schrödinger equation

After preparing |ψ(0; β)⟩, its time evolution is governed by the thermo-field Schrödinger

equation:
∂ |ψ(β, t)⟩

∂t
= − i

ℏ
H̄ |ψ(β, t)⟩ , (6.8)

where the doubled-space Hamiltonian operator is

H̄ = Ĥ ⊗ Ĩ − I ⊗ H̃. (6.9)
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Here, Ĥ acts on the physical system and H̃ on its fictitious counterpart. This form ensures

that time evolution in the doubled Hilbert space preserves the correct thermal correlations.

6.6 TF Liouville equation: recovering the physical dynamics

In the thermo-field (TF) construction, the physical open-system system–bath Hilbert space

Hphys = HS ⊗HB (6.10)

is embedded into an enlarged space

Htot = HS ⊗HB ⊗ H̃, (6.11)

where H̃ contains all fictitious degrees of freedom introduced to purify the thermal state.

For the open–system system–bath model we consider two natural TF choices:

• Bath-only doubling: H̃ = H̃B (only the bath is doubled),

• Full system–bath doubling: H̃ = H̃S⊗H̃B (both the system and the bath are doubled).

In either case, the physical density matrix at time t is obtained by tracing out all fictitious

degrees of freedom,

ρ̂(t) = Trf̃ [|ψ(β, t)⟩⟨ψ(β, t)|] , (6.12)

where the trace is taken over whichever fictitious Hilbert space is present.

The purified TF state evolves under the TF Schrödinger equation

iℏ∂ |ψ(β, t)⟩
∂t

= H̄ |ψ(β, t)⟩ , (6.13)

with a TF Hamiltonian of the form

H̄ = HSB ⊗ Ĩ − ISB ⊗ H̃, (6.14)
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where HSB is the physical open–system Hamiltonian and H̃ acts only on the fictitious space

H̃. For bath-only doubling one has H̃ = H̃B, while for full doubling H̃ = H̃SB; the derivation

below is identical for both constructions.

Differentiating Eq. (6.12) and using Eq. (6.13) gives

∂ρ̂(t)
∂t

= Trf̃

[
− i
ℏ
H̄ |ψ⟩⟨ψ|+ i

ℏ
|ψ⟩⟨ψ| H̄

]
= − i

ℏ
Trf̃

(
[H̄, |ψ⟩⟨ψ|]

)
. (6.15)

Inserting the decomposition of Eq. (6.14),

[H̄, |ψ⟩⟨ψ|] = [HSB ⊗ Ĩ , |ψ⟩⟨ψ|]− [ISB ⊗ H̃, |ψ⟩⟨ψ|], (6.16)

the partial trace separates into two contributions:

∂ρ̂(t)
∂t

= − i
ℏ

{
Trf̃

(
[HSB ⊗ Ĩ , |ψ⟩⟨ψ|]

)
− Trf̃

(
[ISB ⊗ H̃, |ψ⟩⟨ψ|]

)}
. (6.17)

Physical Hamiltonian term. Since HSB acts only on the physical space and commutes

with operators on H̃,

Trf̃

(
[HSB ⊗ Ĩ , |ψ⟩⟨ψ|]

)
= HSB ρ̂(t)− ρ̂(t)HSB = [HSB, ρ̂(t)]. (6.18)

Fictitious Hamiltonian term. Because H̃ acts only on H̃ and the trace is cyclic in the

fictitious space,

Trf̃

[
(ISB ⊗ H̃)X

]
= Trf̃

[
X(ISB ⊗ H̃)

]
for any operator X, (6.19)

the second contribution vanishes:

Trf̃

(
[ISB ⊗ H̃, |ψ⟩⟨ψ|]

)
= 0. (6.20)
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Importantly, this cancellation holds regardless of whether the system is doubled: the argu-

ment uses only the cyclicity of the partial trace over the fictitious space.

Result. Combining Eqs. (6.17)–(6.20) yields

∂ρ̂(t)
∂t

= − i
ℏ

[HSB, ρ̂(t)], (6.21)

which is precisely the Liouville–von Neumann equation for the physical spin–boson density

matrix.

Remark. Equation (6.21) is recovered independently of whether the system is doubled in

the TF construction. Thus, unless the system itself is thermalized, for the open–system

model one may freely use the simpler bath-only doubling—as typically done in practical

TT-TFD simulations—without affecting the physical reduced dynamics.

6.7 Tensor-train (TT/MPS) representation

In practice, the composite space (system ⊗ bath ⊗ tilde bath) becomes exponentially large,

and the pure state |ψ(β, t)⟩ is efficiently represented as a tensor train (MPS):

|ψ(β, t)⟩ ≃
∑
{ik}

A
[1]
i1 A

[2]
i2 · · ·A

[N ]
iN
|i1i2 · · · iN⟩. (6.22)

The doubled Hamiltonian H̄ is encoded as a matrix product operator (MPO). Time propaga-

tion is performed using the time-dependent variational principle (TDVP)47 or time-evolving

block decimation (TEBD) algorithms with adaptive bond-dimension control.

6.8 Test Case: Qubit Coupled to a Bath of Harmonic Oscillators

In this subsection, we describe the implementation of the TT-TFD approach as applied

to simulations of finite-temperature wavepacket dynamics. As an illustrative example, we
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consider population dynamics of a qubit coupled to bath of quantum harmonic oscillators.

6.8.1 Algorithmic workflow

In the specific case of a harmonic bath (i.e., a bath composed of harmonic oscillators), the

algorithmic workflow is as follows:

1. Discretize the bath: Choose {ωk, ck} to reproduce the spectral density J(ω).

2. Construct the doubled Hamiltonian: Build H̄ = Ĥ ⊗ Ĩ − I ⊗ H̃ as an MPO.

3. Initialize the thermal wavefunction: Generate |ψ(0; β)⟩ using Eqs. (6.3) - (6.5).

4. Time propagate: Evolve via Eq. (6.8) using TDVP or TEBD.

5. Compute observables: Obtain ρ̂(t) via Eq. (6.12) and evaluate ⟨F̂ (t)⟩ = Tr[ρ̂(t)F̂ ].

6.8.2 Hamiltonian

The system is described by the spin–boson Hamiltonian:

H = ϵσz + Γσx +
Nn∑
k=1

ωka
†
kak + σz

Nn∑
k=1

gk

(
a†

k + ak

)
, (6.23)

where a†
k and ak are the creation and annihilation operators of the vibrational bath. The

linear coupling coefficients are

gk = − ck√
2ωk

, (6.24)

which represent the coupling strength between the electronic sites and bath modes.

Discretization of bath frequencies. The bath frequencies ωk are discretized logarith-

mically as

ωk = −ωc log
(

1− k Ω
ωc

)
, (6.25)
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where

Ω = (1− e−ωmax/ωc) ωc

Nn

, ωmax is the cutoff frequency. (6.26)

For an Ohmic spectral density, the coupling constants take the form

gk = −
√
ξ ωk Ω/2. (6.27)

6.8.3 Thermo Field Dynamics Initial State

The TT-TFD method solves the thermal Schrödinger equation

∂

∂t
|Ψ(t, β)⟩ = −iH̄ |Ψ(t, β)⟩ , (6.28)

with an initial thermal wavepacket |Ψ(0, β)⟩ satisfying

|Ψ(0, β)⟩ ⟨Ψ(0, β)| = ρS(0)⊗ Z−1
B e−βHB . (6.29)

Where ρS(0) is the initial system density operator and HB is the bath Hamiltonian.

