Error-Mitigation Enabled Multicomponent Quantum Simulations Beyond the Born-Oppenheimer Approximation

Delmar G. A. Cabral,† Brandon Allen,† Fabijan Pavošević,‡ Sharon
Hammes-Schiffer,¶ Pablo Díez-Valle,§ Jack S. Baker,¶ Gaurav Saxena,¶ Thi Ha
Kyaw,*,¶ and Victor S. Batista*,†,⊥

†Department of Chemistry, Yale University, New Haven, CT 06520, U.S.A.

‡Algorithmiq Ltd., Kanavakatu 3C, FI-00160 Helsinki, Finland

¶Department of Chemistry, Princeton University, Princeton, NJ 08540, U.S.A.

§Instituto Tecnológico de Galicia, Cantón Grande 9, Planta 3, 15003 A Coruña, Spain

∥LG Electronics Toronto AI Lab, Toronto, Ontario M5V 1M3, Canada

⊥Yale Quantum Institute, Yale University, New Haven, CT 06511, U.S.A.

E-mail: thiha.kyaw@lge.com; victor.batista@yale.edu

Abstract

We introduce a multicomponent unitary coupled cluster framework for quantum simulations of molecular systems that incorporate both electronic and nuclear quantum effects beyond the Born–Oppenheimer approximation. Using the nuclear–electronic orbital formalism, we construct mcUCC ansätze for positronium hydride and molecular hydrogen with a quantum proton, and analyze hardware requirements for different excitation truncations. To further reduce resource costs effectively, we employ the local unitary cluster Jastrow ansatz and implement it experimentally on IBM Q's Heron

superconducting hardware. With the Physics-Inspired Extrapolation error mitigation protocol, the computed ground-state energies remain within chemical accuracy, consistent with the stated uncertainty level. These results provide the first demonstration of error-mitigated multicomponent correlated simulations on quantum hardware and outline a path toward scalable algorithms unifying electronic and nuclear degrees of freedom.

1 Introduction

Many fundamental chemical processes involve nuclear quantum effects that challenge the Born–Oppenheimer (BO) separation of electronic and nuclear motion. Phenomena such as proton tunneling, hydrogen transfer, and proton-coupled electron transfer are governed by zero-point motion and nonadiabatic couplings that significantly influence reaction thermodynamics and kinetics. ^{1–6} Classical treatments that confine nuclei to point particles can therefore produce qualitatively incorrect predictions.

The nuclear–electronic orbital (NEO) framework addresses this limitation by treating selected light nuclei (typically protons) quantum mechanically alongside electrons. By incorporating nuclear delocalization, tunneling, and electron–nucleus correlation directly into the wavefunction, NEO theory provides a unified and systematically improvable approach for systems in which electronic and nuclear degrees of freedom are strongly coupled.^{7,8}

Despite the accuracy of NEO-based methods, solving correlated electronic–nuclear structure problems remains computationally demanding. Classical algorithms for exact solutions scale exponentially with system size, motivating the use of quantum computation as an alternative route to scalable molecular simulation. ^{9,10} Two major paradigms have emerged: quantum phase estimation (QPE) and the variational quantum eigensolver (VQE). ^{11–13} QPE can, in principle, yield exact eigenvalues efficiently, but its deep, coherent circuits remain impractical for current noisy intermediate-scale quantum (NISQ) devices. ¹⁴ VQE, in contrast, employs shallow parameterized circuits with classical optimization and has been successfully

demonstrated on small molecular systems. ^{15–19}

Within VQE, the unitary coupled cluster (UCC) ansatz, ²⁰ derived from the coupled cluster formalism, ²¹ provides a physically grounded and systematically extensible representation of correlated wavefunctions. While classical simulations of UCC scale exponentially, its quantum implementation requires only polynomial resources, making it a natural foundation for chemically realistic quantum algorithms.

Recent work has unified NEO theory with quantum algorithms via multicomponent UCC (mcUCC) ansätze, enabling beyond-BO simulations that explicitly include quantum nuclear motion in both the reference and variational spaces. ^{22–27} This NEO–quantum computing (NEO-QC) framework provides a rigorous route to first-principles modeling of electronic–nuclear correlated systems, including positronic and protonic species, where classical approximations fail.

