30 January 2026

QFlux: Classical Foundations for Quantum Dynamics
Simulation. Part | - Building Intuition and Computational
Workflows

Brandon C AIIenl, Xiaohan Danl, Delmar G A Cabrall, Nam PVu2’1’3, Cameron Ci anci4, Alexander V
Soudackov’, Rishab Dutta', Sabre Kais®, Eitan Geva’, Victor S Batista™’

1. Department of Chemistry Yale University

2. IDepartment of Electrical Engineering and Computer Science Massachusetts Institute of Technology

3. Research Laboratory of Electronics Massachusetts Institute of Technology

4. Department of Physics University of Connecticut

5. Department of Electrical and Computer Engineering, Department of Chemistry North Carolina State University
6. Department of Chemistry University of Michigan

7. Yae Quantum Institute Y ale University

Abstract

We introduce QFlux, an open-source Python package for simulating quantum dynamicsin chemical systems
across multiple levels of theory using a unified classical and quantum computational framework. QFlux
integrates deterministic wavefunction propagation, Lindblad master equations, generalized quantum master
equations (GQMES), operator-splitting techniques, and variational quantum algorithms within a modular
architecture designed for systematic benchmarking and hybrid classical-quantum execution. The framework
supports both closed-and open-system dynamics, including Markovian and non-Markovian regimes, and
provides explicit mappings between classical propagators and quantum circuit constructions executable on
NISQ hardware. Built atop established scientific and quantum software ecosystems, QFlux emphasizes
reproducibility, interoperability, and controlled cross-validation between numerical approximations and
hardware-oriented algorithms. Part | in this series of papers presents the theoretical foundations, software
design principles, and methodological scope of QFlux, and positions it within the broader landscape of

classical, tensor-network, and quantum-circuit-based simulation platforms. The seriesis designed to serve as

Posted on 30 January 2026 — CC-BY 4.0 — Thisis apreprint and has not been peer reviewed. Data may be preliminary. — https://
doi.org/10.26434/chemrxiv.10001765/v1

ateaching reference for graduate students, a practical guide for researchers implementing custom quantum

simulations, and afoundational reference for the broader QFlux ecosystem.

Posted on 30 January 2026 — CC-BY 4.0 — Thisis apreprint and has not been peer reviewed. Data may be preliminary. — https://
doi.org/10.26434/chemrxiv.10001765/v1

QFlux: Classical Foundations for Quantum
Dynamics Simulation.

Part | — Building Intuition and Computational

Workflows

Brandon C. Allen,” Xiaohan Dan,’ Delmar G. A. Cabral,! Nam P. Vu,"+9
Cameron Cianci,® Alexander V. Soudackov,! Rishab Dutta,! Sabre Kais,! Eitan

Geva,t and Victor S. Batista*#

TDepartment of Chemistry, Yale University, New Haven, CT 06520, USA

I Department of Electrical Engineering and Computer Science, Massachusetts Institute of
Technology, Cambridge, MA 02139, USA
§ Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge,
MA 02139, USA

§Department of Physics, University of Connecticut, Storrs, CT 06268, USA

|| Department of Electrical and Computer Engineering, Department of Chemistry, North
Carolina State University, Raleigh, North Carolina 27606, USA
1 Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
Yale Quantum Institute, Yale University, New Haven, CT 06511, USA

E-mail: victor.batista@yale.edu

victor.batista@yale.edu

Abstract

We introduce QFlux, an open-source Python package for simulating quantum dy-
namics in chemical systems across multiple levels of theory using a unified classical and
quantum computational framework. QFlux integrates deterministic wavefunction prop-
agation, Lindblad master equations, generalized quantum master equations (GQMEs),
operator-splitting techniques, and variational quantum algorithms within a modular
architecture designed for systematic benchmarking and hybrid classical-quantum ex-
ecution. The framework supports both closed- and open-system dynamics, including
Markovian and non-Markovian regimes, and provides explicit mappings between clas-
sical propagators and quantum circuit constructions executable on NISQ hardware.
Built atop established scientific and quantum software ecosystems, QFlux emphasizes
reproducibility, interoperability, and controlled cross-validation between numerical ap-
proximations and hardware-oriented algorithms. Part I in this series of papers presents
the theoretical foundations, software design principles, and methodological scope of
QFlux, and positions it within the broader landscape of classical, tensor-network,
and quantum-circuit-based simulation platforms. The series is designed to serve as
a teaching reference for graduate students, a practical guide for researchers implement-
ing custom quantum simulations, and a foundational reference for the broader QFlux

ecosystem.

1 Introduction

Accurate simulation of quantum dynamics is a cornerstone of chemical physics, linking mi-
croscopic quantum motion to experimentally accessible observables. Phenomena such as
vibrational coherence, electronic energy transfer, nonadiabatic transitions, and environmen-
tally induced decoherence are unified by a single mechanism: the time evolution of quantum
amplitudes and phases. Through correlation functions and response properties, this evolu-

tion shapes spectroscopic signatures and governs dynamical mechanisms relevant to chemical

reactivity, from ultrafast excitonic transport in light-harvesting assemblies to long-time re-
laxation and thermalization in condensed phases. Quantitative simulation, however, quickly
becomes difficult as Hilbert spaces expand with system size and as environmental couplings
introduce additional degrees of freedom, competing timescales, and memory effects. Quan-
tum dynamics methods can be viewed as a hierarchy of physical descriptions, each defined by
controlled assumptions with clear numerical consequences. At the most fundamental level,
closed-system dynamics follow the time-dependent Schrodinger equation, where direct prop-
agation provides high-fidelity reference results for small to moderate Hilbert spaces. In real-
istic chemical environments, coupling to vibrational, solvent, or phononic modes induces dis-
sipation and decoherence, motivating reduced descriptions in terms of density matrices and
quantum master equations. Under weak coupling and negligible memory, Markovian dynam-
ics are accurately captured by Gorini—Kossakowski—Sudarshan—Lindblad generators, which
ensure complete positivity and trace preservation.'® When these assumptions fail-owing to
structured spectral densities, slow bath modes, strong coupling, or low temperatures-non-
Markovian effects become essential, and projection-operator approaches such as Nakajima—
Zwanzig naturally yield generalized quantum master equations (GQME) with explicit mem-
ory kernels.* " In parallel, quantum information science has produced algorithmic approaches
for simulating dynamics that, in principle, mitigate classical scaling bottlenecks.®? In the
noisy intermediate-scale quantum (NISQ) regime, 'Y however, near-term devices remain con-
strained by finite coherence times, circuit-depth limits, and sampling overhead. Practical
simulation workflows are therefore hybrid: classical computation remains indispensable for
model construction, baseline validation, and error analysis, while quantum circuits are used
selectively to implement dynamical primitives-approximate unitary evolution, dilations of
non-unitary channels, or variational updates-under realistic hardware constraints.'*'? De-
spite rapid progress in both classical and quantum approaches, the software ecosystem re-
mains fragmented across these regimes. QuTiP provides mature operator representations and

classical propagation tools for wavefunctions and master equations.'® Tensor-network frame-

works exploit compressibility and low-entanglement structure to enable scalable reduced dy-
namics. * Quantum circuit toolkits supply compilation and execution pipelines for unitary
simulation and variational algorithms.'® What is often missing is a unified environment in
which a physical model is specified once, propagated across multiple dynamical descriptions
under consistent conventions, and benchmarked systematically across classical and quantum
backends. To address this gap, we introduce QFlux, '® an open-source Python framework for
multilevel quantum dynamics in chemical systems. QFlux adopts a model-centric philosophy:
the same physical Hamiltonian, initial state, and observables should remain portable across
levels of theory and computational paradigms. Accordingly, QFlux supports closed-system
Schrodinger dynamics, Markovian Lindblad evolution, non-Markovian GQME propagation,
and multiple hardware-motivated simulation strategies within a shared workflow. Its imple-
mentation builds on established numerical libraries (NumPy and SciPy!™'®), classical quan-
tum dynamics tooling (QuTiP!?), tensor-network capabilities (MPSQD!), and quantum
circuit infrastructure (Qiskit'®). A central design goal of QFlux is interoperability without
sacrificing methodological breadth. The same Hamiltonian model can be propagated using
deterministic ODE solvers, split-operator Fourier transform (SOFT) methods for grid-based
wavepacket dynamics,'® product-formula Hamiltonian simulation via Trotter—Suzuki decom-

20.21 yandomized compilation strategies such as gDRIFT,?? or variational quantum

positions,
dynamics based on time-dependent variational principles.?*?* For open-system dynamics,
QFlux pairs classical master-equation solvers with circuit-oriented constructions based on
Kraus representations and Stinespring dilations, enabling controlled comparisons between re-
duced non-unitary dynamics and their unitary embeddings on extended Hilbert spaces.?*20
Beyond providing implementations, QFlux is explicitly structured as a benchmarking and
research platform. Identical physical models can be propagated using multiple formalisms
and backends, enabling systematic assessment of discretization error, Trotterization error,

memory-kernel truncation, variational expressivity limits, and hardware-induced noise. This

benchmark-centric perspective is particularly important in the NISQ era, where accuracy

must be evaluated alongside circuit depth, compilation overhead, and sampling cost.!® This
tutorial series develops QFlux through a deliberately pedagogical progression. Part I estab-
lishes the theoretical and numerical foundations of time-dependent quantum dynamics us-
ing classical propagation methods, emphasizing physical interpretation and cross-validation.
Part II translates these ideas to closed-system quantum simulations on qubit-based hard-
ware. Part III focuses on state preparation and unitary decomposition. Part IV extends
the framework to open quantum systems using Lindblad dynamics and dilation techniques.
Part V introduces adaptive variational algorithms tailored to near-term hardware. Finally,
Part VI addresses non-Markovian dynamics through generalized quantum master equations
with explicit memory effects. QFlux is not presented as a source of fundamentally new quan-
tum dynamics algorithms. Rather, its contribution lies in unifying, validating, and system-
atically comparing established methods within a single, consistent framework. QFlux does
not replace classical propagators, tensor-network techniques, or quantum-circuit primitives
available in packages such as QuTiP, MPSQD, and Qiskit. Instead, it enforces a common
abstraction in which the same physical Hamiltonian, initial state, and observables are prop-
agated unchanged across classical wavefunction dynamics, open-system descriptions, tensor-
network representations, and quantum-ready formulations. This design enables benchmark
symmetry, allowing numerical, physical, and hardware-motivated approximations to be com-

pared directly and their errors disentangled in a controlled manner.

2 QFlux: Scope, Design Philosophy, and Capabilities

QFlux is designed as a general-purpose research and benchmarking environment for quantum
dynamics simulations in chemical and molecular systems (Fig. 1). Rather than privileging
a single propagation strategy, QFlux is organized to make systematic comparisons routine:
users can hold the physical model fixed while varying the dynamical description (closed vs.

open, Markovian vs. non-Markovian) and the numerical or hardware-motivated propagation

scheme.

At the workflow level, QFlux centers on four reusable components:

« model specification (Hamiltonians, dissipators, bath structure, and kernel inputs);
« state preparation (pure states, mixed states, and thermally purified constructions);
* tlime propagation (interchangeable classical propagators and quantum-ready methods);

 analysis (expectation values, correlation functions, populations/coherences, and spec-

tral observables).

This modular structure mirrors standard practice in quantum dynamics while keeping the
computational backend-dense linear algebra, tensor networks, or quantum circuits-an imple-
mentation choice rather than a conceptual constraint.

QFlux builds on widely used libraries for numerical computing and quantum simula-
tion. NumPy and SciPy provide array primitives, linear algebra routines, FFTs, and robust
ODE solvers. ! QuTiP supplies operator and state abstractions together with mature clas-
sical propagation utilities.'® Qiskit provides circuit construction, transpilation, and access
to IBM Quantum backends.'® Where scalability is critical, QFlux incorporates tensor-train
(matrix product state) representations through MPSQD,*?” enabling compressed propa-
gation in selected regimes. The intent is not to replace these ecosystems, but to provide
a coherent interface layer that makes them interoperable within a single simulation work-
flow. In contrast to workflows based on QuTiP augmented by method-specific scripts, QFlux
enforces a strictly model-centric abstraction in which the same Hamiltonian, initial state,
and observables are propagated unchanged across classical solvers, tensor-network meth-
ods, and quantum-circuit-ready algorithms. This benchmark symmetry enables controlled,
apples-to-apples comparisons that disentangle physical approximations, numerical error, and
hardware-driven constraints within a single reproducible framework.