The thermal TFD state can be generated from the doubled vacuum
∣∣∣0, 0̃〉 by a unitary

transformation (equivalent to Eq. (6.5)),48

|Ψ(0, β)⟩ = e−iG
∣∣∣0, 0̃〉 , (6.30)

where, for a harmonic environment, the generator is

G = −i
Nn∑
k=1

θk

(
akãk − a†

kã
†
k

)
, θk = arctanh

(
e−βωk/2

)
. (6.31)

The unitary Sθ = e−iG entangles each physical mode with its tilde counterpart through a

two-mode squeezing transformation.
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The action of G on the operators is determined by the bosonic relations

[ak, a
†
k′ ] = δkk′ , [ãk, ã

†
k′ ] = δkk′ , [ak, ãk′ ] = [ak, ã

†
k′ ] = 0, (6.32)

together with the Baker-Campbell-Hausdorff expansion. Straightforward algebra yields the

Bogoliubov transformations

bk(θ) = eiGake−iG = ak cosh θk − ã†
k sinh θk, (6.33a)

b̃k(θ) = eiGãke−iG = ãk cosh θk − a†
k sinh θk, (6.33b)

with analogous expressions for the creation operators. Thus the thermal state may be repre-

sented either as a squeezed state in the original (ak, ãk) basis or, equivalently, as the simple

product vacuum
∣∣∣0, 0̃〉 when expressed in the rotated operators bk(θ), b̃k(θ).

To apply this transformation to dynamics, we consider the doubled Hamiltonian used in

TFD,

H̄ = Ĥ ⊗ Ĩ − I ⊗ H̃, (6.34)

where Ĥ is the physical spin–boson Hamiltonian

Ĥ = ϵσz + Γσx +
Nn∑
k=1

ωk a
†
kak + σz

Nn∑
k=1

gk(a†
k + ak). (6.35)

The “tilde” Hamiltonian H̃ has the same functional form as Ĥ but is written in terms of

the fictitious operators ãk, ã
†
k and acts on the auxiliary Hilbert space. The minus sign in

Eq. (6.34) ensures that thermal expectation values can be written as pure-state overlaps in

the doubled space.

Applying the Bogoliubov unitary to H̄ defines the rotated Hamiltonian

H̄θ = eiG H̄ e−iG, (6.36)
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which is expressed entirely in terms of the transformed operators bk(θ) and their tilde coun-

terparts. Using Eqs. (6.33), one finds

H̄θ = ϵσz + Γσx +
Nn∑
k=1

ωk

(
b†

kbk − b̃†
kb̃k

)

+ σz

Nn∑
k=1

gk

[
cosh θk (b†

k + bk)− sinh θk (b̃†
k + b̃k)

]
.

(6.37)

Temperature enters entirely through the coefficients cosh θk and sinh θk that weight the cou-

plings to the physical and fictitious modes, respectively. The structure of the temperature-

dependent Hamiltonian H̄θ illustrates a key advantage of the rotated picture: the initial

state may be kept in the simple vacuum configuration

|Ψθ(0, β)⟩ =
∣∣∣0, 0̃〉 , (6.38)

while all thermal effects appear in the transformed Hamiltonian.

Consequently, the dynamics follow the rotated Schrödinger equation,

∂

∂t
|Ψθ(t, β)⟩ = −i H̄θ |Ψθ(t, β)⟩ , (6.39)

a form particularly convenient for TT-TFD simulations of the spin–boson model, where the

vacuum TT/MPS structure is simple and all temperature dependence is consolidated into

the MPO representation of H̄θ.49

6.8.4 TT-TFD Simulations

Script S.4.2–Script S.4.4 show the implementation of TT-TFD simulations with QFlux for

the dynamics of a qubit coupled to a bath of quantum harmonic oscillators. The resulting

evolution of populations and coherences is shown in Fig. 5.

Fig. 5 shows the time evolution of the spin populations and coherences obtained from

the TT–TFD simulation of a qubit coupled to a harmonic oscillator bath. The population
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Figure 5: Comparison of time-dependent populations and coherences obtained by TT-TFD
simulations of a qubit coupled to a bath of quantum harmonic oscillators.

dynamics (left panel) exhibit coherent oscillations between the |↑⟩ and |↓⟩ states, with partial

population transfer and no unphysical leakage, indicating that the reduced density matrix

remains properly normalized throughout the propagation. These oscillations reflect coherent

system–bath energy exchange rather than simple monotonic relaxation. The corresponding

coherences (right panel) display oscillatory behavior in both the real and imaginary compo-

nents, with a clear phase shift between them, consistent with unitary precession modulated

by environmental coupling. Importantly, the smooth temporal behavior of both populations

and coherences, together with the absence of numerical instabilities or spurious discontinu-

ities, demonstrates that the TT–TFD approach accurately captures coupled coherent and

dissipative dynamics while maintaining numerical stability.

6.9 Summary and significance

The TT-TFD formalism provides a unified, wavefunction-based description of finite-

temperature quantum dynamics. By working in the doubled Hilbert space, it converts a

mixed-state problem into a pure-state evolution, allowing efficient tensor-network algorithms

to be applied. This method is particularly powerful for short-time, numerically exact simula-

tions that can be combined with Generalized Quantum Master Equation (GQME) methods

for efficient long-time predictions, as discussed in Part VI of this QFlux tutorial.50
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6.10 Practical considerations

• Mode ordering & entanglement: order physical and tilde modes to minimize en-

tanglement growth (often interleaving k and k̃ helps).

• Local truncation: choose per-mode occupation cutoffs based on T and coupling

strength; higher T generally requires larger cutoffs.

• Error control: monitor discarded weight / bond dimensions and validate against

converged short-time reference runs.

• Reuse via propagators: precompute and cache the TT-TFD propagator (superop-

erator) when solving families of initial states or GQME kernels.

These best practices are reflected in the QFlux tutorials and examples.

Takeaway statement: Quantum Dynamics of Mixed States

What skill or insight have we gained? The key lesson is that finite-temperature dy-

namics can be simulated using pure-state propagation at the cost of Hilbert-space dou-

bling, with tensor networks controlling the scaling.

7 Conclusions

Time-dependent quantum dynamics provide a unifying language for understanding how mi-

croscopic quantum states evolve and give rise to experimentally observable behavior. Across

chemistry, physics, and emerging quantum technologies, this perspective connects wave-

function motion to quantities such as populations, spectra, and correlation functions, and it

underlies both classical simulation methods and quantum algorithms for real-time dynamics.

The primary goal of Part I of this tutorial series is to build intuition and good compu-

tational practice. We introduced two complementary classical propagation strategies-direct

28



numerical integration and split-operator methods-and showed how they arrive at the same

physical results when properly converged. This comparison emphasizes a central lesson for

students: reliable simulations require validation across independent methods, not blind re-

liance on a single algorithm or software package. Throughout, simple benchmark systems

were used to highlight how numerical choices affect accuracy, stability, and physical inter-

pretation.