However, the accuracy of hybrid quantum–classical algorithms on present-day devices remains constrained by noise and decoherence. Full quantum error correction is not yet feasible, but quantum error mitigation (QEM) methods can substantially reduce systematic bias without fault-tolerant overhead. Among the most widely used are zero-noise extrapolation (ZNE), which estimates noise-free observables by deliberate noise amplification and extrapolation, ^{28,29} and probabilistic error cancellation (PEC), which reconstructs unbiased estimators via quasi-probability sampling. ²⁹ Complementary strategies such as symmetry verification ³⁰ and virtual (state) distillation ³¹ have further improved accuracy in quantum chemistry experiments on real hardware. ^{32–34}

In this work, we employ a recently developed, physically motivated error mitigation approach, Physics-Inspired Extrapolation (PIE), which extends the ZNE framework by deriving its functional form from restricted quantum dynamics. ^{35,36} PIE provides an interpretable extrapolation model, mitigates overfitting, and reduces sampling overhead relative to polynomial ZNE, enabling chemically accurate energy estimates for beyond-BO benchmarks on current NISQ hardware.

The remainder of this paper is organized as follows. Section 2 introduces the NEO Hamiltonian and working equations. Section 3 describes the mcUCC ansatz used in classical VQE simulations, which serve as surrogates for near-term quantum implementations limited by circuit depth and hardware noise. Section 4 outlines the VQE framework and Hamiltonian constructions for PsH and HHq systems. Section 5 presents PIE-based, error-mitigated VQE results using the LUCJ ansatz on IBM Q's Heron device. Finally, Section 6 summarizes the results and discusses prospects for scalable, multicomponent quantum simulations beyond the BO approximation.

2 Nuclear Electronic Orbital (NEO) Framework

Building upon prior work establishing the foundations of mcUCC methods for quantum computation, ²² we perform simulations of the same systems on a quantum simulator and analyze the computational requirements for execution on real NISQ devices. Two model systems are considered: molecular hydrogen with one quantum mechanical proton (HHq) and positronium hydride (PsH) (see Fig. 2).

In the NEO formalism, both electrons and selected light nuclei (e.g., protons or positrons) are treated quantum mechanically, while heavier nuclei remain classical. The total NEO Hartree–Fock (NEO-HF) wavefunction is expressed as a product of electronic and nuclear components,

$$|\Psi_{\text{NEO-HF}}(\chi_e, \chi_p)\rangle = |\Phi_e(\chi_e)\rangle \otimes |\Phi_p(\chi_p)\rangle,$$
 (1)

where $\Phi_e(\chi_e)$ and $\Phi_p(\chi_p)$ are the electronic and quantum-nuclear wavefunctions, each expanded in their respective molecular orbital bases, χ_e and χ_p .

The total Hamiltonian for a system containing electrons, quantum nuclei, and classical nuclei is written as

$$\hat{H}_{NEO} = \hat{T}_e + \hat{T}_p + \hat{V}_{eN} + \hat{V}_{pN} + \hat{V}_{ee} + \hat{V}_{pp} + \hat{V}_{ep} + V_{NN},$$
(2)

where \hat{T}_e and \hat{T}_p are the kinetic energy operators for electrons and quantum nuclei, respectively, and the \hat{V} terms represent the corresponding Coulomb interactions.