Methodologically, QFlux spans a hierarchy of dynamical descriptions. Closed-system dy-

namics are supported via direct Schrodinger propagation and operator-splitting approaches

gflux.closed_systems

classical_methods.DynamicsCS
closed system dynamics on classical computers

qubit_methods.QubitDynamicsCS
closed system dynamics on quantum computers

variational dynamics on quantum computers

direct_method
Pauli string Hamiltonians on quantum computers

Model system:

potential

ial_ type=“quartic”

rmonic”

qf lux.open_systems

quantum_simulation.QubitDynamics0S
open system dynamics on quantum computers

(

numerical_methods.Dynamics0S

dilation_circuit
numerical_methods.DVR_grid circuits for Sz.Nagy/SVD dilation

spin_dynamics_oo.SpinDynamicsS
spin system dynamics on quantum computers

(
(
(VarqQTe
(
(

1 {

trans_basis walsh_gray_optimization
basis transformations Walsh-Gray for diagonal unitaries

params
parameters/constants

¢

qf lux.GQME

(dynamics_GQME.DynamicsGQME

Generalized Quantum Master Equation dynamics

)

i [

params tt_tfd
parameters/constants

tensor train thermo-field dynamics

i

tdvp
TDVP time evolution

onal_methods.qgmad

(

qmad.solver.solve_avq_vect
Unrestricted Adaptive Variational Quantum Dynamics

gmad.ansatz

UAVQD classes

(

SSE classes

gmad.solver.solve_avq_trajectory
Dynamics via Stochastic Schrodinger Equation (SSE)

qmad.effh
Model systems:
1-qubit with amplitude damping channel
MO complex

Figure 1: Complete package tree of QFlux.

The diagram shows the organization of the
codebase rooted at the top-level gflux package. The APIs are contained within four core
modules closed_systems, open_systems, GQME, variational methods, and testing and
documentation are isolated in tests and docs. Directed edges indicate containment and

dependency relationships, and red boxes indicate the external packages.

such as SOFT.! Markovian open-system dynamics are treated using Lindblad master
equations, ' paired where appropriate with circuit-oriented unitary embeddings.?%?® Non-
Markovian reduced dynamics are supported through GQME workflows rooted in projection-
operator theory.*% Hardware-motivated strategies for unitary evolution include Trotter—

20.21 randomized decompositions such as gDRIFT,?? and variational

Suzuki product formulas,
quantum dynamics based on McLachlan-type time-dependent variational principles.?*?* To-
gether, these capabilities enable consistent exploration of accuracy—cost tradeoffs across clas-
sical and quantum paradigms.

A defining feature of QFlux is its emphasis on validation. By allowing the same model
to be propagated using multiple solvers, QFlux makes it straightforward to isolate phys-
ical assumptions (e.g., Markovianity), numerical approximations (time-step and splitting
errors), and hardware-driven limitations (sampling noise and compilation constraints). This
capability is particularly important for near-term quantum simulation studies, where re-
producibility and cross-verification against trusted classical references are often the limiting
factors in interpreting hardware results. '

In this tutorial series, QFlux serves as the unifying framework through which propaga-
tion methods are introduced, tested, and interpreted. Part I emphasizes foundations-closed-
system propagation, operator structure, and benchmarking-to build intuition and establish
reference workflows. These same operator decompositions and validation strategies on con-

ventional classical computers then provide a direct conceptual bridge to the quantum circuit

constructions and hybrid quantum-—classical simulations developed in subsequent parts.

3 Workflow for Quantum Dynamics Simulations

Regardless of whether a simulation runs on a laptop or a quantum processor, the QFlux

workflow is the same: initialization, time propagation, and analysis (Fig. 2).

State preparation Time propagation Analysis of
e molecular Hamiltonian observables

e Dbasis set
e initial state / vector

expectation values
population dynamics
spectra

metrics
Classical 'MW"""
preprocessing

e integral generation Time evolution

* state mapping (Trotter, varQTE, ...)
e initial wavefunction results, plots

Closed system runtime (Schrodinger)

State [y (1)
(Grid (H =T+ V) / Basis Operators ctatevector) [Updated state | measure Observables)
(id / basis) T,V t AP
xgrid / basis () Propagator U(Ar) ly(t + AD) compute”((x), (p)
(e.g. split-operator / QSOFT)
‘\4 Execution boundary (ports - adapters)

Ports Adapters Backend execution
(simulator, Ilnalg storage) (Qiskit / NumPy / SciPy) (statevector / shots)

Open system runtime (Lindblad / CPTP)

Lindbladian % CPTP map &(Ar)
Lindblad {Lk} (Hamiltonian + dlsslpator) Kraus set orexp ZAt Updated measure Observables J
compute

1+ AL Tr 0
dlSSlpahon) Representation p(0)) p
(Kraus / vec-density) (density matrix)

Figure 2: Top: QFlux workflow for quantum dynamics simulations: state preparation, time
propagation, and analysis of observables. Color-coded modules show classical (blue) and
quantum-ready (green) components. Bottom: Runtime data flow in QFlux for closed and
open quantum systems. For closed systems (Bottom lane), the state vector |1(t)) is prop-
agated by a time-step propagator U(At) constructed from discretized kinetic and potential
operators derived from the Hamiltonian and grid/basis representation. For open systems
(top lane), the density operator p(t) evolves under a completely positive trace-preserving
(CPTP) map E(At) obtained from the Liouvillian, using either Kraus or vectorized-density
representations. In both cases, time evolution is simulated through abstract ports that
dispatch to concrete numerical or quantum backends (e.g., NumPy, SciPy, Qiskit), and ob-
servables are evaluated from the updated state at each time step.

Model Hamiltonian H <
Time step At

1. Imitialization: Define the system and choose a representation — grid, Fock basis, or
harmonic oscillator basis. For example, the ground vibrational state of a diatomic molecule

can be represented as a Gaussian (coherent-state) wavepacket centered near equilibrium.

2. Propagation: Evolve the state under the chosen Hamiltonian using a suitable numerical

method, such as a ODE solver, or SOFT for efficiency on uniform grids. In both cases, the

—iHt/h

formal propagator U(t) = e is realized either by direct integration of the TDSE or by

short-time operator splitting.

3. Analysis: Compute observables such as (x(t)), (p(t)), populations in a chosen basis, and
correlation functions like the survival amplitude £(t) = ((0)|¢(¢)), which connects directly

to spectroscopy.

4 Dynamics of Pure Quantum States

The time-dependent Schrodinger equation (TDSE),

.0
iho (b)) = H|y(t)), (4.1)

governs the time evolution of a pure quantum state described by the wavefunction [¢(t))
under the action of the Hamiltonian H. When the Hamiltonian is time-independent, the

formal solution can be written in closed form as

[(1)) = e (0)), (4.2)

where e 1Ht/h

is the unitary time-evolution operator. Consequently, as introduced in Sec. 3,
the dynamics simulation may be viewed as a two-step procedure: preparation of an initial
state |¢(0)) (i.e., initialization), followed by its propagation in time through application of

—ift/h (je., time-propagation). This perspective underlies numerical

the evolution operator e
propagation schemes with both conventional computers and their quantum-circuit-based

counterparts.

Hamiltonians in molecular problems. For molecular systems, the Hamiltonian H =

T + V combines kinetic and potential energy operators that govern nuclear and electronic

10

motion. This split is not just notation: it is what makes SOFT possible (Sec. 5.2).

From states to observables. From [¢(t)), measurable observables follow as expectation

values

(O@)) = (Y(®)[Ol(1)). (4.3)

In practice, tracking a small set of observables is also a numerical check: conserved norm
and physically sensible (z(t)) and (p(t)) are early indicators that the simulation is behaving

correctly.

From dynamics to spectra. A particularly useful correlation function is the survival

amplitude,

§(t) = ((0) | (1)), (4.4)

whose Fourier transform yields the photoabsorption spectrum, directly connecting micro-

scopic time evolution with spectroscopic observables.

Wavepacket intuition. Intuitively, [¢)(¢)) can be pictured as a wavepacket moving across
a potential energy landscape. Tracking its motion reveals vibrational oscillations, tunneling,

and coherence — behaviors that determine chemical reactivity and spectroscopy.

5 Classical Simulations of Quantum Dynamics

In the following sections, we separate physical interpretation, numerical algorithms, and
software implementation to clarify how each layer contributes to a reliable quantum-dynamics

workflow.

11

5.1 ODE solver Integration

From a physics perspective, expanding the wavefunction in a chosen basis converts the
Schrodinger equation into coupled equations of motion for probability amplitudes. This
formulation makes conservation laws, phase relationships, and analytical benchmarks explicit
and readily accessible.

For low-dimensional quantum systems, the time-dependent Schrodinger equation (TDSE)

can be integrated efficiently on classical computers by expanding the state in a fixed basis

{17)},
() = >_ci(®)1), (5.1)

with initial amplitudes ¢;(0) = (j|1(0)). Substitution into the TDSE yields a system of

coupled linear ordinary differential equations,

= S o0, 5.2
which can be propagated numerically using high-order adaptive integrators such as Runge—
Kutta methods,?*32 VODE,?** CVODE,?* and related multistep schemes.?* 7 Implementa-
tions in packages such as SciPy (RK45, DOP853, LSODA)!® and QuTiP (vern7, vern9,
Adams, BDF)?*3 employ adaptive step-size control to maintain prescribed error toler-
ances, enabling accurate propagation in the presence of fast oscillations and widely separated
timescales.

The choice of basis — such as a truncated Fock basis or any other convenient representation
— determines the dimensionality and numerical efficiency of the resulting propagation but

does not alter the underlying physical description.

Benchmark: harmonic oscillator. The harmonic oscillator, described by the following

Hamiltonian:
A p2
H=-—+V(x), (5.3)

2m

12

with V(z) = %mw2m2, serves as a stringent benchmark since its analytical solution is known,

with time-dependent expectation values of position and momentum:

(x(t)) = xocos(wt) + Lo sin(wt)
mw (5.4)

(p(t)) = —mwxg sin(wt) + po cos(wt)

Matching Eq. (5.4) is a useful first diagnostic because it checks the full pipeline: operator

construction, state preparation, propagation, and expectation value evaluation.

What to look for in the numerical result. A correct propagation reproduces (i) the
oscillation frequency w, (ii) the correct phase relationship between (z(t)) and (p(t)), and (iii)
constant norm. If any of these fail, refine timestep and basis size before moving on to more
complex models.

Additional implementation details are provided in the Supporting Information, including
a description of Scipy’s RK45 (Section S.1).'® As a hands-on implementation, Script S.2.1

P,3839 which can be

illustrates the simulation workflow by using a ODE solver with QuTi
accessed through the QFlux framework.*’ The script initializes a harmonic oscillator, con-
structs its Hamiltonian, and propagates the wavefunction in time using a ODE solver. The
resulting time evolution can then be analyzed to compute expectation values of observables
and compared with the exact analytical expressions, as shown in Script S.2.2.

Fig. 3 shows excellent agreement between the numerical propagation and the analytical
results for both (x(t)) and (p(¢)), confirming the accuracy of the ODE solver integration im-

plemented in QuTiP. This example establishes a solid foundation for studying more complex

quantum systems within the same QFlux framework.

5.2 Split-Operator Fourier Transform (SOFT)

The SOFT method*'™** propagates quantum states by alternating between potential and

kinetic operators, using fast Fourier transforms (FFTs) to switch between position and mo-

13

2.0
—— <x> analytical —— <p> analytical

1.5 o <x> QuTiP o <p> QuTip

1.0 1

0.5

Expectation value

00 25 50 75 100 125 150 17.5 20.0
time, a.u.

Figure 3: Time-dependent expectation values of position and momentum for the harmonic
oscillator, computed using a ODE solver integrator in QuTiP. The results show excellent
agreement with the analytical expressions in Eq. (5.4).

mentum representations. One full SOFT time step of size 7 = ¢;,1 — t; reads

—iV(x)T

Yo stin) = o3 F e F (0T F (1)) (5.5)

where F and F~! denote the Fourier and inverse Fourier transforms, respectively. From an
algorithmic perspective, each SOFT time step consists of alternating diagonal operations in
position and momentum space, with fast Fourier transforms providing the basis changes at

O(N log N) cost.

How to read Eq. (5.5). It helps to interpret the SOFT step as a sequence of unitary
substeps: (i) apply a half-step potential phase in z-space, (ii) transform to momentum space,
(iii) apply a kinetic phase in p-space, (iv) transform back, (v) apply the second half-step
potential phase. This picture will be reused directly in Part II when mapping propagation

to quantum circuits.

Benchmark against ODE solver and analytics. From a benchmarking perspective,

the split-operator Fourier transform (SOFT) method should reproduce the same physical

14

observables as high-order ODE solvers when both approaches are numerically converged.
Agreement between the two therefore serves as a validation of numerical correctness, rather
than as a comparison of algorithmic performance.

Indeed, Fig. 4 demonstrates that properly converged SOFT and ODE solver simulations
yield indistinguishable results, in excellent agreement with the analytical expressions for the
time-dependent expectation values of position and momentum of the harmonic oscillator
described in Section 5.1. This benchmark validates the SOFT implementation and estab-
lishes it as a reliable reference before extending the analysis to anharmonic systems, such as

asymmetric double-well potentials relevant to proton-transfer dynamics.

2.0

— <x> analytical —— <p> analytical
1.5 - o <x> SOFT o <p>SOFT
1.0 A

0.5 A

Expectation value

00 25 50 75 100 125 150 175 20.0
time, a.u.

Figure 4: Comparison of time-dependent expectation values of position and momentum
obtained from SOFT propagation and analytical solutions for the harmonic oscillator.