A key pedagogical message of this work is that classical propagation methods are more

than numerical tools. Their operator structure closely mirrors that of quantum algorithms

used for Hamiltonian simulation. In particular, split-operator schemes anticipate the struc-

ture of quantum circuits built from basis changes and phase operations. Classical simulations

therefore serve a dual purpose: they provide physical insight and reference data, and they

act as conceptual prototypes for quantum implementations. This viewpoint helps demystify

quantum simulation by revealing it as a natural extension of familiar classical ideas.

Within this framework, QFlux plays a distinct educational role. While packages

such as QuTiP and Qiskit are essential within their respective domains, QFlux is designed

to connect them. It enforces a model-centered workflow in which the same Hamiltonian,

initial state, and observables are carried consistently across classical solvers, tensor-network

methods, and quantum-ready algorithms. For students, this structure makes differences

between approaches transparent and traceable to physical approximations, numerical error,

or hardware constraints, rather than to software-specific conventions.

Part I serves as the foundation for the remainder of the tutorial series. Part II translates

the classical ideas developed here into executable quantum circuits for closed-system dynam-

ics. Part III focuses on state preparation and unitary decomposition, showing how abstract

states and operators are mapped to hardware-efficient circuits. Part IV extends the frame-

work to open quantum systems using Lindblad dynamics and dilation methods. Part V

introduces adaptive variational algorithms tailored to near-term quantum hardware. Part

VI addresses non-Markovian dynamics and memory effects through generalized quantum
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master equations.

Together, these installments form a coherent learning pathway from classical intuition

to quantum implementation. By emphasizing validation, operator structure, and consistent

workflows, this series aims to equip students with the conceptual tools needed to navigate

quantum dynamics across classical computation, hybrid algorithms, and emerging quantum

hardware.

Supporting Information

Detailed Python scripts implementing ODE solver and SOFT propagation methods, conver-

gence tests, and additional figures are provided in the Supporting Information and corre-

sponding Google Colab notebook as well as through the QFlux Documentation site.
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|ψ(0; β)⟩ = Z
−1/2
β

∞∑
n=0

e−βωn/2 1
n! (â

†ã†)n|0, 0̃⟩ (7.1)

=
√

1− e−βω exp
[
e−βω/2â†ã†

]
|0, 0̃⟩, (7.2)

where Zβ = (1 − e−βω)−1. Expanding the exponential reproduces the sum, and acting

(â†ã†)n on the double vacuum yields |n, ñ⟩, giving the standard thermofield double

series with Boltzmann weights. Eq. (6.30) for the same state is written as a unitary

generated by the two-mode squeezing operator:

|Ψ(0, β)⟩ = e−iG|0, 0̃⟩, G = −iθ(aã− a†ã†), θ = arctanh(e−βω/2). (7.3)

Using the SU(1,1) disentangling identity, the squeezing operator can be written as

e−iG = exp
[
γ a†ã†

]
exp

[
η (a†a+ ã†ã+ 1)

]
exp

[
− γ aã

]
, (7.4)

with γ = tanh θ and η = − ln(cosh θ). Acting on the vacuum, the last factor is trivial,

and the middle factor yields a scalar:

exp
[
η(a†a+ ã†ã+ 1)

]
|0, 0̃⟩ = 1

cosh θ |0, 0̃⟩. (7.5)
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Thus,

e−iG|0, 0̃⟩ = 1
cosh θ exp

[
γ a†ã†

]
|0, 0̃⟩ = 1

cosh θ

∞∑
n=0

(tanh θ)n|n, ñ⟩. (7.6)

Matching this with the coefficients of the first expression requires

tanh θ = e−βω/2, (7.7)

which also gives cosh−1 θ =
√

1− tanh2 θ =
√

1− e−βω. With this identification,

both forms yield identical expansions, establishing their equivalence. For multiple bath

modes, each mode k has its own θk with tanh θk = e−βωk/2, and the full bath state is

simply the product over modes since the generators commute for different k. .

(49) Anharmonic baths: no Bogoliubov simplification. The Bogoliubov transforma-

tion relies crucially on the quadratic nature of the harmonic oscillator Hamiltonian. For

an anharmonic potential—for example a Morse oscillator, quartic oscillator, or double-

well potential—no unitary of the Bogoliubov/squeezing type exists. Consequently, for

general anharmonic baths,

• one cannot work in the rotated picture with a compact Hamiltonian H̄θ,

• and one cannot encode finite temperature by a simple squeezing of the vacuum.

Thermal-state preparation for anharmonic oscillators. Instead, each oscillator’s

thermal density matrix

ρk(β) = e−βHk

Zk

must be represented directly in the TFD formalism. A standard route is: 1. Start from

the high-temperature mixed state ρk(β0) with small β0. 2. Perform imaginary-time

evolution

ρk(β) ∝ e−(β−β0)Hk ρk(β0),

using purification or TT/MPS representations. 3. Build the full thermal TFD state as
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a tensor product

|Ψ(0, β)⟩ =
Nn⊗
k=1
|Ψk(β)⟩ ,

where each |Ψk(β)⟩ purifies ρk(β). Once the initial thermal state is prepared explicitly

in this way, the dynamics are governed by the unrotated doubled Hamiltonian H̄,

∂

∂t
|Ψ(t, β)⟩ = −i H̄ |Ψ(t, β)⟩ , (7.8)

because no simple analyticG exists that could absorb temperature into a rotated Hamil-

tonian for anharmonic modes. In summary:

• For harmonic baths, thermal effects can be shifted entirely into the rotated Hamil-

tonian H̄θ using a Bogoliubov transformation.

• For anharmonic baths, no such squeezing transformation exists, so the thermal

TFD state must be explicitly constructed (e.g. via imaginary-time evolution), and

time evolution must be performed with the unrotated Hamiltonian H̄.

.

(50) Short-time, numerically exact TT-TFD trajectories provide the correlation functions

required to construct Generalized Quantum Master Equation (GQME) memory kernels

and inhomogeneous terms, enabling long-time dynamics at reduced cost. This hybrid

(TT-TFD → GQME) strategy yields accurate kinetics and mechanistic observables

across coupling/temperature regimes, and has been validated on spin–boson bench-

marks.
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S.1 Runge–Kutta–Fehlberg 4(5) Propagation

Consider the time-dependent Schrödinger equation

iℏ∂ |ψ(t)⟩
∂t

= Ĥ(t) |ψ(t)⟩ , |ψ(t)⟩ =
N∑

j=1
cj(t) |ϕj(t)⟩ . (S.1)

S.1.1 Case A: Orthonormal, Time-Independent Basis

If {|ϕj⟩}N
j=1 is orthonormal and time independent, define Hij(t) = ⟨ϕi| Ĥ(t) |ϕj⟩ and collect

the coefficients into c(t) = (c1, . . . , cN)⊤. The Schrödinger equation becomes the ordinary

differential equation

ċ(t) = f(t, c) ≡ − i
ℏ
H(t) c(t). (S.2)

Given (tn, cn) and a step size h, the classical Runge–Kutta–Fehlberg 4(5) stages are

k1 = f(tn, cn), (S.3)

k2 = f
(
tn + 1

4h, cn + 1
4h k1

)
, (S.4)

k3 = f
(
tn + 3

8h, cn + h
( 3

32k1 + 9
32k2

))
, (S.5)

k4 = f
(
tn + 12

13h, cn + h
(1932

2197k1 −
7200
2197k2 + 7296

2197k3

))
, (S.6)

k5 = f
(
tn + h, cn + h

(439
216k1 − 8k2 + 3680

513 k3 −
845
4104k4

))
, (S.7)

k6 = f
(
tn + 1

2h, cn + h
(
− 8

27k1 + 2k2 −
3544
2565k3 + 1859

4104k4 −
11
40k5

))
. (S.8)

The embedded 4th- and 5th-order updates are

c
(4)
n+1 = cn + h

( 25
216k1 + 1408

2565k3 + 2197
4104k4 −

1
5k5

)
, (S.9)

c
(5)
n+1 = cn + h

( 16
135k1 + 6656

12825k3 + 28561
56430k4 −

9
50k5 + 2

55k6

)
. (S.10)
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The embedded pair provides a local error estimate

∆ =
∥∥∥c(5)

n+1 − c
(4)
n+1

∥∥∥ , (S.11)

and a standard adaptive-step update,

hnew = h ·min
(
4, max

(
0.1, 0.84( tol

∆ )1/4
))
, (S.12)

where tol is the user-defined tolerance and the safety factors 0.1 and 4 bound the step

changes.