The one-particle operators are defined as

$$\hat{T}_e + \hat{V}_{eN} = \sum_{i=1}^{N_e} \left(-\frac{1}{2m_e} \nabla_i^2 - \sum_{a=1}^{N_{\text{nuc}}} \frac{Z_a}{|\mathbf{R}_a - \mathbf{r}_i^e|} \right), \tag{3}$$

$$\hat{T}_p + \hat{V}_{pN} = \sum_{I=1}^{N_p} \left(-\frac{1}{2m_p} \nabla_I^2 + \sum_{a=1}^{N_{\text{nuc}}} \frac{Z_a}{|\mathbf{R}_a - \mathbf{r}_I^p|} \right), \tag{4}$$

while the two-particle Coulomb interactions take the form

$$\hat{V}_{ee} = \sum_{i < j}^{N_e} \frac{1}{|\mathbf{r}_i^e - \mathbf{r}_j^e|},\tag{5}$$

$$\hat{V}_{pp} = \sum_{I < J}^{N_p} \frac{1}{|\mathbf{r}_I^p - \mathbf{r}_J^p|},\tag{6}$$

$$\hat{V}_{ep} = -\sum_{i=1}^{N_e} \sum_{I=1}^{N_p} \frac{1}{|\mathbf{r}_i^e - \mathbf{r}_I^p|}.$$
 (7)

Here, indices i, j denote electrons, I, J denote quantum nuclei, and \mathbf{r} represents particle coordinates. Z_a and \mathbf{R}_a denote the charge and position of the a^{th} classical nucleus, ∇ is the Laplacian operator, and m_e and m_p are the electron and quantum-nuclear masses, respectively. The classical nucleus–nucleus repulsion is given by

$$V_{NN} = \sum_{a \le b}^{N_{\text{nuc}}} \frac{Z_a Z_b}{|\mathbf{R}_a - \mathbf{R}_b|},\tag{8}$$

which is constant for a fixed nuclear geometry.

For practical computations, these operators are expressed in a finite one-particle basis

 $\{\phi\}$ in terms of one- and two-particle integrals. The one-particle matrix elements are

$$h_{ij} = \int \phi_i^*(\mathbf{r}^e) \left(-\frac{1}{2m_e} \nabla^2 - \sum_{a=1}^{N_{\text{nuc}}} \frac{Z_a}{|\mathbf{R}_a - \mathbf{r}^e|} \right) \phi_j(\mathbf{r}^e) d\mathbf{r}^e, \tag{9}$$

$$h_{IJ} = \int \phi_I^*(\mathbf{r}^p) \left(-\frac{1}{2m_p} \nabla^2 + \sum_{a=1}^{N_{\text{nuc}}} \frac{Z_a}{|\mathbf{R}_a - \mathbf{r}^p|} \right) \phi_J(\mathbf{r}^p) d\mathbf{r}^p,$$
 (10)

and the two-particle integrals are

$$h_{ijkl} = \int \phi_i^*(\mathbf{r}_1^e) \phi_j^*(\mathbf{r}_2^e) \frac{1}{|\mathbf{r}_1^e - \mathbf{r}_2^e|} \phi_k(\mathbf{r}_1^e) \phi_l(\mathbf{r}_2^e) d\mathbf{r}_1^e d\mathbf{r}_2^e, \tag{11}$$

$$h_{IJKL} = \int \phi_I^*(\mathbf{r}_1^p) \phi_J^*(\mathbf{r}_2^p) \frac{1}{|\mathbf{r}_1^p - \mathbf{r}_2^p|} \phi_K(\mathbf{r}_1^p) \phi_L(\mathbf{r}_2^p) d\mathbf{r}_1^p d\mathbf{r}_2^p, \tag{12}$$

$$h_{iIkJ} = \int \phi_i^*(\mathbf{r}^e) \phi_I^*(\mathbf{r}^p) \frac{1}{|\mathbf{r}^e - \mathbf{r}^p|} \phi_k(\mathbf{r}^e) \phi_J(\mathbf{r}^p) d\mathbf{r}^e d\mathbf{r}^p.$$
(13)

This multicomponent Hamiltonian mirrors the structure of the conventional electronic Hamiltonian, with distinct one- and two-particle contributions, while extending it to include explicit electronic—nuclear and nuclear—nuclear interaction terms. Each operator term can be evaluated using standard electronic structure integrals and serves as a foundation for correlated methods that improve upon the mean-field NEO-HF energy bound.

3 Coupled Cluster Formalism

Electronic–nuclear correlation beyond the NEO-HF level can be systematically included using the coupled cluster (CC) approach, which provides a size-extensive and systematically improvable description of correlated wavefunctions. The NEO-HF wave function serves as the reference state for constructing correlated multicomponent wave functions.