When SOFT is the right tool. From a software-workflow perspective, SOFT is particu-
larly efficient for grid-based representations and integrates naturally into QFlux as an inter-
changeable propagator alongside ODE solvers. On uniform grids, SOFT is often faster and
more memory-efficient, whereas ODE solver methods provide fine-grained adaptive time-step
control and can be more convenient in operator-diagonal or compact basis representations.

In practice, the choice between these approaches is guided by (i) the underlying repre-

15

sentation (uniform grids versus compact bases), (ii) the desired mode of error control (fixed
versus adaptive time stepping), and (iii) how naturally the propagation scheme maps onto
a quantum implementation. Care must be taken to control grid resolution, boundary con-
ditions, and spectral aliasing in SOFT calculations, as inadequate grids or poorly chosen
boundaries can introduce nonphysical artifacts.

Together, ODE solvers and SOFT provide complementary classical references: the former
emphasizes numerical control, while the latter exposes operator structure that anticipates

quantum-circuit implementations.

Takeaway statement: Split-Operator Fourier Transform (SOFT)

What insight have we gained? At this point, the reader should understand why

SOFT reproduces exact dynamics when converged, and how its operator structure an-

ticipates quantum circuit layouts.

- J

5.3 Connecting Classical and Quantum Simulations

As we will see in Part II, the SOFT method forms a conceptual bridge to quantum comput-
ing. From a quantum-computing perspective, the SOFT sequence directly mirrors quantum-
circuit structure: diagonal operators correspond to phase rotations, and Fourier transforms
correspond to quantum Fourier transforms (QFT). This analogy makes SOFT an ideal ped-
agogical and practical on-ramp to quantum algorithms: one can prototype classically, verify
against analytical results, and then translate to qubit-based propagation within the QFlux
framework.

The following section introduces more advanced techniques required for finite-
temperature simulations and systems with many degrees of freedom. Readers primarily

interested in pure-state dynamics may skip ahead to Sec. 7 without loss of continuity.

16

6 Quantum Dynamics Simulations of Mixed States

Realistic chemical systems rarely evolve in isolation. Instead, they are typically embedded
in an environment-such as a solvent, lattice, or radiation field-that exchanges energy with
the system and maintains it at a finite temperature. Under these conditions, the system
generally occupies a statistical ensemble of quantum states, and its dynamics can no longer
be described by a single wave function evolving unitarily according to the time-dependent
Schrodinger equation. While the propagation schemes introduced in the previous sections
are therefore adequate for pure quantum states, finite-temperature and open-system effects
call for a more general description in terms of mixed states, represented by density matrices
rather than statevectors.

As described in the following subsections, Thermo-Field Dynamics (TFD) provides a nu-
merically exact and efficient framework that maps the thermal density matrix onto a pure
thermal state that evolves under the time-dependent Schrodinger equation in an enlarged,
doubled Hilbert space. This construction allows one to retain standard wave-function propa-
gation techniques, which in practice are typically combined with low-rank tensor-train (TT)
or matrix-product-state (MPS) representations of the evolving density matrix, as discussed

below. 4446

6.1 Motivation and background
For a system with Hamiltonian H , the canonical thermal density matrix at inverse temper-
ature 8 = (kgT)~ ! is

p(0;5) = Zgle_ﬂﬁ, Zg="Tr {e_ﬂﬁ} . (6.1)

Although this form is compact, it is not directly amenable to the wavefunction-based propa-
gation methods introduced in previous sections of this tutorial because it describes a mized

state that does not evolve according to the Schrodinger equation but according to the quan-

17

tum Liouville equation:

PO _ L o), (6.2

Thermo-Field Dynamics (TFD) addresses this by enlarging the system with fictitious
variables and forming a pure thermal wavefunction. This state evolves according to a time-
dependent Schrodinger equation which is equivalent to Eq. (6.2) once the fictitious variables

are traced out, as shown in subsequent subsections.

6.2 Thermal wavefunction construction

The purified thermal wavefunction is defined as

[0(0; 8)) = Z;'* 3" e PP [n 7, (6.3)

n

where {|n)} are eigenstates of H with energies E,, and |7) are the corresponding states in

the auxiliary space. Equivalently, this can be written as

[0(0;) = Z5 2 P23 [n, 7). (6.4)

n

Example: harmonic oscillator. For a single bosonic mode with creation operators a

and af, the thermal wavefunction becomes

- —Bnw]' ~T\n A
[W(0; B)) = Zg 1/226 g /QEWTCLT) |0vib, Ovin)

n

=4/1 —e A exp {e_ﬁ“’/zcﬁ&q 0vib, Ogipy) - (6.5)

This exponential form shows that each physical mode is entangled with its fictitious partner,

encoding the correct thermal occupation n(w,) = 1/(e® —1).

18

6.3 Thermal ensemble averages

Expectation values of observables at temperature 1" can be computed directly as pure-state

averages:
(F)g = (¥(0; B)|F|1(0; B))
= Z5' Y e PEFE2 (0] Blm) (ii] i)

= Zﬁlze En (n| F|n), (6.6)
which recovers the standard canonical ensemble result (F)g = Tr[p(0; 5)F].

6.4 Thermal density matrix recovery

Tracing out the fictitious subsystem returns the physical mixed density operator:

Ty [0(03 B W05 9)) = Trg | Z3e 0 Y . i), 7l
= Z;'%e M = p(0; B). (6.7)

Hence, the purified wavefunction faithfully reproduces the thermal density matrix upon

tracing over the auxiliary space.

6.5 Dynamics: the TF Schrodinger equation

After preparing [1(0; 8)), its time evolution is governed by the thermo-field Schrodinger

equation:

o1v(B,1)) _

o = H [9(5,1)), (6.8)

where the doubled-space Hamiltonian operator is

H=H®I-I®H. (6.9)

19

Here, H acts on the physical system and H on its fictitious counterpart. This form ensures

that time evolution in the doubled Hilbert space preserves the correct thermal correlations.

6.6 TF Liouville equation: recovering the physical dynamics

In the thermo-field (TF) construction, the physical open-system system—bath Hilbert space

thys =HsR®Hp (6.10)

is embedded into an enlarged space

Hior = Hs © Hp @ H, (6.11)

where H contains all fictitious degrees of freedom introduced to purify the thermal state.

For the open—system system—bath model we consider two natural TF choices:
« Bath-only doubling: H = Hp (only the bath is doubled),
o Full system—bath doubling: H = Hs @ Hp (both the system and the bath are doubled).

In either case, the physical density matrix at time ¢ is obtained by tracing out all fictitious

degrees of freedom,

p(t) = Tz [[v(8, 1) (W (B, D], (6.12)

where the trace is taken over whichever fictitious Hilbert space is present.

The purified TF state evolves under the TF Schrodinger equation

TULLGLISY JHERE (6.13)

with a TF Hamiltonian of the form

H=Hyp®l—Ip®H, (6.14)

20

where Hgp is the physical open—system Hamiltonian and H acts only on the fictitious space
#. For bath-only doubling one has H = Hp, while for full doubling H = Hgg: the derivation
below is identical for both constructions.

Differentiating Eq. (6.12) and using Eq. (6.13) gives

) — ey [Lol + 1 ol] = 27y (I Jowl) . (615)

Inserting the decomposition of Eq. (6.14),

(. [)y]) = [Hsp @ L [)¢]] — [Isp ® H, [)X1], (6.16)

the partial trace separates into two contributions:

a’;it) = —;_L{Trf([HSB @ I [w)Xul]) = Try([fsp @ H, |¢><¢|])}. (6.17)

Physical Hamiltonian term. Since Hgg acts only on the physical space and commutes

with operators on H,
Tr([Hse © I, [W)Xvl])) = Hs p(t) — p(t) Hss = [Hsp, p(1))- (6.18)

Fictitious Hamiltonian term. Because H acts only on H and the trace is cyclic in the

fictitious space,
Trf[([SB ®]:[)X} =Try [X(ISB ® ﬁ)] for any operator X, (6.19)
the second contribution vanishes:

Ty ([sp ® H, [)¢]]) = 0. (6.20)

21

Importantly, this cancellation holds regardless of whether the system is doubled: the argu-

ment uses only the cyclicity of the partial trace over the fictitious space.

Result. Combining Eqs. (6.17)—(6.20) yields

oplt) i

TR h[HSB,ﬁ(t)], (6.21)

which is precisely the Liouville=von Neumann equation for the physical spin—boson density

matrix.

Remark. Equation (6.21) is recovered independently of whether the system is doubled in
the TF construction. Thus, unless the system itself is thermalized, for the open—system
model one may freely use the simpler bath-only doubling—as typically done in practical

TT-TFEFD simulations—without affecting the physical reduced dynamics.

6.7 Tensor-train (TT/MPS) representation

In practice, the composite space (system ® bath ® tilde bath) becomes exponentially large,

and the pure state |¢(/3,1)) is efficiently represented as a tensor train (MPS):

(8. 1) = S ANAL - A iy i), (6.22)
{in}

The doubled Hamiltonian H is encoded as a matrix product operator (MPO). Time propaga-
tion is performed using the time-dependent variational principle (TDVP)*" or time-evolving

block decimation (TEBD) algorithms with adaptive bond-dimension control.

6.8 Test Case: Qubit Coupled to a Bath of Harmonic Oscillators

In this subsection, we describe the implementation of the TT-TFD approach as applied

to simulations of finite-temperature wavepacket dynamics. As an illustrative example, we

22

consider population dynamics of a qubit coupled to bath of quantum harmonic oscillators.

6.8.1 Algorithmic workflow

In the specific case of a harmonic bath (i.e., a bath composed of harmonic oscillators), the

algorithmic workflow is as follows:

1. Discretize the bath: Choose {wy,c;} to reproduce the spectral density J(w).

2. Construct the doubled Hamiltonian: Build H = H ® [— I ® H as an MPO.
3. Initialize the thermal wavefunction: Generate |¢(0;3)) using Eqgs. (6.3) - (6.5).
4. Time propagate: Evolve via Eq. (6.8) using TDVP or TEBD.

5. Compute observables: Obtain j(t) via Eq. (6.12) and evaluate (F(t)) = Tr[p(t)F].

6.8.2 Hamiltonian

The system is described by the spin—boson Hamiltonian:

Nn, Nn
H=co,+To, + Z wkaLak + 0, Z T (aL + ak) , (6.23)
k=1 k=1

where af and a;, are the creation and annihilation operators of the vibrational bath. The

linear coupling coefficients are
Ck

gk:_\/ma

which represent the coupling strength between the electronic sites and bath modes.

(6.24)

Discretization of bath frequencies. The bath frequencies wy are discretized logarith-

mically as

Q
W = —We 10g<1 — k:) , (6.25)

Cc

23

where

Q — (1 _ e*wmax/wc)&

N Wmax 18 the cutoff frequency. (6.26)

For an Ohmic spectral density, the coupling constants take the form

gk = —\/Ewr Q/2. (6.27)

6.8.3 Thermo Field Dynamics Initial State

The TT-TFD method solves the thermal Schrodinger equation

0 5
5 1 8)) = =il [¥(t,) (6.28)

with an initial thermal wavepacket |W(0, 3)) satisfying

[0 (0, 8)) ((0,8)] = ps(0) ® Zg'e 5. (6.29)

Where pg(0) is the initial system density operator and Hp is the bath Hamiltonian.

The thermal TFD state can be generated from the doubled vacuum |0, 6> by a unitary

transformation (equivalent to Eq. (6.5)),

[T(0,8)) =™

0,0), (6.30)
where, for a harmonic environment, the generator is
Np,
G=—1i Z 0, (akdk — &L&L) , 0, = arctanh(e’ﬁ‘”’“ﬂ) . (6.31)

k=1

The unitary Sy = ¢ *“ entangles each physical mode with its tilde counterpart through a

two-mode squeezing transformation.

24

The action of G on the operators is determined by the bosonic relations
[ak, (IL/] = 5kk’a [&k, ELL/] = 6kk’a [Cbk, Elk/] = [ak, ELL] = 0, (632)

together with the Baker-Campbell-Hausdorff expansion. Straightforward algebra yields the

Bogoliubov transformations

bi(0) = e“are™ = ay cosh b — &L sinh 6, (6.33a)

be(0) = €“are™% = Gy cosh B, — al. sinh 6y, (6.33b)

with analogous expressions for the creation operators. Thus the thermal state may be repre-
sented either as a squeezed state in the original (ay, ax) basis or, equivalently, as the simple

product vacuum

0, 6> when expressed in the rotated operators b (6), by (6).

To apply this transformation to dynamics, we consider the doubled Hamiltonian used in

TED

)

H=H®I-I®H, (6.34)

where H is the physical spin—boson Hamiltonian

Nn Ny,
H=co,+To,+ Z Wi, aLak + 0, Z gk(aL + ag). (6.35)
k=1 k=1

The “tilde” Hamiltonian H has the same functional form as H but is written in terms of
the fictitious operators a, EL}; and acts on the auxiliary Hilbert space. The minus sign in
Eq. (6.34) ensures that thermal expectation values can be written as pure-state overlaps in
the doubled space.