Remark on unitarity. RK45 is not exactly norm-preserving. For Hermitian H in an

orthonormal basis, it can be useful to monitor and optionally renormalize the coefficient

vector, cn+1 ← cn+1/∥cn+1∥, or tighten the tolerance to control norm drift.

S.1.2 Case B: Non-Orthonormal Time-Independent Basis

For a time-independent but non-orthonormal basis with overlap matrix Sij = ⟨ϕi|ϕj⟩, the

coefficients satisfy

iℏS ċ(t) = H(t) c(t) ⇒ ċ(t) = g(t, c) ≡ − i
ℏ
S−1H(t) c(t). (S.13)
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To avoid forming S−1 explicitly, each Runge–Kutta stage is implemented via linear solves:

S k1 = − i
ℏ
H(tn) cn, (S.14)

S k2 = − i
ℏ
H
(
tn + 1

4h
)(
cn + 1

4h k1

)
, (S.15)

S k3 = − i
ℏ
H
(
tn + 3

8h
)(
cn + h( 3

32k1 + 9
32k2)

)
, (S.16)

S k4 = − i
ℏ
H
(
tn + 12

13h
)(
cn + h(1932

2197k1 − 7200
2197k2 + 7296

2197k3)
)
, (S.17)

S k5 = − i
ℏ
H(tn + h)

(
cn + h(439

216k1 − 8k2 + 3680
513 k3 − 845

4104k4)
)
, (S.18)

S k6 = − i
ℏ
H
(
tn + 1

2h
)(
cn + h(− 8

27k1 + 2k2 − 3544
2565k3 + 1859

4104k4 − 11
40k5)

)
. (S.19)

The 4th- and 5th-order updates are then constructed from the same linear combinations of

{kℓ} as in the orthonormal case.

Pre-factorizing S (e.g., via a Cholesky decomposition S = LL†) allows each linear system

solve to be implemented efficiently.

S.1.3 Optional: Time-Dependent Basis

If the basis functions themselves are time dependent, |ϕj⟩ = |ϕj(t)⟩, nonadiabatic couplings

τij(t) =
〈
ϕi(t)

∣∣∣ϕ̇j(t)
〉

(S.20)

enter the equations of motion as

iℏS(t) ċ(t) =
(
H(t)− iℏ τ(t)

)
c(t), Sij(t) = ⟨ϕi(t)|ϕj(t)⟩ . (S.21)

The RK45 structure is unchanged, but at each stage both H and S are evaluated at the

intermediate time t∗ and the stage vectors k∗ are obtained from linear solves S(t∗) k∗ = . . ..
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S.1.4 Practical Notes

• For Hermitian H in an orthonormal basis, monitor norm drift ∥c(t)∥2 and renormalize

if necessary.

• With a non-orthonormal basis, monitor the generalized norm c†Sc.

• If H is sparse or has an MPO / TT structure, evaluate products Hc using the corre-

sponding matrix–vector routine to keep each stage efficient.

S.2 Harmonic Oscillator Benchmarks

This section presents scripts that model the dynamics of a quantum harmonic oscillator,

implemented using both a ODE solver in QuTiP and the SOFT method.

S.2.1 Dynamics with ODE solver

The first script prepares and propagates a coherent state of the harmonic oscillator using

QuTiP’s Schrödinger-equation solver sesolve. It defines the Hamiltonian, time grid, and

numerical solver options, and returns the full time series of state vectors (result.states)

used in later analysis.
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Script S.2.1: Harmonic Oscillator Dynamics with ODE solver 2 3

import qutip as qt
import numpy as np

# Define the system parameters
mass = 1.0
hbar = 1.0
omega = 1.0

# Initial state: coherent state with amplitude alpha = (x0 + i p_0)/sqrt(2)
x_0, p_0 = 1.0, 0.0
N = 128 # Number of basis states
psi_0 = qt.coherent(N, alpha=(x_0 + 1.j*p_0)/np.sqrt(2))

# Time grid
n_steps, total_time = 400, 20.0
tlist = np.linspace(0, total_time, n_steps)

# Define the Hamiltonian
a = qt.destroy(N)
H_ho = hbar * omega * (a.dag() * a + 0.5)

# Propagate using the Runge-Kutta solver
solver_options = {’nsteps’: len(tlist), ’progress_bar’: True}
result = qt.sesolve(H_ho, psi_0, tlist, options=solver_options)

S.2.2 Expectation Values

The second script evaluates the expectation values of position and momentum using the

propagated QuTiP states from the previous listing and compares them to the analytical

expressions for a coherent-state trajectory. It produces the benchmark plots shown in the

main text.
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Script S.2.2: Expectation Values for the Harmonic Oscillator 2 3

import matplotlib.pyplot as plt

# Operators for position and momentum
X_op = (a.dag() + a) / np.sqrt(2)
P_op = 1j * (a.dag() - a) / np.sqrt(2)

# Compute numerical expectation values
exp_x_qt = qt.expect(X_op, result.states)
exp_p_qt = qt.expect(P_op, result.states)

# Analytical results
exp_x_ana = [x_0*np.cos(omega*t) + (p_0/mass/omega)*np.sin(omega*t) for t in

tlist]
exp_p_ana = [-mass*omega*x_0*np.sin(omega*t) + p_0*np.cos(omega*t) for t in

tlist]

# Plot
fig, ax = plt.subplots()
ax.plot(tlist, exp_x_ana, ’-’, color=’blue’,

label=r’$\langle x \rangle$ (Analytical)’)
ax.plot(tlist, exp_x_qt, ’o’, color=’blue’,

label=r’$\langle x \rangle$ (QuTiP)’,
markeredgecolor=’blue’, markevery=4,
fillstyle=’full’, markerfacecolor=’white’)

ax.plot(tlist, exp_p_ana, ’-’, color=’red’,
label=r’$\langle p \rangle$ (Analytical)’)

ax.plot(tlist, exp_p_qt, ’o’, color=’red’,
label=r’$\langle p \rangle$ (QuTiP)’,
markeredgecolor=’red’, markevery=4,
fillstyle=’full’, markerfacecolor=’white’)

ax.axhline(0, ls=’--’, lw=0.5, color=’black’, alpha=0.5)
ax.set_xlabel(’Time (a.u.)’)
ax.set_ylabel(’Expectation Value’)
plt.legend(loc=’upper center’, ncol=2)
ax.set_ylim(-1.5, 1.825)
plt.hlines([-1, 0, 1], min(tlist), max(tlist),

ls=’--’, lw=0.85, color=’tab:grey’, zorder=2)
ax.set_xlim(min(tlist), max(tlist))
plt.show()
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S.3 SOFT Dynamics Simulations