Gate-based quantum computers naturally implement unitary operations, making the UCC ansatz an especially suitable form of the CC method for quantum algorithms. The NEO-UCC wavefunction is generated by applying a unitary exponential operator ³⁷ to the

NEO-HF reference:

$$|\Psi_{\text{NEO-UCC}}\rangle = e^{\hat{T} - \hat{T}^{\dagger}} |\Psi_{\text{NEO-HF}}\rangle,$$
 (14)

where \hat{T} is the excitation operator, composed of fermionic creation (a^{\dagger}) and annihilation (a) operators weighted by variational amplitudes t. That is,

$$\hat{T} = \hat{T}_1 + \hat{T}_2 + \hat{T}_3 + \cdots, \tag{15}$$

where the subscript on each T denotes the order of the excitation operator. For example: $T_1 = \sum_{ia} t_i^a a_a^{\dagger} a_i + \sum_{IA} t_I^A a_A^{\dagger} a_I$, $T_2 = 1/4 \sum_{ijab} t_{ij}^{ab} a_a^{\dagger} a_b^{\dagger} a_j a_i + 1/4 \sum_{IJAB} t_{IJ}^{AB} a_A^{\dagger} a_B^{\dagger} a_J a_I + \sum_{iI} t_{iI}^{AB} a_a^{\dagger} a_A^{\dagger} a_I a_i$ and so on. Here, indices i, j, \ldots refer to occupied electronic orbitals, and a, b, \ldots to virtual electronic orbitals. For quantum nuclei (e.g., protons) or positrons, uppercase indices I, J, \ldots and A, B, \ldots denote occupied and virtual protonic/positronic orbitals, respectively.

In practice, the cluster operator in Eq. 15 is truncated to singles and doubles (UCCSD) due to the exponential scaling of higher-order excitations. The corresponding NEO-UCC energy is obtained by minimizing the expectation value of the NEO Hamiltonian ^{22,38} with respect to all variational amplitudes:

$$E_{\text{NEO-UCC}} = \min_{\{t\}} \langle \Psi_{\text{NEO-UCC}} | \hat{H}_{\text{NEO}} | \Psi_{\text{NEO-UCC}} \rangle. \tag{16}$$

This variational formulation allows straightforward integration into hybrid quantum-classical algorithms such as the VQE, where the amplitudes $\{t\}$ are optimized iteratively using energy feedback from a quantum device.

4 Variational Quantum Eigensolver Method

4.1 Variational Quantum Eigensolver in the NEO framework

The inclusion of electronic–nuclear correlation effects within a quantum computing framework can be achieved using the hybrid quantum–classical VQE algorithm, ^{15,16,18,19} schematically illustrated in Fig. 1. In this approach, the molecular Hamiltonian is precomputed classically and encoded in a qubit representation, while a quantum processor evaluates expectation values for a parametrized trial wavefunction. The variational parameters are iteratively optimized by a classical optimizer to minimize the total energy until self-consistency is achieved.

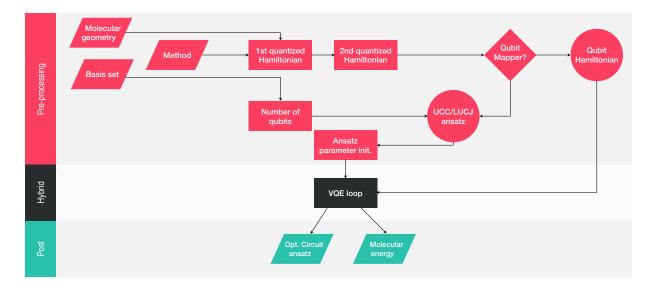


Figure 1: Schematic representation of the (VQE) algorithm. The molecular Hamiltonian is precomputed classically, while the quantum device evaluates expectation values and supplies energy feedback to the classical optimizer.