Applying the Bogoliubov unitary to H defines the rotated Hamiltonian

Hy = e'“ He™C (6.36)

25

which is expressed entirely in terms of the transformed operators b (#) and their tilde coun-

terparts. Using Eqs. (6.33), one finds

N7L ~r o~
Hy = co. + o, + > wy (bhbk — BLbx)
k=1
N o (6.37)
oS g [cosh O (B + by) — sinh 0, (5] + be) |

k=1

Temperature enters entirely through the coefficients cosh 6, and sinh 6, that weight the cou-
plings to the physical and fictitious modes, respectively. The structure of the temperature-
dependent Hamiltonian Hy illustrates a key advantage of the rotated picture: the initial

state may be kept in the simple vacuum configuration

[@4(0, 8)) = 0,0), (6.38)

while all thermal effects appear in the transformed Hamiltonian.

Consequently, the dynamics follow the rotated Schrodinger equation,

0] -
a |\Ij9<t76>> =1 HG |\I[9(t7ﬁ)>7 (639>

a form particularly convenient for TT-TFD simulations of the spin—boson model, where the
vacuum TT/MPS structure is simple and all temperature dependence is consolidated into

the MPO representation of Hy.*

6.8.4 TT-TFD Simulations

Script S.4.2—-Script S.4.4 show the implementation of TT-TFD simulations with QFlux for
the dynamics of a qubit coupled to a bath of quantum harmonic oscillators. The resulting
evolution of populations and coherences is shown in Fig. 5.

Fig. 5 shows the time evolution of the spin populations and coherences obtained from

the TT-TFD simulation of a qubit coupled to a harmonic oscillator bath. The population

26

Spin populations vs time Spin coherences vs time

1.0 —— Pop |up) 0.4 — Rep_ud
Pop |down) : Im p_ud

0.8 1 0.3

/\ 021
0.1

" X

o
o
L

population
coherence

o
IS
L

0.0 A

0.2 -0.1 A

0.0

0.0 0.5 1.0 15 2.0 25 3.0 0.0 0.5 1.0 15 2.0 2.5 3.0
time time

Figure 5: Comparison of time-dependent populations and coherences obtained by TT-TFD
simulations of a qubit coupled to a bath of quantum harmonic oscillators.

dynamics (left panel) exhibit coherent oscillations between the |1) and |/) states, with partial
population transfer and no unphysical leakage, indicating that the reduced density matrix
remains properly normalized throughout the propagation. These oscillations reflect coherent
system—bath energy exchange rather than simple monotonic relaxation. The corresponding
coherences (right panel) display oscillatory behavior in both the real and imaginary compo-
nents, with a clear phase shift between them, consistent with unitary precession modulated
by environmental coupling. Importantly, the smooth temporal behavior of both populations
and coherences, together with the absence of numerical instabilities or spurious discontinu-
ities, demonstrates that the TT-TFD approach accurately captures coupled coherent and

dissipative dynamics while maintaining numerical stability.

6.9 Summary and significance

The TT-TFD formalism provides a unified, wavefunction-based description of finite-
temperature quantum dynamics. By working in the doubled Hilbert space, it converts a
mixed-state problem into a pure-state evolution, allowing efficient tensor-network algorithms
to be applied. This method is particularly powerful for short-time, numerically exact simula-
tions that can be combined with Generalized Quantum Master Equation (GQME) methods

for efficient long-time predictions, as discussed in Part VI of this QFlux tutorial.®®

27

6.10 Practical considerations

o Mode ordering & entanglement: order physical and tilde modes to minimize en-

tanglement growth (often interleaving k and k helps).

o Local truncation: choose per-mode occupation cutoffs based on 7" and coupling

strength; higher T generally requires larger cutoffs.

o Error control: monitor discarded weight / bond dimensions and validate against

converged short-time reference runs.

« Reuse via propagators: precompute and cache the TT-TFD propagator (superop-

erator) when solving families of initial states or GQME kernels.

These best practices are reflected in the QFlux tutorials and examples.

Takeaway statement: Quantum Dynamics of Mixed States

What skill or insight have we gained? The key lesson is that finite-temperature dy-
namics can be simulated using pure-state propagation at the cost of Hilbert-space dou-

bling, with tensor networks controlling the scaling.

- J

7 Conclusions

Time-dependent quantum dynamics provide a unifying language for understanding how mi-
croscopic quantum states evolve and give rise to experimentally observable behavior. Across
chemistry, physics, and emerging quantum technologies, this perspective connects wave-
function motion to quantities such as populations, spectra, and correlation functions, and it
underlies both classical simulation methods and quantum algorithms for real-time dynamics.

The primary goal of Part I of this tutorial series is to build intuition and good compu-

tational practice. We introduced two complementary classical propagation strategies-direct

28

numerical integration and split-operator methods-and showed how they arrive at the same
physical results when properly converged. This comparison emphasizes a central lesson for
students: reliable simulations require validation across independent methods, not blind re-
liance on a single algorithm or software package. Throughout, simple benchmark systems
were used to highlight how numerical choices affect accuracy, stability, and physical inter-
pretation.

A key pedagogical message of this work is that classical propagation methods are more
than numerical tools. Their operator structure closely mirrors that of quantum algorithms
used for Hamiltonian simulation. In particular, split-operator schemes anticipate the struc-
ture of quantum circuits built from basis changes and phase operations. Classical simulations
therefore serve a dual purpose: they provide physical insight and reference data, and they
act as conceptual prototypes for quantum implementations. This viewpoint helps demystify
quantum simulation by revealing it as a natural extension of familiar classical ideas.

Within this framework, QFlux plays a distinct educational role. While packages
such as QuTiP and Qiskit are essential within their respective domains, QFlux is designed
to connect them. It enforces a model-centered workflow in which the same Hamiltonian,
initial state, and observables are carried consistently across classical solvers, tensor-network
methods, and quantum-ready algorithms. For students, this structure makes differences
between approaches transparent and traceable to physical approximations, numerical error,
or hardware constraints, rather than to software-specific conventions.

Part I serves as the foundation for the remainder of the tutorial series. Part II translates
the classical ideas developed here into executable quantum circuits for closed-system dynam-
ics. Part III focuses on state preparation and unitary decomposition, showing how abstract
states and operators are mapped to hardware-efficient circuits. Part IV extends the frame-
work to open quantum systems using Lindblad dynamics and dilation methods. Part V
introduces adaptive variational algorithms tailored to near-term quantum hardware. Part

VI addresses non-Markovian dynamics and memory effects through generalized quantum

29

master equations.

Together, these installments form a coherent learning pathway from classical intuition
to quantum implementation. By emphasizing validation, operator structure, and consistent
workflows, this series aims to equip students with the conceptual tools needed to navigate
quantum dynamics across classical computation, hybrid algorithms, and emerging quantum

hardware.

Supporting Information

Detailed Python scripts implementing ODE solver and SOFT propagation methods, conver-
gence tests, and additional figures are provided in the Supporting Information and corre-

sponding Google Colab notebook as well as through the QFlux Documentation site.

Acknowledgments

This work was supported by the National Science Foundation under Award No. 2124511 (CCI
Phase I: NSF Center for Quantum Dynamics on Modular Quantum Devices, CQD-MQD) and
Award No. 2302908 (Engines Development Award: Advancing Quantum Technologies, CT).
The authors also acknowledge the use of IBM Quantum services and open-source software

packages, including Qiskit, Bosonic Qiskit, Strawberry Fields, QuTiP, and MPSQD.

References

(1) Breuer, H.; Petruccione, F. The Theory of Open Quantum Systems; Oxford University
Press, 2002.

(2) Lindblad, G. On the Generators of Quantum Dynamical Semigroups. Communications

in Mathematical Physics 1976, 48, 119-130.

30

https://colab.research.google.com/github/batistagroup/qflux/blob/master/demos/manuscript/SI_I.ipynb
https://qflux.batistalab.com

(3) Gorini, V.; Kossakowski, A.; Sudarshan, E. C. G. Completely Positive Dynamical Semi-

groups of N-Level Systems. Journal of Mathematical Physics 1976, 17, 821-825.

(4) Nakajima, S. On Quantum Theory of Transport Phenomena: Steady Diffusion. Progress
of Theoretical Physics 1958, 20, 948-959.

(5) Zwanzig, R. Ensemble Method in the Theory of Irreversibility. The Journal of Chemical

Physics 1960, 33, 1338-1341.

(6) Vacchini, B. Generalized Master Equations Leading to Completely Positive Dynamics.
Journal of Mathematical Physics 2016, 57, 072101.

(7) Dan, X.; Xu, M.; Yan, Y.; Shi, Q. Generalized master equation for charge transport in
a molecular junction: Exact memory kernels and their high order expansion. Journal

of Chemical Physics 2022, 156, 134114.

(8) Nielsen, M. A.; Chuang, I. L. Quantum Computation and Quantum Information; Cam-

bridge University Press, 2010.

(9) Dutta, R.; Cabral, D. G. A.; Lyu, N.; Vu, N. P.; Wang, Y.; Allen, B.; Dan, X.; Cor-
tinas, R. G.; Khazaei, P.; Schafer, M.; Albornoz, A. C. C. d.; Smart, S. E.; Nie, S.;
Devoret, M. H.; Mazziotti, D. A.; Narang, P.; Wang, C.; Whitfield, J. D.; Wilson, A. K ;
Hendrickson, H. P.; Lidar, D. A.; Pérez-Bernal, F.; Santos, L. F.; Kais, S.; Geva, E.;
Batista, V. S. Simulating Chemistry on Bosonic Quantum Devices. Journal of Chemical

Theory and Computation 2024, 20, 6426-6441.
(10) Preskill, J. Quantum Computing in the NISQ Era and Beyond. Quantum 2018, 2, 79.

(11) Dan, X.; Geva, E.; Batista, V. S. Simulating Non-Markovian Quantum Dynamics on
NISQ Computers Using the Hierarchical Equations of Motion. Journal of Chemical

Theory and Computation 2025, 21, 1530-1546.

31

(12)

(13)

(15)

(17)

(18)

Vu, N. P.; Dong, D.; Dan, X.; Lyu, N.; Batista, V.; Liu, Y. A Computational Frame-
work for Simulations of Dissipative Nonadiabatic Dynamics on Hybrid Oscillator-Qubit

Quantum Devices. Journal of Chemical Theory and Computation 2025, 21, 6258-6279.

Lambert, N.; Giguere, E.; Menczel, P.; Li, B.; Hopf, P.; Sudrez, G.; Gali, M.; Lish-
man, J.; Gadhvi, R.; Agarwal, R.; Galicia, A.; Shammah, N.; Nation, P.; Johansson, J.;
Ahmed, S.; Cross, S.; Pitchford, A.; Nori, F. QuTiP 5: The Quantum Toolbox in
Python. Physics Reports 2026, 1153, 1-62.

Guan, W.; Bao, P.; Peng, J.; Lan, Z.; Shi, Q. mpsqd: A matrix product state based
Python package to simulate closed and open system quantum dynamics. The Journal

of Chemical Physics 2024, 161, 122501.

Javadi-Abhari, A.; Treinish, M.; Krsulich, K.; Wood, C. J.; Lishman, J.; Gacon, J.;
Martiel, S.; Nation, P. D.; Bishop, L. S.; Cross, A. W.; Johnson, B. R.; Gambetta, J. M.

Quantum computing with Qiskit. 2024; https://arxiv.org/abs/2405.08810.

Allen, B. C.; Batista, V. S.; Cabral, D. G. A.; Cianci, C.; Dan, X.; Dutta, R.; Geva, E.;
Hu, Z.; Kais, S.; Khazaei, P.; Lyu, N.; Mulvihill, E.; Shivpuje, S.; Soudackov, A. V.;
Vu, N. P.; Wang, Y.; Wilson, C. QFlux — An Open-Source Python Package for Quan-
tum Dynamics Simulations. https://qflux.batistalab.com, 2025; (accessed: 2025-

10-12).

Harris, C. R.; Millman, K. J.; van der Walt, S. J.; Gommers, R.; Virtanen, P.; Courna-
peau, D.; Wieser, E.; Taylor, J.; Berg, S.; Smith, N. J.; Kern, R.; Picus, M.; Hoyer, S.;
van Kerkwijk, M. H.; Brett, M.; Haldane, A.; del Rio, J. F.; Wiebe, M.; Peterson, P.;
Gérard-Marchant, P.; Sheppard, K.; Reddy, T.; Weckesser, W.; Abbasi, H.; Gohlke, C.;
Oliphant, T. E. Array programming with NumPy. Nature 2020, 585, 357-362.

Virtanen, P.; Gommers, R.; Oliphant, T. E.; Haberland, M.; Reddy, T.; Courna-
peau, D.; Burovski, E.; Peterson, P.; Weckesser, W.; Bright, J.; van der Walt, S. J.;

32

https://arxiv.org/abs/2405.08810
https://qflux.batistalab.com

(20)

(21)

(22)

(25)

(26)

(27)

Brett, M.; Wilson, J.; Millman, K. J.; Mayorov, N.; Nelson, A. R. J.; Jones, E.; Kern, R.;
Larson, E.; Carey, C. J.; Polat, I.; Feng, Y.; Moore, E. W.; VanderPlas, J.; Lax-
alde, D.; Perktold, J.; Cimrman, R.; Henriksen, I.; Quintero, E. A.; Harris, C. R.;
Archibald, A. M.; Ribeiro, A. H.; Pedregosa, F.; van Mulbregt, P.; SciPy 1.0 Contrib-
utors SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature
Methods 2020, 17, 261-272.