S.3.1 State Initialization

The SOFT initialization script constructs the real-space and momentum grids and prepares

a coherent-state wavepacket matching the QuTiP initial state. These arrays (xgrid, pgrid,

and psi_0) are reused by all subsequent SOFT routines.
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Script S.3.1: Coherent State Wavepacket Initialization 2 3

import numpy as np

def get_xgrid(xmin, xmax, N_pts):
"""Generate an evenly spaced position grid."""
dx = (xmax - xmin)/N_pts
xgrid = np.arange(-N_pts/2, N_pts/2)*dx
return xgrid

def get_pgrid(xmin, xmax, N_pts, reorder=True):
"""Generate a momentum grid using FFT-compatible ordering."""
dp = 2 * np.pi / (xmax-xmin)
pmin = -dp * N_pts / 2
pmax = dp * N_pts / 2
plus_pgrid = np.linspace(0, pmax, N_pts//2+1)
minus_pgrid = - np.flip(np.copy(plus_pgrid))
if reorder:

pgrid = np.concatenate((plus_pgrid[:-1], minus_pgrid[:-1]))
else:

pgrid = np.concatenate((minus_pgrid, plus_pgrid))
return pgrid

def get_coherent_state(x, p_0, x_0, mass=1, omega=1, hbar=1):
"""Generate an initial coherent state wavefunction."""
normalization = (mass*omega/np.pi/hbar)**(0.25)
y = normalization*np.exp(

-1*(mass*omega/hbar/2)*((x-x_0)**2) + 1j*p_0*x/hbar
)
return y

xmin = -7.0
xmax = 7.0
N_pts = 128
mass = 1.0 # mass in atomic units
omega = 1.0 # oscillator frequency
xgrid = get_xgrid(xmin, xmax, N_pts)
dx = xgrid[1] - xgrid[0]
pgrid = get_pgrid(xmin, xmax, N_pts, reorder=True)

x_0 = 1.0
p_0 = 0.0
psi_0 = get_coherent_state(xgrid, p_0, x_0, mass, omega)
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S.3.2 Propagators for the Harmonic Oscillator

This helper script defines the harmonic potential and kinetic-energy functions on the grids

initialized above. The resulting arrays Vx_harm and K_harm serve as the input operators for

the SOFT propagator.

Script S.3.2: SOFT Operators for Harmonic Oscillator 2 3

import numpy as np

def get_harmonic_potential(x, x_0=0.0, mass=1, omega=1):
return mass * omega**2 * (x - x_0)**2 / 2

def get_kinetic_energy(p, mass=1):
return p**2 / (2 * mass)

Vx_harm = get_harmonic_potential(xgrid)
K_harm = get_kinetic_energy(pgrid, mass)

S.3.3 SOFT Propagation

The main SOFT propagation routine constructs the position- and momentum-space prop-

agators and iteratively advances the wavefunction in time using FFTs. It returns a list of

wavefunctions propagated_states_harm sampled on the same grid as the QuTiP trajectory.

Script S.3.3: SOFT Propagation 2 3

import numpy as np

def get_propagator_on_grid(operator_grid, tau, hbar=1):
return np.exp(-1.0j * operator_grid * tau / hbar)

def do_SOFT_propagation(psi, K_prop, V_prop):
psi_t_position_grid = V_prop * psi
psi_t_momentum_grid = K_prop * np.fft.fft(psi_t_position_grid, norm="ortho")
psi_t = V_prop * np.fft.ifft(psi_t_momentum_grid, norm="ortho")
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return psi_t

tmin, tmax, N_tsteps = 0.0, 20.0, 400
tgrid = np.linspace(tmin, tmax, N_tsteps)
tau = tgrid[1] - tgrid[0]

V_prop = get_propagator_on_grid(Vx_harm/2, tau)
K_prop = get_propagator_on_grid(K_harm, tau)

propagated_states_harm = [psi_0]
psi_t = psi_0
for _ in range(len(tgrid)):

psi_t = do_SOFT_propagation(psi_t, K_prop, V_prop)
propagated_states_harm.append(psi_t)

propagated_states_harm = np.asarray(propagated_states_harm)[:-1]

S.3.4 Expectation Values

The final SOFT script computes position and momentum expectation values from the prop-

agated wavefunctions and compares them with the analytical expressions as well as with the

QuTiP benchmarks, producing the plots used in the manuscript.

Script S.3.4: Harmonic Oscillator Expectation Values 2 3

def position_expectation_value(xgrid, psi):
dx = xgrid[1]-xgrid[0]
return dx*np.real(np.sum(xgrid * np.conjugate(psi) * psi))

def momentum_expectation_value(dx, pgrid, psi):
psip = np.fft.fft(psi)
return dx*np.real(np.sum(pgrid * np.conjugate(psip) * psip))/len(psi)

avx_soft = [position_expectation_value(xgrid, propagated_states_harm[i])
for i in range(len(propagated_states_harm))]

dx = xgrid[1]-xgrid[0]
avp_soft = [momentum_expectation_value(dx, pgrid, propagated_states_harm[i])

for i in range(len(propagated_states_harm))]

avx_ana = [x_0*np.cos(omega*t) + (p_0/mass/omega)*np.sin(omega*t)
for t in tgrid]
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avp_ana = [-x_0*omega*mass*np.sin(omega*t) + p_0*np.cos(omega*t)
for t in tgrid]

# Plot
fig, ax = plt.subplots()
ax.plot(tlist, avx_ana, ’-’, color=’blue’,

label=r’$\langle x \rangle$ (Analytical)’)
ax.plot(tlist, avx_soft, ’o’, color=’blue’,

label=r’$\langle x \rangle$ (SOFT)’,
markeredgecolor=’blue’, markevery=4,
fillstyle=’full’, markerfacecolor=’white’)

ax.plot(tlist, avp_ana, ’-’, color=’red’,
label=r’$\langle p \rangle$ (Analytical)’)

ax.plot(tlist, avp_soft, ’o’, color=’red’,
label=r’$\langle p \rangle$ (SOFT)’,
markeredgecolor=’red’, markevery=4,
fillstyle=’full’, markerfacecolor=’white’)

ax.axhline(0, ls=’--’, lw=0.5, color=’black’, alpha=0.5)
ax.set_xlabel(’Time (a.u.)’)
ax.set_ylabel(’Expectation Value’)
plt.legend(loc=’upper center’, ncol=2)
ax.set_ylim(-1.5, 1.825)
plt.hlines([-1, 0, 1], min(tlist), max(tlist),

ls=’--’, lw=0.85, color=’tab:grey’, zorder=2)
ax.set_xlim(min(tlist), max(tlist))
plt.show()

S.4 TT-TFD Simulations of the Spin–Boson Model

S.4.1 QFlux Installation

This short cell installs the qflux package with the GQME/TT-TFD extras and imports the

TT-TFD and TDVP modules used throughout the remainder of this section. It should be

executed once at the beginning of a notebook.
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Script S.4.1: QFlux Installation 2 3

!pip install qflux[gqme]
from qflux.GQME.tt_tfd import *
from qflux.GQME.tdvp import _tdvp1
from qflux.GQME.tt_utils import *
from __future__ import annotations

import matplotlib.pyplot as plt

S.4.2 Spin–Boson Model Parameters

The parameter container Params defines all physical and numerical settings for the TT-TFD

calculations (model parameters, time step, TT ranks, etc.). A single global instance pp is

created and accessed by the subsequent construction and propagation routines.