In this work, the NEO-HF problem is first solved classically to obtain the reference orbitals and molecular integrals for a given molecular geometry and basis set. Each operator term in the NEO Hamiltonian (Eq. 2) is evaluated in the atomic orbital basis and subsequently transformed into the molecular orbital basis through a standard congruence transformation. The resulting Hamiltonian is then expressed in its second-quantized form.

The second-quantized Hamiltonian is mapped to qubit operators using a fermion-to-qubit transformation. Common mappings include the Jordan-Wigner ^{39,40} and Bravyi-Kitaev ⁴¹ transformations. In this work, both mappings were implemented using the OpenFermion library ⁴² (openfermion.transforms.jordan_wigner and openfermion.transforms.bravyi_kitaev), with results reported primarily using the Jordan-Wigner transformation.

Parallel to the Hamiltonian encoding, the multicomponent CC excitation operators (singles, doubles, and selected triples) are constructed classically following the mcUCC formalism.²² These operators define the parameterized trial state used in VQE, typically in the form of a UCC ansatz with variational amplitudes serving as tunable parameters.

During VQE execution, the quantum circuit corresponding to the chosen ansatz is evaluated on a quantum backend or simulator, such as those provided in Qiskit. 43 The expectation value of the energy is computed as

$$E(\boldsymbol{\theta}) = \langle \Psi(\boldsymbol{\theta}) | \hat{H}_{\text{NEO}} | \Psi(\boldsymbol{\theta}) \rangle, \tag{17}$$

where θ represents the set of variational parameters. A classical optimizer (e.g., COBYLA or SPSA) updates θ iteratively to minimize the energy:

$$E_{\min} = \min_{\boldsymbol{\theta}} E(\boldsymbol{\theta}). \tag{18}$$

This iterative feedback loop continues until the convergence criterion is met, yielding the lowest energy consistent with the chosen ansatz and hardware precision.

4.2 Implementation for Representative Systems

To enable direct comparison with prior multicomponent studies, our simulations are performed within a minimal basis framework. Specifically, the 6-31G basis set ⁴⁴ is used for all quantum particles in positronium hydride (PsH), while for dihydrogen (HHq), the elec-

tronic orbitals are described using the STO-3G basis set ⁴⁵ and the quantum proton with a dedicated 2s basis set ²² (Fig. 2). Although this work focuses on these minimal systems, the same workflow is readily extendable to larger basis sets and other multicomponent molecular systems.

Each system comprises six spin-orbitals and three quantum particles: (i) PsH, containing two quantum electrons and one quantum positron; and (ii) HHq, containing two quantum electrons and one quantum nucleus. Each electron contributes two spin-orbitals, while the positron or quantum proton contributes two spatial orbitals. The orbital arrangement and particle composition are depicted in Fig. 2.

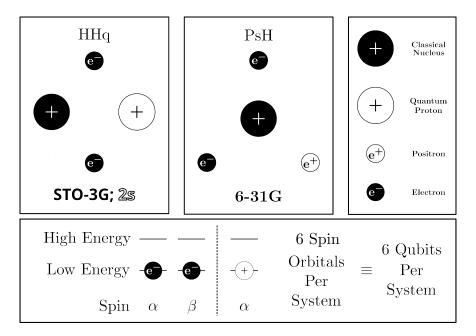


Figure 2: Top: Schematic representations of the hydrogen molecule with a quantum mechanical proton (HHq) and positronium hydride (PsH). Bottom: Spin-orbital configurations for both systems under the chosen bases: 6-31G for electronic and positronic orbitals in PsH; STO-3G for electronic orbitals and 2s for protonic orbital in HHq.