Feit, M.; Fleck, J.; Steiger, A. Solution of the Schrodinger equation by a spectral
method. Journal of Computational Physics 1982, 47, 412-433.

Trotter, H. F. On the Product of Semi-Groups of Operators. Proceedings of the Amer-

ican Mathematical Society 1959, 10, 545-551.

Suzuki, M. Fractal Decomposition of Exponential Operators with Applications to Many-
Body Theories and Monte Carlo Simulations. Physics Letters A 1990, 146, 319-323.

Campbell, E. T. Randomized Compiling for Scalable Quantum Computing. Physical
Review Letters 2019, 123, 070503.

McLachlan, A. D. A Variational Solution of the Time-Dependent Schrédinger Equation.

Molecular Physics 1964, 8, 39-44.

Endo, S.; Sun, J.; Li, Y.; Benjamin, S. C.; Yuan, X. Variational Quantum Simulation

of General Processes. Phys. Rev. Lett. 2020, 125, 010501.

Kraus, K. General State Changes in Quantum Theory. Annals of Physics 1971, 64,
311-335.

Stinespring, W. F. Positive Functions on C%!-Algebras. Proceedings of the American

Mathematical Society 1955, 6, 211-216.

Shi, Q.; Xu, Y.; Yan, Y.; Xu, M. Efficient propagation of the hierarchical equations

33

(28)

(29)

(30)

(31)

(32)

(33)

(34)

of motion using the matrix product state method. Journal of Chemical Physics 2018,
148, 174102.

Runge, C. Uber die numerische Aufléung von Differentialgleichungen. Mathematische

Annalen 1895, 46, 167-178.

Kutta, W. Beitrag zur naerungsweisen Integration totaler Differentialgleichungen.

Zeitschrift fiir Mathematik und Physik 1901, 46, 435-453.

Ascher, U. M.; Petzold, L. R. Computer methods for ordinary differential equations and
differential-algebraic equations; STAM: Society for Industrial and Applied Mathematics,
1998.

Dormand, J. R.; Prince, P. J. A Family of Embedded Runge-Kutta Formulae. Journal

of Computational and Applied Mathematics 1980, 6, 19-26.

Butcher, J. C. Numerical Methods for Ordinary Differential Equations, 3rd ed.; John
Wiley & Sons: Chichester, UK, 2016.

Brown, P. N.; Byrne, G. D.; Hindmarsh, A. C. VODE: A Variable-Coefficient ODE

Solver. SIAM Journal on Scientific and Statistical Computing 1989, 10, 1038-1051.

Cohen, S. D.; Hindmarsh, A. C. CVODE, a Stiff/Nonstiff ODE Solver in C. Computers
in Physics 1996, 10, 138-143.

Gear, C. W. Numerical Initial Value Problems in Ordinary Differential Equations; Pren-
tice Hall: Englewood Cliffs, NJ, 1971.

Shampine, L. F.; Gordon, M. K. Computer Solution of Ordinary Differential Equations:
The Initial Value Problem; W. H. Freeman: San Francisco, 1975.

Hindmarsh, A. C. In Scientific Computing; Stepleman, R. S., others, Eds.; IMACS
Transactions on Scientific Computation, Vol. 1; North-Holland: Amsterdam, 1983; pp
55-64.

34

(38)

(39)

(40)

(41)

(42)

(43)

(45)

(46)

Johansson, J. R.; Nation, P. D.; Nori, F. QuTiP: An open-source Python framework
for the dynamics of open quantum systems. Computer Physics Communications 2012,

183, 1760-1772.

Johansson, J. R.; Nation, P. D.; Nori, F. QuTiP 2: A Python framework for the
dynamics of open quantum systems. Computer Physics Communications 2013, 184,

1234-1240.

QFlux includes QuTiP as well as other libraries like Qiskit as dependencies, enabling

the QFlux workflow to be executed on both classical simulators and quantum backends.

Feit, M. D.; Jr., J. A. F.; Steiger, A. Solution of the Schrédinger Equation by a Spectral
Method. Journal of Computational Physics 1982, 47, 412-433.

Feit, M. D.; Fleck Jr., J. A. Solution of the Schrodinger equation by a spectral method
IT: Vibrational energy levels of triatomic molecules. Journal of Chemical Physics 1983,

78, 301-308.

Greene, S. M.; Batista, V. S. Tensor-train split-operator Fourier transform (TT-SOFT)
method: Multidimensional nonadiabatic quantum dynamics. Journal of Chemical The-

ory and Computation 2017, 153, 4034-4042.

Lyu, N.; Soley, M. B.; Batista, V. S. Tensor-train split-operator KSL (TT-SOKSL)
method for quantum dynamics simulations. Journal of Chemical Theory and Compu-

tation 2022, 18, 3327-3346.

Lyu, N.; Mulvihill, E.; Soley, M. B.; Geva, E.; Batista, V. S. Tensor-Train Thermo-
Field Memory Kernels for Generalized Quantum Master Equations. Journal of Chemical

Theory and Computation 2023, 19, 1111-1129.

Borrelli, R.; Gelin, M. F. Finite temperature quantum dynamics of complex systems: In-

35

tegrating thermo-field theories and tensor-train methods. WIREs Computational Molec-

ular Science 2021, 11, e1539.

Lubich, C.; Oseledets, I.; Vandereycken, B. Time Integration of Tensor Trains. STAM

Journal on Numerical Analysis 2015, 53, 917-941.

Here, we show that Eq. (6.5) is equivalent to Eq. (6.30) for a single mode. Eq. (6.5) for

a single harmonic mode of frequency w is

B(0) = 25" X e e @0 71
n=0 :

_ m exp [6fﬂw/2&TC~LT} 10,0, (7.2)

where Zg = (1 — e #¥)~1. Expanding the exponential reproduces the sum, and acting
(a'a")™ on the double vacuum yields |n,7n), giving the standard thermofield double
series with Boltzmann weights. Eq. (6.30) for the same state is written as a unitary

generated by the two-mode squeezing operator:
¥ (0,8)) = e“|0,0), G = —if(aa — a'a’), 6 = arctanh (e ?/2). (7.3)

Using the SU(1,1) disentangling identity, the squeezing operator can be written as

e % = exp [7 aqu exp [77 (a'a +a'a + 1)] exp[— a&}, (7.4)

with v = tanh and n = — In(cosh #). Acting on the vacuum, the last factor is trivial,

and the middle factor yields a scalar:

1 -

1 AR 0) —
exp[n(a a+a'a+ 1)}\0, 0) = p— |0, 0).

(7.5)

36

Thus,

o0

> (tanh 6)"|n, 7). (7.6)

n=0

- 1
e~410,0) =
C

g P [’y aqu 0,0) =

cosh 6

Matching this with the coefficients of the first expression requires
tanh § = e </2, (7.7)

which also gives cosh™'# = /1 —tanh?# = /1 —e=P~. With this identification,
both forms yield identical expansions, establishing their equivalence. For multiple bath
modes, each mode k has its own 6}, with tanh 6, = e ?“*/2 and the full bath state is

simply the product over modes since the generators commute for different k. .

Anharmonic baths: no Bogoliubov simplification. The Bogoliubov transforma-
tion relies crucially on the quadratic nature of the harmonic oscillator Hamiltonian. For
an anharmonic potential—for example a Morse oscillator, quartic oscillator, or double-
well potential—no unitary of the Bogoliubov/squeezing type exists. Consequently, for

general anharmonic baths,
« one cannot work in the rotated picture with a compact Hamiltonian Hp,

« and one cannot encode finite temperature by a simple squeezing of the vacuum.

Thermal-state preparation for anharmonic oscillators. Instead, each oscillator’s
thermal density matrix

pr(B) = A

must be represented directly in the TFD formalism. A standard route is: 1. Start from
the high-temperature mixed state py(fp) with small Sy. 2. Perform imaginary-time

evolution

pi(3) oc e” P p(5,),
using purification or TT/MPS representations. 3. Build the full thermal TFD state as

37

a tensor product
Ny

¥(0,8) = Q [¥x(8)),
k=1
where each |U(5)) purifies pr(f). Once the initial thermal state is prepared explicitly

in this way, the dynamics are governed by the unrotated doubled Hamiltonian H,

because no simple analytic G exists that could absorb temperature into a rotated Hamil-

tonian for anharmonic modes. In summary:

o For harmonic baths, thermal effects can be shifted entirely into the rotated Hamil-

tonian Hy using a Bogoliubov transformation.

e For anharmonic baths, no such squeezing transformation exists, so the thermal
TFD state must be explicitly constructed (e.g. via imaginary-time evolution), and

time evolution must be performed with the unrotated Hamiltonian H.

Short-time, numerically exact TT-TFD trajectories provide the correlation functions
required to construct Generalized Quantum Master Equation (GQME) memory kernels
and inhomogeneous terms, enabling long-time dynamics at reduced cost. This hybrid
(TT-TFD — GQME) strategy yields accurate kinetics and mechanistic observables
across coupling/temperature regimes, and has been validated on spin—boson bench-

marks.

38

Supporting Information for

QFlux: Classical Foundations for Quantum
Dynamics Simulation.

Part | - Building Intuition and Computational
Workflows

Brandon C. Allen’, Xiaohan Dan', Delmar G. A. Cabral’, Nam P. Vu',
Cameron Cianci*, Alexander V. Soudackov’, Rishab Dutta!, Sabre KaisY, Eitan Geva$ and

Victor S. Batista® -+

fDepartment of Chemistry, Yale Quantum Institute, Yale University, New Haven, CT
06511, USA
tDepartment of Physics, University of Connecticut, Storrs, CT 06268, USA
IDepartment of Electrical and Computer Engineering, Department of Chemistry, North
Carolina State University, Raleigh, North Carolina 27606, USA
$Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
IDepartment of Chemistry, Yale University, New Haven, CT 06520, USA

“Yale Quantum Institute, Yale University, New Haven, CT 06511, USA

E-mail: victor.batista@yale.edu

S1

Contents

S.1 Runge—Kutta—Fehlberg 4(5) Propagation

S.1.1 Case A: Orthonormal, Time-Independent Basis

S.1.2 Case B: Non-Orthonormal Time-Independent Basis

S.1.3 Optional: Time-Dependent Basis

S.1.4 Practical Notes
S.2 Harmonic Oscillator Benchmarks

S.2.1 Dynamics with ODE solver

S.2.2 Expectation Values o oo

S.3 SOFT Dynamics Simulations

S.3.1
S.3.2
S.3.3
S.3.4

State Initialization oo
Propagators for the Harmonic Oscillator
SOFT Propagation

Expectation Values

S.4 TT-TFD Simulations of the Spin—-Boson Model

S.4.1
S.4.2
S.4.3
S.4.4
S.4.5
S5.4.6

QFlux Installation
Spin—Boson Model Parameters
TT-TFD Simulation Driver
Post-Processing: Populations and Coherences
State Initialization in TT-TFD
Hamiltonian Construction
S.4.6.1 Bath Parameter Discretization
S.4.6.2 Local TT Blocks,
S5.4.6.3 Spin—Boson-Specific TT Blocks
S.4.6.4 High-Level Constructor for —iH

S2

S4
S4
S5
S6
ST

S7
ST
S8

S10
S10
S12
S12
S13

S.4.7

ODE solver KSL Propagator

S3

S.1 Runge—-Kutta—Fehlberg 4(5) Propagation

Consider the time-dependent Schrodinger equation

ma'qgit)) =H)), [00) =3 ¢(t)]6;1)) . (S.1)

=1

S.1.1 Case A: Orthonormal, Time-Independent Basis

If {|¢;)}}L, is orthonormal and time independent, define Hy;(t) = (¢ H(t)|p;) and collect
the coefficients into ¢(t) = (c1,...,cn)". The Schrédinger equation becomes the ordinary

differential equation

) = F(t) = —; H(t) e(t). (S.2)

Given (t,,c,) and a step size h, the classical Runge-Kutta—Fehlberg 4(5) stages are

ki = f(tn, cn), (S.3)
ko :f<tn+ih, cn+ihk:1>, (S.4)
ky — f(tn 4 zh, en t h<332k1 + 392k2)> (S.5)
hy = f(tn 4 ﬁ)h ent h(;?gik ;igg/@ + ;igg/@,)) (S.6)
s f<t T et h(i)gk B 356183%3 B 4851054 4)) (5.7)
ke f(t + h cn+h< 87k1+2k2—3§2§ 3+ﬁk4—z 5>> (S.8)
The embedded 4th- and 5th-order updates are
it = en + h(22156k1 + ;ggi kg + iiﬁ’% - ék5> ! (5.9)
vl = et h<11365 ft 162685265 ks ¥ iiig(l)k‘* N 590k5 N 525>k6> ' (5.10)

S4

The embedded pair provides a local error estimate

A= Hcﬂl - 024421) (S.11)
and a standard adaptive-step update,
hnew = h - min(4, max(0.1, 0.84(') /1)), (S.12)

where tol is the user-defined tolerance and the safety factors 0.1 and 4 bound the step
changes.