Script S.4.2: Model Parameters 2 3

class Params:
def __init__(self):

# ==== Spin-Boson Model parameters ====
self.GAMMA_DA = 1 # diabatic coupling
self.EPSILON = 1
self.BETA = 5 # inverse temperature beta = 1 / (k_B * T)
self.XI = 0.1
self.OMEGA_C = 2

# Spin-up and spin-down states
self.spin_up = np.array([1.0, 0.0], dtype=np.float64)
self.spin_down = np.array([0.0, 1.0], dtype=np.float64)

# ==== General constants for simulation ====
self.TIME_STEPS = 500 # number of time steps
self.au2ps = 0.00002418884254 # as -> a.u. conversion
self.timeau = 12.409275
self.DT = 20 * self.au2ps * self.timeau # time step in au

self.FINAL_TIME = self.TIME_STEPS * self.DT
self.DOF_E = 2 # number of electronic states
self.DOF_E_SQ = self.DOF_E * self.DOF_E
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# ==== Simulation parameters for TT-TFD ====
self.DOF_N = 50 # number of nuclear DOF
self.OMEGA_MAX = 10

# TT constants
self.eps = 1e-12 # tt approx error
self.dim = self.DOF_N # number of coords
self.occ = 10 # max occupation number
self.MAX_TT_RANK = 10

# ==== Simulation parameters for GQME ====
self.MEM_TIME = self.DT * self.TIME_STEPS
self.HBAR = 1
self.MAX_ITERS = 30
self.CONVERGENCE_PARAM = 10.0**(-10.0)

# ==== Parameter string for output files ====
self.PARAM_STR = "_Spin-Boson_Ohmic_TT-TFD_b%sG%s_e%s_" % (

self.BETA, self.GAMMA_DA, self.EPSILON
)
self.PARAM_STR += "xi%swc%s_wmax%s_dofn%s" % (

self.XI, self.OMEGA_C, self.OMEGA_MAX, self.DOF_N
)

# ==== Pauli matrices ====
self.X = np.array([[0, 1], [1, 0]], dtype=np.complex128)
self.Y = np.array([[0, -1j], [1j, 0]], dtype=np.complex128)
self.Z = np.array([[1, 0], [0, -1]], dtype=np.complex128)
self.I = np.eye(2, dtype=np.complex128)

# create a global instance, so you can do: pp.xx
pp = Params()

S.4.3 TT-TFD Simulation Driver

This driver script demonstrates two equivalent ways of running a TT-TFD spin–boson sim-

ulation: (i) a high-level call to the convenience function tt_tfd, and (ii) a more explicit

route that builds the initial state and Hamiltonian and then calls the generic TDVP-based

propagator tt_ksl_propagator. The outputs are the time grid t and the array of reduced

density operators RDO_arr.

S16



Script S.4.3: TT-TFD Simulation of Spin-Boson Model 2 3

# ---- user choices for the test ----
initial_state = 0 # 0: |up>, 1: (|up>+|down>)/sqrt2, etc.
update_type = "rk4" # "rk4" or "krylov"
rk4slices = 1 # only used if update_type == "rk4"
mmax = 4 # only used if update_type == "krylov"
verbose = True
show_steptime = True

# ---- run simulation ----
print("Building initial state and Hamiltonian")
y0 = tt_initial_state(initial_state)
A = tt_hamiltonian(eps=pp.eps, pp=pp)

print("Propagating")
Is_qflux_tt_tfd = True
if Is_qflux_tt_tfd:

t, RDO_arr = tt_tfd(initial_state=0, show_steptime=True, update_type=’rk4’)
else:

t, RDO_arr = tt_ksl_propagator(
y0,
A,
update_type=update_type,
rk4slices=rk4slices,
mmax=mmax,
RDO_arr_bench=None,
property_fn=cal_property,
verbose=verbose,
show_steptime=show_steptime,
copy_state=False, # set True if you want to keep ‘y0‘ unchanged
pp=pp,
)

print("Propagation finished.")
print("RDO_arr shape:", RDO_arr.shape)

S.4.4 Post-Processing: Populations and Coherences

The post-processing script extracts populations and coherences from the flattened reduced

density matrices stored in RDO_arr, and then generates diagnostic plots of ρuu, ρdd, and the

real and imaginary parts of ρud as functions of time.
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Script S.4.4: Extract and plot populations and coherences 2 3

# RDO_arr: shape (TIME_STEPS, 4) for a 2-level system
pop_up = RDO_arr[:, 0].real
pop_down = RDO_arr[:, 3].real
coh_ud = RDO_arr[:, 1] # complex

# ---- population plot ----
plt.figure()
plt.plot(t, pop_up, label="Pop |up>")
plt.plot(t, pop_down, label="Pop |down>")
plt.xlabel("time")
plt.ylabel("population")
plt.legend()
plt.title("Spin populations vs time")
plt.grid(True)
plt.show()

# ---- coherence plot ----
plt.figure()
plt.plot(t, coh_ud.real, label="Re rho_ud")
plt.plot(t, coh_ud.imag, label="Im rho_ud", linestyle="--")
plt.xlabel("time")
plt.ylabel("coherence")
plt.legend()
plt.title("Spin coherences vs time")
plt.grid(True)
plt.show()

S.4.5 State Initialization in TT-TFD

This script implements tt_initial_state, which builds the thermo-field initial state as an

MPS/TT with one electronic site and 2 DOFN bosonic sites. The function is called by the

simulation driver to prepare the starting TT state for propagation.

Script S.4.5: State Initialization 2 3

def tt_initial_state(istate: int) -> MPS:
"""
Initialize the state in tensor-train (MPS) format for a TT-TFD calculation.
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Parameters
----------
istate : int

Type of initial electronic state:
0 : spin-up
1 : (spin-up + spin-down) / sqrt(2)
2 : (spin-up + i * spin-down) / sqrt(2)
3 : spin-down

Returns
-------
MPS

Initialized MPS with the chosen electronic state at the first site
and vacuum/ground states on the remaining sites.
QFlux uses mpsqd https://github.com/qiangshi-group/MPSQD

"""
# Sanity check on istate
if istate not in (0, 1, 2, 3):

raise ValueError(f"Invalid istate={istate}. Must be in {{0, 1, 2, 3}}.")