To reduce circuit depth and gate count for near-term quantum implementation, we consider two strategies. First, only spin-conserving excitations are included for the electronic subspace, while the positron and quantum proton are both fixed to the alpha spin state. In a minimal basis, the second-quantized CC excitation operators restricted to spin-allowed

transitions are given by:

$$t_{1e} = (t_0^2 c_2^{\dagger} c_0 - t_2^0 c_0^{\dagger} c_2) + (t_1^3 c_3^{\dagger} c_1 - t_3^1 c_1^{\dagger} c_3), \tag{19}$$

$$t_{1p} = (t_4^5 c_5^{\dagger} c_4 - t_5^4 c_4^{\dagger} c_5), \tag{20}$$

$$t_{2ee} = (t_{01}^{23} c_2^{\dagger} c_3^{\dagger} c_1 c_0 - t_{23}^{01} c_0^{\dagger} c_1^{\dagger} c_3 c_2), \tag{21}$$

$$t_{2ep} = (t_{04}^{25} c_2^{\dagger} c_3^{\dagger} c_4 c_0 - t_{25}^{04} c_0^{\dagger} c_4^{\dagger} c_5 c_2) + (t_{14}^{35} c_3^{\dagger} c_5^{\dagger} c_4 c_1 - t_{35}^{14} c_1^{\dagger} c_4^{\dagger} c_5 c_3), \tag{22}$$

$$t_{3eep} = (t_{014}^{235}c_2^{\dagger}c_3^{\dagger}c_5^{\dagger}c_4c_1c_0 - t_{235}^{014}c_0^{\dagger}c_1^{\dagger}c_4^{\dagger}c_5c_3c_2). \tag{23}$$

Here, indices 0–3 label electronic spin orbitals, while 4 and 5 correspond to the protonic (or positronic) spatial orbitals.

As an alternative strategy to operator selection, we also employ the ADAPT-VQE framework. ⁴⁶ Unlike conventional VQE, ADAPT-VQE dynamically constructs the ansatz by iteratively selecting the operator from a predefined pool that yields the largest energy gradient at each step. This adaptive procedure typically results in a more compact ansatz, often with significantly fewer operators than the full operator pool, thereby reducing both circuit depth and total quantum resource requirements.

5 Results and Discussion

5.1 Classical Simulations

Classical simulations were performed to evaluate different combinations of cluster excitation operators, categorized by particle type (electronic or protonic/positronic) and excitation order (singles, doubles, triples). The simulations were executed on the FakeNairobiV2 backend, a seven-qubit architecture containing one additional qubit beyond the minimum required for these systems. This device was used to assess circuit composition and resource requirements prior to deployment on real quantum hardware. Table 1 summarizes the gate counts, circuit depths, and corresponding VQE energies for each operator pool. The bench-

mark energy was obtained from a NEO full configuration interaction (NEO-FCI) calculation.

It is evident that the highest accuracy is obtained when all excitation operators are included; however, the resulting circuit depth and gate count far exceed the practical limits of current NISQ devices. Reducing the operator pool by truncating higher-order or mixed excitations decreases computational cost but also limits the recoverable correlation energy. When only single electronic and protonic excitations (t_{1e}, t_{1p}) are included, the computed energy is identical to the Hartree–Fock reference, confirming that individual single excitations do not contribute to correlation energy in these systems.

Table 1: Energies, circuit depths, and gate counts for the VQE simulations of HHq and PsH systems using the Jordan–Wigner qubit mapping.