Remark on unitarity. RK45 is not exactly norm-preserving. For Hermitian H in an
orthonormal basis, it can be useful to monitor and optionally renormalize the coefficient

vector, ¢pi1 < Cui1/||cat1||, or tighten the tolerance to control norm drift.

S.1.2 Case B: Non-Orthonormal Time-Independent Basis

For a time-independent but non-orthonormal basis with overlap matrix S;; = (¢i|¢;), the

coefficients satisfy

hSe(t) = H)e(t) = &(t) = g(t,c) = —~ STH () clt). (S.13)

S5

To avoid forming S~! explicitly, each Runge—Kutta stage is implemented via linear solves:
g P Y g

Sk = = H(ta) ca, (S.14)
Sky = —;H(tn +1h) (cn +1h k1>, (S.15)
Shy — —;H(tn +) (cn Rk + 392k2)), (S.16)
Sy =~ H (1o + 120) (0 + hOS2E — 0K, + 22E)), (517)
Sks = —;H(tn + h)<cn + h(£9ky — 8ky + B0, — mk4)>, (5.18)
S kg = —;H(tn +3h) (cn +h(— Sk + 2ky — 354, 4 180, }13/%))- (S.19)

The 4th- and 5Hth-order updates are then constructed from the same linear combinations of
{k¢} as in the orthonormal case.
Pre-factorizing S (e.g., via a Cholesky decomposition S = LLT) allows each linear system

solve to be implemented efficiently.

S.1.3 Optional: Time-Dependent Basis

If the basis functions themselves are time dependent, |¢;) = |¢;(t)), nonadiabatic couplings

7ii(t) = (6:(8)[45(2)) (S.20)

enter the equations of motion as

inS(8)é(t) = (H(t) = ihr(®))e(), Siy(t) = (3:(0)|d (1)) - (S.21)

The RK45 structure is unchanged, but at each stage both H and S are evaluated at the

intermediate time ¢, and the stage vectors k, are obtained from linear solves S(t,) k., =

S6

S.1.4 Practical Notes

o For Hermitian H in an orthonormal basis, monitor norm drift ||c(#)||*> and renormalize

if necessary.
« With a non-orthonormal basis, monitor the generalized norm cfSec.

o If H is sparse or has an MPO / TT structure, evaluate products Hc using the corre-

sponding matrix—vector routine to keep each stage efficient.

S.2 Harmonic Oscillator Benchmarks

This section presents scripts that model the dynamics of a quantum harmonic oscillator,

implemented using both a ODE solver in QuTiP and the SOFT method.

S.2.1 Dynamics with ODE solver

The first script prepares and propagates a coherent state of the harmonic oscillator using
QuTiP’s Schrodinger-equation solver sesolve. It defines the Hamiltonian, time grid, and
numerical solver options, and returns the full time series of state vectors (result.states)

used in later analysis.

S7

Script S.2.1: Harmonic Oscillator Dynamics with ODE solver

import qutip as qt
import numpy as np

Define the system parameters
mass = 1.0

hbar = 1.0

omega = 1.0

Initial state: coherent state with amplitude alpha = (20 + % p_0)/sqrt(2)
x_0, p.0=1.0, 0.0

N = 128 # Number of basis states

psi_O = qt.coherent (N, alpha=(x_0 + 1.j*p_0)/np.sqrt(2))

Time grid
n_steps, total_time = 400, 20.0
tlist = np.linspace(0, total_time, n_steps)

Define the Hamiltonian
a = qt.destroy(N)
H_ho = hbar * omega * (a.dag() * a + 0.5)

Propagate using the Runge-Kutta solwver
solver_options = {’nsteps’: len(tlist), ’progress_bar’: True}
result = qt.sesolve(H_ho, psi_0, tlist, options=solver_options)

S.2.2 Expectation Values

The second script evaluates the expectation values of position and momentum using the
propagated QuTiP states from the previous listing and compares them to the analytical
expressions for a coherent-state trajectory. It produces the benchmark plots shown in the

main text.

S8

https://colab.research.google.com/github/batistagroup/qflux/blob/master/demos/manuscript/SI_I.ipynb

Script S.2.2: Expectation Values for the Harmonic Oscillator

import matplotlib.pyplot as plt

Operators for position and momentum
X_op = (a.dag() + a) / np.sqrt(2)
P_op = 1j * (a.dag() - a) / np.sqrt(2)

Compute numerical expectation values
exp_x_qt = qt.expect(X_op, result.states)
exp_p_qt = qt.expect(P_op, result.states)

Analytical results
exp_x_ana = [x_O#*np.cos(omega*t) + (p_O/mass/omega)*np.sin(omega*t) for t in

tlist]

exp_p_ana = [-mass*omega*x_O*np.sin(omega*t) + p_O*np.cos(omega*t) for t in
tlist]

Plot

fig, ax = plt.subplots()

ax.plot(tlist, exp_x_ana, ’-’, color=’blue’,

label=r’$\langle x \rangle$ (Analytical)’)
ax.plot(tlist, exp_x_qt, ’0’, color=’blue’,
label=r’$\langle x \rangle$ (QuTiP)’,
markeredgecolor="blue’, markevery=4,
fillstyle=’full’, markerfacecolor=’white’)
ax.plot(tlist, exp_p_ana, ’-’, color=’red’,
label=r’$\langle p \rangle$ (Analytical)’)
ax.plot(tlist, exp_p_qt, ’0’, color=’red’,
label=r’$\langle p \rangle$ (QuTiP)’,
markeredgecolor=’"red’, markevery=4,
fillstyle=’full’, markerfacecolor=’white’)
ax.axhline(0, 1ls=’--’, 1lw=0.5, color=’black’, alpha=0.5)
ax.set_xlabel (’Time (a.u.)’)
ax.set_ylabel (’Expectation Value’)
plt.legend(loc=’upper center’, ncol=2)
ax.set_ylim(-1.5, 1.825)
plt.hlines([-1, 0, 1], min(tlist), max(tlist),

1s=’--’, 1w=0.85, color=’tab:grey’, zorder=2)
ax.set_xlim(min(tlist), max(tlist))
plt.show()

S9

https://colab.research.google.com/github/batistagroup/qflux/blob/master/demos/manuscript/SI_I.ipynb

S.3 SOFT Dynamics Simulations

S.3.1 State Initialization

The SOFT initialization script constructs the real-space and momentum grids and prepares
a coherent-state wavepacket matching the QuTiP initial state. These arrays (xgrid, pgrid,

and psi_0) are reused by all subsequent SOFT routines.

S10

Script S.3.1: Coherent State Wavepacket Initialization

import numpy as np

def get_xgrid(xmin, xmax, N_pts):
"""Generate an evenly spaced position grid."""
dx = (xmax - xmin)/N_pts
xgrid = np.arange(-N_pts/2, N_pts/2)*dx
return xgrid

def get_pgrid(xmin, xmax, N_pts, reorder=True):
"""Generate a momentum grid using FFT-compatible ordering."""
dp = 2 * np.pi / (xmax-xmin)
pmin = —-dp * N_pts / 2
pmax = dp * N_pts / 2
plus_pgrid = np.linspace(0, pmax, N_pts//2+1)
minus_pgrid = - np.flip(np.copy(plus_pgrid))
if reorder:
pgrid = np.concatenate((plus_pgrid[:-1], minus_pgrid[:-1]))
else:
pgrid = np.concatenate((minus_pgrid, plus_pgrid))
return pgrid

def get_coherent_state(x, p_0, x_0, mass=1, omega=1, hbar=1):
"""Generate an initial coherent state wavefunction."""
normalization = (mass*omega/np.pi/hbar)**(0.25)
y = normalization*np.exp(
-1*(mass*omega/hbar/2) * ((x-x_0) **2) + 1j*p_0*x/hbar
)

return y

xmin = -7.0

xmax = 7.0

N_pts = 128

mass = 1.0 # mass in atomic units

omega = 1.0 # oscillator frequency

xgrid = get_xgrid(xmin, xmax, N_pts)

dx = xgrid[1] - xgrid[0]

pgrid = get_pgrid(xmin, xmax, N_pts, reorder=True)

x 0=1.0
p_0=0.0
psi_O = get_coherent_state(xgrid, p_0, x_0, mass, omega)

S11

https://colab.research.google.com/github/batistagroup/qflux/blob/master/demos/manuscript/SI_I.ipynb

S.3.2 Propagators for the Harmonic Oscillator

This helper script defines the harmonic potential and kinetic-energy functions on the grids
initialized above. The resulting arrays Vx_harm and K_harm serve as the input operators for

the SOFT propagator.

Script S.3.2: SOFT Operators for Harmonic Oscillator]

import numpy as np

def get_harmonic_potential(x, x_0=0.0, mass=1, omega=1):
return mass * omega*x*2 * (x - x_0)**2 / 2

def get_kinetic_energy(p, mass=1):
return p**2 / (2 * mass)

Vx_harm = get_harmonic_potential (xgrid)
K_harm = get_kinetic_energy(pgrid, mass)

S.3.3 SOFT Propagation

The main SOFT propagation routine constructs the position- and momentum-space prop-
agators and iteratively advances the wavefunction in time using FFTs. It returns a list of

wavefunctions propagated_states_harm sampled on the same grid as the QuTiP trajectory.

Script S.3.3: SOFT Propagation L]

import numpy as np

def get_propagator_on_grid(operator_grid, tau, hbar=1):
return np.exp(-1.0j * operator_grid * tau / hbar)

def do_SOFT_propagation(psi, K_prop, V_prop):
psi_t_position_grid = V_prop * psi
psi_t_momentum_grid = K_prop * np.fft.fft(psi_t_position_grid, norm="ortho")
psi_t = V_prop * np.fft.ifft(psi_t_momentum_grid, norm="ortho")

S12

https://colab.research.google.com/github/batistagroup/qflux/blob/master/demos/manuscript/SI_I.ipynb
https://colab.research.google.com/github/batistagroup/qflux/blob/master/demos/manuscript/SI_I.ipynb

return psi_t

tmin, tmax, N_tsteps = 0.0, 20.0, 400
tgrid = np.linspace(tmin, tmax, N_tsteps)
tau = tgrid[1] - tgrid[0]

V_prop = get_propagator_on_grid(Vx_harm/2, tau)
K_prop = get_propagator_on_grid(K_harm, tau)

propagated_states_harm = [psi_0]

psi_t =psi_0

for _ in range(len(tgrid)):
psi_t = do_SOFT_propagation(psi_t, K_prop, V_prop)
propagated_states_harm.append(psi_t)

propagated_states_harm = np.asarray(propagated_states_harm) [:-1]

S.3.4 Expectation Values

The final SOFT script computes position and momentum expectation values from the prop-
agated wavefunctions and compares them with the analytical expressions as well as with the

QuTiP benchmarks, producing the plots used in the manuscript.

Script S.3.4: Harmonic Oscillator Expectation Values 2

def position_expectation_value(xgrid, psi):
dx = xgrid[1]-xgrid[0]
return dx*np.real(np.sum(xgrid * np.conjugate(psi) * psi))

def momentum_expectation_value(dx, pgrid, psi):
psip = np.fft.fft(psi)
return dx*np.real(np.sum(pgrid * np.conjugate(psip) * psip))/len(psi)

avx_soft = [position_expectation_value(xgrid, propagated_states_harm[i])
for i in range(len(propagated_states_harm))]

dx = xgrid[1]-xgrid[0]

avp_soft = [momentum_expectation_value(dx, pgrid, propagated_states_harm[i])
for i in range(len(propagated_states_harm))]

avx_ana = [x_O*np.cos(omega*t) + (p_0/mass/omega)*np.sin(omegaxt)
for t in tgrid]

S13

https://colab.research.google.com/github/batistagroup/qflux/blob/master/demos/manuscript/SI_I.ipynb

avp_ana = [-x_O*omega*mass*np.sin(omega*t) + p_O*np.cos (omegaxt)
for t in tgrid]

Plot
fig, ax = plt.subplots()
ax.plot(tlist, avx_ana, ’-’, color=’blue’,

label=r’$\langle x \rangle$ (Analytical)’)
ax.plot(tlist, avx_soft, ’o’, color=’blue’,
label=r’$\langle x \rangle$ (SOFT)’,
markeredgecolor="blue’, markevery=4,
fillstyle=’full’, markerfacecolor=’white’)
ax.plot(tlist, avp_ana, ’-’, color="red’,
label=r’$\langle p \rangle$ (Analytical)’)
ax.plot(tlist, avp_soft, ’o’, color=’red’,
label=r’$\langle p \rangle$ (SOFT)’,
markeredgecolor="red’, markevery=4,
fillstyle=’full’, markerfacecolor=’white’)
ax.axhline(0, 1s=’--’, 1lw=0.5, color=’black’, alpha=0.5)
ax.set_xlabel(’Time (a.u.)’)
ax.set_ylabel (’Expectation Value’)
plt.legend(loc=’upper center’, ncol=2)
ax.set_ylim(-1.5, 1.825)
plt.hlines([-1, O, 1], min(tlist), max(tlist),

1s=’--’, 1w=0.85, color=’tab:grey’, zorder=2)
ax.set_xlim(min(tlist), max(tlist))
plt.show()
\ J

S.4 TT-TFD Simulations of the Spin—Boson Model

S.4.1 QFlux Installation

This short cell installs the qgf lux package with the GQME/TT-TFD extras and imports the
TT-TFD and TDVP modules used throughout the remainder of this section. It should be

executed once at the beginning of a notebook.