# -------------------------------------------------------------------------
# Define single-site electronic tensors
# -------------------------------------------------------------------------
su = np.zeros((1, pp.DOF_E, pp.MAX_TT_RANK), dtype=np.complex128)
sd = np.zeros((1, pp.DOF_E, pp.MAX_TT_RANK), dtype=np.complex128)

su[0, :, 0] = pp.spin_up
sd[0, :, 0] = pp.spin_down

# Superpositions
inv_sqrt2 = 1.0 / np.sqrt(2.0)
e1 = inv_sqrt2 * (su + sd)
e2 = inv_sqrt2 * (su + 1j * sd)

# Select the initial electronic core
electronic_cores = {

0: su,
1: e1,
2: e2,
3: sd,

}
first_core = electronic_cores[istate]

# -------------------------------------------------------------------------
# Build MPS structure
# -------------------------------------------------------------------------
# nbarr: local dimensions for each site
num_sites = 1 + 2 * pp.DOF_N
nbarr = np.full(num_sites, pp.occ, dtype=int)
nbarr[0] = pp.DOF_E # first site is electronic

S19



y0 = MPS(num_sites, nb=nbarr)
y0.nodes.append(first_core)

# Middle sites: identity-like / vacuum cores
middle_core = np.zeros(

(pp.MAX_TT_RANK, pp.occ, pp.MAX_TT_RANK),
dtype=np.complex128

)
middle_core[0, 0, 0] = 1.0

# Append 2 * DOF_N - 1 middle cores
for _ in range(2 * pp.DOF_N - 1):

y0.nodes.append(middle_core)

# Last site: right boundary core with rank-1 right bond
last_core = np.zeros(

(pp.MAX_TT_RANK, pp.occ, 1),
dtype=np.complex128

)
last_core[0, 0, 0] = 1.0
y0.nodes.append(last_core)

return y0

S.4.6 Hamiltonian Construction

S.4.6.1 Bath Parameter Discretization

This utility converts the continuous Ohmic spectral density into a finite set of discrete bath

modes. It returns frequencies, couplings, and TFD mixing angles, which are subsequently

used to build the TT representation of the bath Hamiltonian and system–bath couplings.

Script S.4.6: Bath Frequency Discretization 2 3

def discretize_ohmic(freq_count: int):
"""
Discretize an Ohmic spectral density into ‘freq_count‘ modes.

Returns
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-------
freq : (N,) array
ck : (N,) array
gk : (N,) array
thetak, sinhthetak, coshthetak : (N,) arrays
"""
N = freq_count

om = pp.OMEGA_C / N * (1.0 - np.exp(-pp.OMEGA_MAX / pp.OMEGA_C))

freq = np.zeros(N, dtype=float)
ck = np.zeros(N, dtype=float)
gk = np.zeros(N, dtype=float)
thetak = np.zeros(N, dtype=float)
sinhthetak = np.zeros(N, dtype=float)
coshthetak = np.zeros(N, dtype=float)

for i in range(N):
freq[i] = -pp.OMEGA_C * np.log(

1.0 - (i + 1) * om / pp.OMEGA_C
)
ck[i] = np.sqrt(pp.XI * om) * freq[i]
gk[i] = -ck[i] / np.sqrt(2.0 * freq[i])

th = np.arctanh(np.exp(-pp.BETA * freq[i] / 2.0))
thetak[i] = th
sinhthetak[i] = np.sinh(th)
coshthetak[i] = np.cosh(th)

return freq, ck, gk, thetak, sinhthetak, coshthetak

S.4.6.2 Local TT Blocks

The next group of scripts defines the small building blocks (local electronic Hamiltonian,

number operator, displacement operator, and TT helper routines) from which the full TT-

TFD Hamiltonian is assembled.
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Script S.4.7: Two-Level Hamiltonian 2 3

def build_electronic_hamiltonian(epsilon: float, gamma_da: float):
"""2x2 electronic Hamiltonian in matrix form."""
px = np.array([[0.0, 1.0],

[1.0, 0.0]], dtype=np.complex128)
pz = np.array([[1.0, 0.0],

[0.0, -1.0]], dtype=np.complex128)
return epsilon * pz + gamma_da * px

Script S.4.8: Kronecker-extend a 2x2 TT-matrix with 2*DOF modes 2 3

def tt_embed_electronic(tt_He, total_boson_modes: int, occ: int):
"""
Kronecker-extend a 2x2 TT-matrix to include 2*DOF_N bosonic modes.
"""
return tt_kron(tt_He, tt_eye(2 * total_boson_modes, occ))

Script S.4.9: Number Operator 2 3

def build_number_operator_local(occ: int):
"""Local harmonic number operator in matrix form."""
return np.diag(np.arange(occ, dtype=np.complex128))

Script S.4.10: Create a TT with identity structure 2 3

def tt_zero_like_eye(num_sites: int, occ: int):
"""Create a TT with identity structure and then zero all cores."""
tt_obj = tt_eye(num_sites, occ)
for i in range(num_sites):

tt_obj.nodes[i] *= 0.0
return tt_obj
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Script S.4.11: Sum Local Operator 2 3

def tt_sum_local_operators(num_sites: int,
occ: int,
local_mats,
site_coeffs,
eps: float):

"""
Build sum_k site_coeffs[k] * (I ... x local_mats[k] x ... I) in TT form.
"""
tt_total = tt_zero_like_eye(num_sites, occ)

for k, (Mloc, coeff) in enumerate(zip(local_mats, site_coeffs)):
tmp0 = tt_matrix(Mloc)
tmp0.nodes[0] *= coeff

if k == 0:
tmp = tt_kron(tmp0, tt_eye(num_sites - 1, occ))

elif k < num_sites - 1:
tmp = tt_kron(tt_eye(k - 1, occ), tmp0)
tmp = tt_kron(tmp, tt_eye(num_sites - k, occ))

else: # last site
tmp = tt_kron(tt_eye(k, occ), tmp0)

tt_total = add_tensor(tt_total, tmp, small=eps)

return tt_total

Script S.4.12: Local Displacement Operator x 2 3

def build_displacement_local(occ: int):
"""
Local displacement operator (x operator) in HO basis.
"""
D = np.zeros((occ, occ), dtype=np.complex128)
for i in range(occ - 1):

s = np.sqrt(i + 1.0)
D[i, i + 1] = s
D[i + 1, i] = s

return D
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S.4.6.3 Spin–Boson-Specific TT Blocks

The following scripts assemble the bath Hamiltonian and system–bath couplings in TT form

using the generic blocks defined above.

Script S.4.13: TT representation of ∑k freq[k]a†
kak 2 3

def tt_number_operator_physical(freq, eps: float):
"""
TT representation of sum_k freq[k] * a_k^\dagger a_k on DOF_N sites.
"""
N = pp.DOF_N
numoc = build_number_operator_local(pp.occ)
local_mats = [numoc] * N
return tt_sum_local_operators(N, pp.occ, local_mats, freq, eps)

Script S.4.14: TT representation of ∑k gk[k] cosh(θk)(ak + a†
k) 2 3

def tt_displacement_physical(gk, coshthetak, eps: float):
r"""
TT representation of sum_k gk[k] cosh(theta_k) (a_k + a_k^\dagger)
"""
N = pp.DOF_N
D = build_displacement_local(pp.occ)
local_mats = [D] * N
coeffs = gk * coshthetak
return tt_sum_local_operators(N, pp.occ, local_mats, coeffs, eps)

Script S.4.15: TT representation of ∑k gk[k] sinh(θk)(ãk + ã†
k) 2 3

def tt_displacement_fictitious(gk, sinhthetak, eps: float):
r"""
TT representation of sum_k gk[k] sinh(theta_k) (tilde a_k + tilde a_k^\dagger)
"""
N = pp.DOF_N
D = build_displacement_local(pp.occ)
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local_mats = [D] * N
coeffs = gk * sinhthetak
return tt_sum_local_operators(N, pp.occ, local_mats, coeffs, eps)