S14

Script S.4.1: QFlux Installation L]

Ipip install gqflux[gqgme]

from qflux.GQME.tt_tfd import *
from qflux.GQME.tdvp import _tdvpl
from gqflux.GQME.tt_utils import *
from __future__ import annotations

import matplotlib.pyplot as plt

S.4.2 Spin—Boson Model Parameters

The parameter container Params defines all physical and numerical settings for the TT-TFD
calculations (model parameters, time step, TT ranks, etc.). A single global instance pp is

created and accessed by the subsequent construction and propagation routines.

Script S.4.2: Model Parameters 2

class Params:
def __init__(self):
==== Spin—-Boson Model parameters ====
self .GAMMA_ DA =1 # diabatic coupling
self .EPSILON =1
self .BETA =5
self .XI =0.1
self .OMEGA_C =2

inverse temperature beta =1 / (k_B * T)

Spin—up and spin-down states
self.spin_up = np.array([1.0, 0.0], dtype=np.float64)
self.spin_down = np.array([0.0, 1.0], dtype=np.float64)

==== General constants for simulation ====

self .TIME_STEPS = 500

number of time steps

self .DOF_E

self.au2ps = 0.00002418884254 # as -> a.u. conversion
self.timeau = 12.409275
self.DT = 20 * self.au2ps * self.timeau # time step in au

self .FINAL_TIME = self.TIME_STEPS * self.DT

=2 # number of electronic states

self.DOF_E_SQ = self.DOF_E * self.DOF_E

S15

https://colab.research.google.com/github/batistagroup/qflux/blob/master/demos/manuscript/SI_I.ipynb
https://colab.research.google.com/github/batistagroup/qflux/blob/master/demos/manuscript/SI_I.ipynb

==== Simulation parameters for TT-TFD ====
self .DOF_N =50 # number of nuclear DOF
self .OMEGA_MAX = 10

TT constants

self.eps = le-12 # tt approx error
self.dim = self .DOF_N # number of coords
self.occ =10 # maxz occupation number

self.MAX_TT_RANK = 10

==== Simulation parameters for GUME ====

self .MEM_TIME = self.DT * self.TIME_STEPS
self .HBAR = dl

self .MAX_ITERS = 30

self.CONVERGENCE PARAM = 10.0%x(-10.0)

==== Parameter string for output files ====
self .PARAM_STR = "_Spin-Boson_Ohmic_TT-TFD_b%sG%s_el%s_" % (
self .BETA, self.GAMMA DA, self.EPSILON
)
self .PARAM STR += "xilswc¥%s_wmax¥s_dofnls" % (
self .XI, self.OMEGA_C, self.OMEGA_MAX, self.DOF_N

==== Pauli matrices ====

self.X = np.array([[0, 1], [1, 0]], dtype=np.complex128)
self.Y = np.array([[0, -1j], [1j, 0]], dtype=np.complex128)
self.Z = np.array([[1, 0], [0, -1]], dtype=np.complex128)
self.I = np.eye(2, dtype=np.complex128)

create a global instance, so you can do: pp.TxT
pp = Params ()

S.4.3 TT-TFD Simulation Driver

This driver script demonstrates two equivalent ways of running a TT-TFD spin—boson sim-

ulation: (i) a high-level call to the convenience function tt_tfd, and (ii) a more explicit

route that builds the initial state and Hamiltonian and then calls the generic TDVP-based

propagator tt_ksl propagator. The outputs are the time grid t and the array of reduced

density operators RDO_arr.

S16

Script S.4.3: TT-TFD Simulation of Spin-Boson Model L

-——— user chotices for the test ———-

initial_state = 0 #0: [up>, 1: (|up>+[/down>)/sqrt2, etc.
update_type = "rk4" # "rk4" or "krylov"

rkdslices =1 # only used 1f update_type == "rk4i"
mmax =4 # only used ©f update_type == "krylov"
verbose = True

show_steptime = True

———— run simulation ———-—

print("Building initial state and Hamiltonian")
yO = tt_initial_state(initial_state)

A = tt_hamiltonian(eps=pp.eps, pp=pp)

print ("Propagating")
Is_qgflux_tt_tfd = True
if Is_qgflux_tt_tfd:
t, RDO_arr = tt_tfd(initial_state=0, show_steptime=True, update_type=’rk4’)

else:
t, RDO_arr = tt_ksl_propagator(
yO,
A,

update_type=update_type,

rk4slices=rk4dslices,

mmax=mmax,

RDO_arr_bench=None,

property_fn=cal_property,

verbose=verbose,

show_steptime=show_steptime,

copy_state=False, # set True if you want to keep ‘yO‘ unchanged
PP=PP,

)

print ("Propagation finished.")
print ("RDO_arr shape:", RDO_arr.shape)

S.4.4 Post-Processing: Populations and Coherences

The post-processing script extracts populations and coherences from the flattened reduced
density matrices stored in RDO_arr, and then generates diagnostic plots of py., pad, and the

real and imaginary parts of p,4 as functions of time.

S17

https://colab.research.google.com/github/batistagroup/qflux/blob/master/demos/manuscript/SI_I.ipynb

Script S.4.4: Extract and plot populations and coherences]

RDO_arr: shape (TIME_STEPS, 4) for a 2-level system
pop_up = RDO_arr[:, 0].real

pop_down = RDO_arr[:, 3].real

coh_ud =RDO_arr[:, 1] # complex

———- population plot ———-

plt.figure()

plt.plot(t, pop_up, label="Pop |up>")
plt.plot(t, pop_down, label="Pop |down>")
plt.xlabel("time")
plt.ylabel("population")

plt.legend ()

plt.title("Spin populations vs time")
plt.grid(True)

plt.show()

———- coherence plot ———-

plt.figure()

plt.plot(t, coh_ud.real, label="Re rho_ud")

plt.plot(t, coh_ud.imag, label="Im rho_ud", linestyle="--")
plt.xlabel("time")

plt.ylabel("coherence")

plt.legend ()

plt.title("Spin coherences vs time")

plt.grid(True)

plt.show()

S.4.5 State Initialization in TT-TFD

This script implements tt_initial state, which builds the thermo-field initial state as an
MPS/TT with one electronic site and 2 DOF 5 bosonic sites. The function is called by the

simulation driver to prepare the starting TT state for propagation.

Script S.4.5: State Initialization L]

def tt_initial_state(istate: int) -> MPS:

Initialize the state in tensor-train (MPS) format for a TT-TFD calculation.

S18

https://colab.research.google.com/github/batistagroup/qflux/blob/master/demos/manuscript/SI_I.ipynb
https://colab.research.google.com/github/batistagroup/qflux/blob/master/demos/manuscript/SI_I.ipynb

Parameters
istate : int
Type of initial electronic state:
0 : spin-up
1 : (spin-up + spin-down) / sqrt(2)
2 : (spin-up + i * spin-down) / sqrt(2)
3 : spin-down

Returns

Initialized MPS with the chosen electronic state at the first site
and vacuum/ground states on the remaining sites.
QFlux uses mpsqd https://github.com/qiangshi-group/MPSQD
i
Sanity check on tstate
if istate not in (0, 1, 2, 3):
raise ValueError(f"Invalid istate={istate}. Must be in {{0, 1, 2, 3}}.")

Define single-site electronic tensors

su = np.zeros((1, pp.DOF_E, pp.MAX_TT_RANK), dtype=np.complex128)

sd = np.zeros((1, pp.DOF_E, pp.MAX_TT_RANK), dtype=np.complex128)

su[0, :, 0] = pp.spin_up
sd[0, :, 0] = pp.spin_down

Superpostitions

inv_sqrt2 = 1.0 / np.sqrt(2.0)
el = inv_sqrt2 * (su + sd)

e2 = inv_sqrt2 * (su + 1j * sd)

Select the initial electronic core
electronic_cores = {

0: su,
1: el,
2: e2,
3: sd,
}
first_core = electronic_cores[istate]

Build MPS structure

nbarr: local dimensions for each site
num_sites = 1 + 2 * pp.DOF_N

nbarr = np.full(num_sites, pp.occ, dtype=int)
nbarr[0] = pp.DOF_E # first site is electronic

S19

yO = MPS(num_sites, nb=nbarr)
y0.nodes.append(first_core)

Middle sites: tdentity-like / vacuum cores
middle_core = np.zeros(
(pp.MAX_TT_RANK, pp.occ, pp.MAX_TT_RANK),
dtype=np.complex128
)
middle_core[0, 0, 0] = 1.0

Append 2 * DOF_N - 1 middle cores
for _ in range(2 * pp.DOF_N - 1):
y0.nodes.append(middle_core)

Last site: right boundary core with rank-1 right bond
last_core = np.zeros(
(pp.MAX_TT_RANK, pp.occ, 1),
dtype=np.complex128
)
last_core[0, 0, 0] = 1.0
y0.nodes.append(last_core)

return yO

S.4.6 Hamiltonian Construction
S.4.6.1 Bath Parameter Discretization

This utility converts the continuous Ohmic spectral density into a finite set of discrete bath
modes. It returns frequencies, couplings, and TFD mixing angles, which are subsequently

used to build the TT representation of the bath Hamiltonian and system—bath couplings.

Script S.4.6: Bath Frequency Discretization

def discretize_ohmic(freq_count: int):

Discretize an Ohmic spectral density into ‘freq_count‘ modes.

Returns

S20

https://colab.research.google.com/github/batistagroup/qflux/blob/master/demos/manuscript/SI_I.ipynb

freq : (N,) array
ck : (N,) array
gk : (N,) array
thetak, sinhthetak, coshthetak : (N,) arrays

N = freq_count
om = pp.OMEGA_C / N * (1.0 - np.exp(-pp.0OMEGA_MAX / pp.0OMEGA_C))

freq = np.zeros(N, dtype=float)

ck = np.zeros(N, dtype=float)

gk = np.zeros(N, dtype=float)

thetak = np.zeros(N, dtype=float)
sinhthetak = np.zeros(N, dtype=float)
coshthetak = np.zeros(N, dtype=float)

for i in range(N):
freq[i] = -pp.0OMEGA_C * np.log(
1.0 - (i +1) * om / pp.OMEGA_C
)
ck[i] = np.sqrt(pp.XI * om) * freq[il
gk[i] = -ck[i] / np.sqrt(2.0 * freq[i])

th = np.arctanh(np.exp(-pp.BETA * freq[i] / 2.0))
thetak[i] = th

sinhthetak[i] = np.sinh(th)

coshthetak[i] = np.cosh(th)

return freq, ck, gk, thetak, sinhthetak, coshthetak

S.4.6.2 Local TT Blocks

The next group of scripts defines the small building blocks (local electronic Hamiltonian,

number operator, displacement operator, and TT helper routines) from which the full TT-

TFD Hamiltonian is assembled.

521

Script S.4.7: Two-Level Hamiltonian

def build_electronic_hamiltonian(epsilon: float, gamma_da: float):
""1"2x2 electronic Hamiltonian in matrix form."""
px = np.array([[0.0, 1.0],
[1.0, 0.0]], dtype=np.complex128)
pz = np.array([[1.0, 0.0],
[0.0, -1.0]]1, dtype=np.complex128)
return epsilon * pz + gamma_da * px

Script S.4.8: Kronecker-extend a 2x2 TT-matrix with 2*DOF modes

def tt_embed_electronic(tt_He, total_boson_modes: int, occ: int):

Kronecker-extend a 2x2 TT-matrix to include 2*DOF_N bosonic modes.

return tt_kron(tt_He, tt_eye(2 * total_boson_modes, occ))

Script S.4.9: Number Operator

def build_number_operator_local(occ: int):
"""Local harmonic number operator in matrix form."""

return np.diag(np.arange(occ, dtype=np.complex128))

Script S.4.10: Create a TT with identity structure

def tt_zero_like_eye(num_sites: int, occ: int):
"""Create a TT with identity structure and then zero all cores."""
tt_obj = tt_eye(num_sites, occ)
for i in range(num_sites):
tt_obj.nodes[i] *= 0.0
return tt_obj

522

https://colab.research.google.com/github/batistagroup/qflux/blob/master/demos/manuscript/SI_I.ipynb
https://colab.research.google.com/github/batistagroup/qflux/blob/master/demos/manuscript/SI_I.ipynb
https://colab.research.google.com/github/batistagroup/qflux/blob/master/demos/manuscript/SI_I.ipynb
https://colab.research.google.com/github/batistagroup/qflux/blob/master/demos/manuscript/SI_I.ipynb

Script S.4.11: Sum Local Operator L]

def tt_sum_local_operators(num_sites: int,
occ: int,
local_mats,
site_coeffs,
eps: float):

Build sum_k site_coeffs[k] * (I ... x local mats[k] x ... I) in TT form.

tt_total = tt_zero_like_eye(num_sites, occ)

for k, (Mloc, coeff) in enumerate(zip(local_mats, site_coeffs)):
tmp0 = tt_matrix(Mloc)
tmp0.nodes [0] *= coeff

if k ==

tmp = tt_kron(tmp0O, tt_eye(num_sites - 1, occ))
elif k < num_sites - 1:

tmp = tt_kron(tt_eye(k - 1, occ), tmp0)

tmp = tt_kron(tmp, tt_eye(num_sites - k, occ))
else: # last site

tmp = tt_kron(tt_eye(k, occ), tmp0)

tt_total = add_tensor(tt_total, tmp, small=eps)

return tt_total

Script S.4.12: Local Displacement Operator z

def build_displacement_local(occ: int):

Local displacement operator (x operator) in HO basis.
nmmnn
D = np.zeros((occ, occ), dtype=np.complex128)
for i in range(occ - 1):
s =np.sqrt(i + 1.0)
D[i, i+ 1] =s
D[i+1,1i] =s
return D

S23

https://colab.research.google.com/github/batistagroup/qflux/blob/master/demos/manuscript/SI_I.ipynb
https://colab.research.google.com/github/batistagroup/qflux/blob/master/demos/manuscript/SI_I.ipynb

S.4.6.3 Spin—Boson-Specific TT Blocks

The following scripts assemble the bath Hamiltonian and system—bath couplings in TT form

using the generic blocks defined above.

Script S.4.13: TT representation of >, freq[f:]aZak

def tt_number_operator_physical(freq, eps: float):

TT representation of sum_k freq[k] * a_k~\dagger a_k on DOF_N sites.
N = pp.DOF_N

numoc = build_number_operator_local(pp.occ)

local_mats = [numoc] * N

return tt_sum_local_operators(N, pp.occ, local_mats, freq, eps)

Script S.4.14: TT representation of Y, gk|[k] cosh(0)(ax + a,t,)

def tt_displacement_physical(gk, coshthetak, eps: float):
rirnn

TT representation of sum_k gk[k] cosh(theta_k) (a_k + a_k~\dagger)
N = pp.DOF_N

D = build_displacement_local (pp.occ)

local_mats = [D] * N

coeffs = gk * coshthetak

return tt_sum_local_operators(N, pp.occ, local_mats, coeffs, eps)

Script S.4.15: TT representation of Y, gk|[k]sinh(0;)(ax + (~LZ)

def tt_displacement_fictitious(gk, sinhthetak, eps: float):
r|| nn
TT representation of sum_k gk[k] sinh(theta_k) (tilde a_k + tilde a_k~\dagger)
N = pp.DOF_N
D = build_displacement_local (pp.occ)

524

https://colab.research.google.com/github/batistagroup/qflux/blob/master/demos/manuscript/SI_I.ipynb
https://colab.research.google.com/github/batistagroup/qflux/blob/master/demos/manuscript/SI_I.ipynb
https://colab.research.google.com/github/batistagroup/qflux/blob/master/demos/manuscript/SI_I.ipynb

local_mats = [D] * N
coeffs = gk * sinhthetak
return tt_sum_local_operators(N, pp.occ, local_mats, coeffs, eps)

Script S.4.16: Lift a bosonic T'T operator

def tt_lift_to_system(tt_boson, system_op):

nmnn

Lift a bosonic TT operator to include a 2D electronic system:

result = system_op (x) tt_boson (x) I_boson (or variations).
nnn

tt_sys = tt_matrix(system_op)

return tt_kron(tt_sys, tt_boson)

Script S.4.17: left,, ® ttposon @ [

def tt_lift_physical_with_fictitious(tt_boson, left_op, eps: float):

Construct (left_op (x) tt_boson (x) I).
tt_left = tt_matrix(left_op)

tt = tt_kron(tt_left, tt_boson)

tt = tt_kron(tt, tt_eye(pp.DOF_N, pp.occ))
return tt

Script S.4.18: leftop (?9] <g> tt'boson

def tt_lift_fictitious_with_physical(tt_boson, left_op, eps: float):

Construct (left_op x I x tt_boson).

nnn

tt_left = tt_matrix(left_op)

tt = tt_kron(tt_left, tt_eye(pp.DOF_N, pp.occ))
tt = tt_kron(tt, tt_boson)

S25

https://colab.research.google.com/github/batistagroup/qflux/blob/master/demos/manuscript/SI_I.ipynb
https://colab.research.google.com/github/batistagroup/qflux/blob/master/demos/manuscript/SI_I.ipynb
https://colab.research.google.com/github/batistagroup/qflux/blob/master/demos/manuscript/SI_I.ipynb

return tt

S.4.6.4 High-Level Constructor for —iH

The final Hamiltonian-construction script, tt_hamiltonian, assembles all electronic, phys-
ical, and fictitious contributions into a single TT/MPO object representing the generator

—iH used in the time-evolution algorithms.

Script S.4.19: Build —iH for the TFD Spin—Boson Model

def tt_hamiltonian(eps: float = le-14):

Build -iH for the TFD spin-boson model using modular building blocks.

Returns

MPO (MPS-like TT object)
——— parameters ——-—
freq, ck, gk, thetak, sinhthetak, coshthetak = discretize_ohmic(pp.DOF_N)

——— electronic part ——-

He = build_electronic_hamiltonian(pp.EPSILON, pp.GAMMA_DA)
tt_He = tt_matrix(He)

tt_He = tt_embed_electronic(tt_He, pp.DOF_N, pp.occ)

-—— physical and fictitious number operators ——-—
tt_num_physical = tt_number_operator_physical(freq, eps)

tt_Ie = tt_matrix(np.eye(2, dtype=np.complex128))

tt_systemnumoc = tt_kron(tt_Ie, tt_num_physical)

tt_systemnumoc = tt_kron(tt_systemnumoc, tt_eye(pp.DOF_N, pp.occ))

tt_tildenumoc = tt_kron(tt_Ie, tt_eye(pp.DOF_N, pp.occ))
tt_tildenumoc = tt_kron(tt_tildenumoc, tt_num_physical)

—-—— displacement operators ——-—
tt_energy = tt_displacement_physical(gk, coshthetak, eps)
tt_systemenergy = tt_kron(tt_matrix(np.array([[1, 0], [0, -1]],
dtype=np.complex128)),
tt_energy)

526

https://colab.research.google.com/github/batistagroup/qflux/blob/master/demos/manuscript/SI_I.ipynb

tt_systemenergy = tt_kron(tt_systemenergy, tt_eye(pp.DOF_N, pp.occ))

tt_tilenergy = tt_displacement_fictitious(gk, sinhthetak, eps)
tt_tildeenergy = tt_kron(tt_matrix(np.array([[1, 0], [0, -1]1],
dtype=np.complex128)),
tt_eye(pp.DOF_N, pp.occ))
tt_tildeenergy = tt_kron(tt_tildeenergy, tt_tilenergy)

——— assemble H ——-—

H = add_tensor(tt_He, tt_systemnumoc, small=eps)
add_tensor (H, tt_tildenumoc, coeff=-1.0, small=eps)
add_tensor (H, tt_systemenergy, coeff=1.0, small=eps)
add_tensor(H, tt_tildeenergy, coeff=1.0, small=eps)

H
H
H

fold -7 into the first core
H.nodes[0] *= -1j

convert to MPO and truncate
A = MPS2MPO(H) . truncation(small=eps)
return A

S.4.7 ODE solver KSL Propagator

The last script implements the generic TDVP-based time-propagation routine
tt_ksl_propagator. Given an initial TT state and the TT/MPO generator A = —iH, it
advances the system for TIME_STEPS time steps, accumulating the reduced density operators

computed by a user-specified observable function property_£n.

Script S.4.20: TT-KSL Runge-Kutta ODE solver 2

def tt_ksl_propagator(
yO: Any,
A: Any,
update_type: str = "rk4",
rk4slices: int =1,
mmax: int = 4,
RDO_arr_bench: np.ndarray | None = None,
property_fn: Callable[[Any], np.ndarray] = cal_property,
verbose: bool = True,
show_steptime: bool = False,

S27

https://colab.research.google.com/github/batistagroup/qflux/blob/master/demos/manuscript/SI_I.ipynb

copy_state: bool = False,
) —> tuple[np.ndarray, np.ndarray]:

Perform TT-TFD time propagation with a given initial state and Hamiltonian.

Parameters

Initial TT/MPS state. If ¢ ‘copy_state‘‘ is False, this object is
updated in-place by the propagator.
A
TT/MPO representing the (possibly non-Hermitian) generator, e.g. -iH.
update_type : {"rk4", "krylov"}, optional
Local time-stepper used in tdvplsite. Default is "rk4".
rkd4slices : int, optional
Number of sub-slices for RK4 integration. Ignored for "krylov".
mmax : int, optional
Krylov subspace dimension for "krylov" updates. Default is 4.
RDO_arr_bench : np.ndarray, optional
Optional benchmark reduced density operator array of shape
(TIME_STEPS, DOF_E_SQ) . If provided, each step’s RDO is compared
with this reference via compare_diff.
property_fn : callable, optional
Function mapping the TT/MPS state to a (flattened) RDO array of shape
(DOF_E_SQ,) . Default is cal_property.
verbose : bool, optional
If True, print high-level progress information.
show_steptime : bool, optional
If True, print wall-clock time for each TDVP step.
copy_state : bool, optional
If True, work on a copy of ‘y0‘ instead of modifying it in-place.

Returns
t : np.ndarray
1D array of simulation times of length pp.TIME_STEPS.
RDO_arr : np.ndarray
2D array of reduced density matrices over time with shape
(pp.TIME_STEPS, pp.DOF_E_SQ).
n_steps = pp.TIME_STEPS
dt = pp.DT

Optional copy so caller can keep original yO0
if copy_state and hasattr(y0, "copy"):

y = y0.copyO
else:
y =y0

RDO_arr = np.zeros((n_steps, pp.DOF_E_SQ), dtype=np.complex128)

528

= np.linspace(0.0, (n_steps - 1) * dt, n_steps, dtype=float)

start_time = time.time()
if verbose:
print("Start propagation")
print(f" steps = {n_steps}, dt = {dt}, update_type = {update_typel}")

for ii, ti in enumerate(t):
if verbose:
print (£"Step {ii:6d}, t = {ti:.6f}")

step_t0 = time.time()

TDVP one-site update

y = tdvplsite(
Y
A,
dt,
update_type=update_type,
mmax=mmax,
rk4slices=rk4dslices,

Reduced density operator (or whatever property_fn returns)
RDO_arr[ii] = property_fn(y)

Optional benchmark comparison

if RDO_arr_bench is not None:

compare_diff (RDO_arr[ii], RDO_arr_bench[ii])

if show_steptime:
print(" time for tdvp:", time.time() - step_t0)

if verbose:
print ("\tTotal propagation time:", time.time() - start_time)

return t, RDO_arr

529

	Introduction
	QFlux: Scope, Design Philosophy, and Capabilities
	Workflow for Quantum Dynamics Simulations
	Dynamics of Pure Quantum States
	Classical Simulations of Quantum Dynamics
	ODE solver Integration
	Split-Operator Fourier Transform (SOFT)
	Connecting Classical and Quantum Simulations

	Quantum Dynamics Simulations of Mixed States
	Motivation and background
	Thermal wavefunction construction
	Thermal ensemble averages
	Thermal density matrix recovery
	Dynamics: the TF Schrödinger equation
	TF Liouville equation: recovering the physical dynamics
	Tensor-train (TT/MPS) representation
	Test Case: Qubit Coupled to a Bath of Harmonic Oscillators
	Algorithmic workflow
	Hamiltonian
	Thermo Field Dynamics Initial State
	TT-TFD Simulations

	Summary and significance
	Practical considerations

	Conclusions
	Supporting Information
	Acknowledgments
	References
	Runge–Kutta–Fehlberg 4(5) Propagation
	Case A: Orthonormal, Time-Independent Basis
	Case B: Non-Orthonormal Time-Independent Basis
	Optional: Time-Dependent Basis
	Practical Notes

	Harmonic Oscillator Benchmarks
	Dynamics with ODE solver
	Expectation Values

	SOFT Dynamics Simulations
	State Initialization
	Propagators for the Harmonic Oscillator
	SOFT Propagation
	Expectation Values

	TT-TFD Simulations of the Spin–Boson Model
	QFlux Installation
	Spin–Boson Model Parameters
	TT-TFD Simulation Driver
	Post-Processing: Populations and Coherences
	State Initialization in TT-TFD
	Hamiltonian Construction
	Bath Parameter Discretization
	Local TT Blocks
	Spin–Boson-Specific TT Blocks
	High-Level Constructor for -iH

	ODE solver KSL Propagator