Script S.4.16: Lift a bosonic TT operator 2 3

def tt_lift_to_system(tt_boson, system_op):
"""
Lift a bosonic TT operator to include a 2D electronic system:

result = system_op (x) tt_boson (x) I_boson (or variations).
"""
tt_sys = tt_matrix(system_op)
return tt_kron(tt_sys, tt_boson)

Script S.4.17: leftop ⊗ ttboson ⊗ I 2 3

def tt_lift_physical_with_fictitious(tt_boson, left_op, eps: float):
"""
Construct (left_op (x) tt_boson (x) I).
"""
tt_left = tt_matrix(left_op)
tt = tt_kron(tt_left, tt_boson)
tt = tt_kron(tt, tt_eye(pp.DOF_N, pp.occ))
return tt

Script S.4.18: leftop ⊗ I ⊗ ttboson 2 3

def tt_lift_fictitious_with_physical(tt_boson, left_op, eps: float):
"""
Construct (left_op x I x tt_boson).
"""
tt_left = tt_matrix(left_op)
tt = tt_kron(tt_left, tt_eye(pp.DOF_N, pp.occ))
tt = tt_kron(tt, tt_boson)
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return tt

S.4.6.4 High-Level Constructor for −iH

The final Hamiltonian-construction script, tt_hamiltonian, assembles all electronic, phys-

ical, and fictitious contributions into a single TT/MPO object representing the generator

−iH used in the time-evolution algorithms.

Script S.4.19: Build −iH for the TFD Spin–Boson Model 2 3

def tt_hamiltonian(eps: float = 1e-14):
"""
Build -iH for the TFD spin-boson model using modular building blocks.

Returns
-------
MPO (MPS-like TT object)
"""
# --- parameters ---
freq, ck, gk, thetak, sinhthetak, coshthetak = discretize_ohmic(pp.DOF_N)

# --- electronic part ---
He = build_electronic_hamiltonian(pp.EPSILON, pp.GAMMA_DA)
tt_He = tt_matrix(He)
tt_He = tt_embed_electronic(tt_He, pp.DOF_N, pp.occ)

# --- physical and fictitious number operators ---
tt_num_physical = tt_number_operator_physical(freq, eps)
tt_Ie = tt_matrix(np.eye(2, dtype=np.complex128))

tt_systemnumoc = tt_kron(tt_Ie, tt_num_physical)
tt_systemnumoc = tt_kron(tt_systemnumoc, tt_eye(pp.DOF_N, pp.occ))

tt_tildenumoc = tt_kron(tt_Ie, tt_eye(pp.DOF_N, pp.occ))
tt_tildenumoc = tt_kron(tt_tildenumoc, tt_num_physical)

# --- displacement operators ---
tt_energy = tt_displacement_physical(gk, coshthetak, eps)
tt_systemenergy = tt_kron(tt_matrix(np.array([[1, 0], [0, -1]],

dtype=np.complex128)),
tt_energy)
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tt_systemenergy = tt_kron(tt_systemenergy, tt_eye(pp.DOF_N, pp.occ))

tt_tilenergy = tt_displacement_fictitious(gk, sinhthetak, eps)
tt_tildeenergy = tt_kron(tt_matrix(np.array([[1, 0], [0, -1]],

dtype=np.complex128)),
tt_eye(pp.DOF_N, pp.occ))

tt_tildeenergy = tt_kron(tt_tildeenergy, tt_tilenergy)

# --- assemble H ---
H = add_tensor(tt_He, tt_systemnumoc, small=eps)
H = add_tensor(H, tt_tildenumoc, coeff=-1.0, small=eps)
H = add_tensor(H, tt_systemenergy, coeff=1.0, small=eps)
H = add_tensor(H, tt_tildeenergy, coeff=1.0, small=eps)

# fold -i into the first core
H.nodes[0] *= -1j

# convert to MPO and truncate
A = MPS2MPO(H).truncation(small=eps)
return A

S.4.7 ODE solver KSL Propagator

The last script implements the generic TDVP-based time-propagation routine

tt_ksl_propagator. Given an initial TT state and the TT/MPO generator A = −iH, it

advances the system for TIME_STEPS time steps, accumulating the reduced density operators

computed by a user-specified observable function property_fn.

Script S.4.20: TT-KSL Runge-Kutta ODE solver 2 3

def tt_ksl_propagator(
y0: Any,
A: Any,
update_type: str = "rk4",
rk4slices: int = 1,
mmax: int = 4,
RDO_arr_bench: np.ndarray | None = None,
property_fn: Callable[[Any], np.ndarray] = cal_property,
verbose: bool = True,
show_steptime: bool = False,
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copy_state: bool = False,
) -> tuple[np.ndarray, np.ndarray]:

"""
Perform TT-TFD time propagation with a given initial state and Hamiltonian.

Parameters
----------
y0

Initial TT/MPS state. If ‘‘copy_state‘‘ is False, this object is
updated in-place by the propagator.

A
TT/MPO representing the (possibly non-Hermitian) generator, e.g. -iH.

update_type : {"rk4", "krylov"}, optional
Local time-stepper used in tdvp1site. Default is "rk4".

rk4slices : int, optional
Number of sub-slices for RK4 integration. Ignored for "krylov".

mmax : int, optional
Krylov subspace dimension for "krylov" updates. Default is 4.

RDO_arr_bench : np.ndarray, optional
Optional benchmark reduced density operator array of shape
(TIME_STEPS, DOF_E_SQ). If provided, each step’s RDO is compared
with this reference via compare_diff.

property_fn : callable, optional
Function mapping the TT/MPS state to a (flattened) RDO array of shape
(DOF_E_SQ,). Default is cal_property.

verbose : bool, optional
If True, print high-level progress information.

show_steptime : bool, optional
If True, print wall-clock time for each TDVP step.

copy_state : bool, optional
If True, work on a copy of ‘y0‘ instead of modifying it in-place.

Returns
-------
t : np.ndarray

1D array of simulation times of length pp.TIME_STEPS.
RDO_arr : np.ndarray

2D array of reduced density matrices over time with shape
(pp.TIME_STEPS, pp.DOF_E_SQ).

"""
n_steps = pp.TIME_STEPS
dt = pp.DT

# Optional copy so caller can keep original y0
if copy_state and hasattr(y0, "copy"):

y = y0.copy()
else:

y = y0

RDO_arr = np.zeros((n_steps, pp.DOF_E_SQ), dtype=np.complex128)
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t = np.linspace(0.0, (n_steps - 1) * dt, n_steps, dtype=float)

start_time = time.time()
if verbose:

print("Start propagation")
print(f" steps = {n_steps}, dt = {dt}, update_type = {update_type}")

for ii, ti in enumerate(t):
if verbose:

print(f"Step {ii:6d}, t = {ti:.6f}")

step_t0 = time.time()

# TDVP one-site update
y = tdvp1site(

y,
A,
dt,
update_type=update_type,
mmax=mmax,
rk4slices=rk4slices,

)

# Reduced density operator (or whatever property_fn returns)
RDO_arr[ii] = property_fn(y)

# Optional benchmark comparison
if RDO_arr_bench is not None:

compare_diff(RDO_arr[ii], RDO_arr_bench[ii])

if show_steptime:
print(" time for tdvp:", time.time() - step_t0)

if verbose:
print("\tTotal propagation time:", time.time() - start_time)

return t, RDO_arr
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