HHq Operator Pool	RZ	SX	CNOT	X	Total	Depth	Energy (Hartree)
t_{1e},t_{1p}	55	48	47	1	151	112	-1.059569
t_{1p}, t_{2ee}	109	86	68	2	265	178	-1.079396
t_{1e} , t_{2ee}	144	113	80	3	340	225	-1.079406
t_{2ee}, t_{2ep}	211	170	115	4	500	329	-1.079421
$t_{1e}, t_{1p}, t_{2ee}, t_{2ep}$	246	192	129	6	573	379	-1.079431
$t_{1e}, t_{1p}, t_{2ee}, t_{2ep}, t_{3eep}$	499	380	227	12	1118	743	-1.079433
LUCJ ansatz (numerical)	39	20	16	8	83	25	-1.079406
LUCJ ansatz (experimental)							-1.077 ± 0.009
NEO-HF (classical)							-1.059569
NEO-FCI (classical)							-1.079434
PsH Operator Pool	RZ	SX	CNOT	X	Total	Depth	Energy (Hartree)
t_{1e},t_{1p}	55	48	47	1	151	112	-0.558727
t_{1p}, t_{2ee}	107	86	68	2	263	175	-0.569124
t_{1e},t_{2ee}	144	113	90	3	0.40	22.4	0 700101
IC/ DCC	111	110	80	Э	340	224	-0.569124
t_{2ee}, t_{2ep}	202	166	115	5	340 488	$\frac{224}{328}$	-0.569124 -0.572710
t_{2ee}, t_{2ep}	202	166	115	5	488	328	-0.572710
t_{2ee}, t_{2ep} $t_{1e}, t_{1p}, t_{2ee}, t_{2ep}$	202 234	166 188	115 129	5 7	488 558	328 373	-0.572710 -0.572710
$t_{2ee}, t_{2ep} \ t_{1e}, t_{1p}, t_{2ee}, t_{2ep} \ t_{1e}, t_{1p}, t_{2ee}, t_{2ep}, t_{3eep}$	202 234 475	166 188 366	115 129 227	5 7 14	488 558 1082	328 373 727	-0.572710 -0.572710 -0.572714
t_{2ee}, t_{2ep} $t_{1e}, t_{1p}, t_{2ee}, t_{2ep}$ $t_{1e}, t_{1p}, t_{2ee}, t_{2ep}, t_{3eep}$ $LUCJ ansatz (numerical)$	202 234 475	166 188 366	115 129 227	5 7 14	488 558 1082	328 373 727	$ \begin{array}{r} -0.572710 \\ -0.572710 \\ -0.572714 \\ \hline -0.569178 \end{array} $

Intermediate levels of correlation can be recovered by including double excitations. For HHq, using $\{t_{1e}, t_{2ee}\}$ yields an energy of -1.079406 Ha, sufficient for chemical accuracy and closely matching the NEO-FCI limit. Adding mixed electron–proton double excitations

 $\{t_{2ee}, t_{2ep}\}$ further lowers the energy by approximately 15 μ Ha, reducing the deviation from the FCI value to about 13 μ Ha. This agrees with previous results for H₂ in a minimal STO-3G basis, where inclusion of the double electronic excitation operator alone recovers nearly the full correlation energy.⁴⁶

For HHq, the electron–proton correlation contribution is significantly smaller than the electron–electron correlation term (10^{-5} vs. 10^{-2} Ha), due to the large proton mass. In contrast, in PsH the electronic–positronic correlation energy is comparable to the electron–electron correlation energy (i.e., $E_{\{t_{2ee},t_{2ep}\}} = -0.572710$ Ha relative to $E_{\{t_{1e},t_{2ee}\}} = -0.569124$ Ha is similar to the latter relative to $E_{\{t_{1e},t_{1p}\}} = -0.558727$ Ha). This arises from the comparable masses of the electron and positron, which yield matrix elements of similar magnitude. In HHq, the corresponding mixed terms are suppressed by the proton–electron mass ratio (~ 2000), reducing the overall protonic correlation contribution. These trends suggest that a balanced trade-off between computational cost and accuracy can be achieved by including electronic and mixed electron–positron double excitations, which effectively capture correlation while maintaining feasible circuit depth.

To relate circuit complexity to hardware constraints, we adopt the heuristic introduced by Leymann and Barzen, ⁴⁷

$$d \cdot w \ll \frac{1}{\epsilon},\tag{24}$$

where d and w denote circuit depth and width, respectively, and ϵ is the average gate error rate. This inequality expresses the qualitative requirement for executing a quantum circuit before decoherence dominates. While this metric does not prescribe an accuracy target, the statistical precision of energy measurements can be improved by increasing the number of measurement shots.

As an illustrative estimate, approximately 170 gates would be required to achieve a target precision of 0.001 Ha for a six-qubit circuit. However, in practice, even single-excitation UCC ansätze already entail \sim 47 CNOT gates, exceeding the realistic depth limits of current NISQ hardware. Consequently, accurate beyond-BO quantum simulations remain computationally

prohibitive on existing devices. Detailed resource requirements and corresponding energy estimates are provided in Table 1.

5.2 Demonstration on IBM Q

To demonstrate the feasibility of multicomponent quantum simulations on real hardware, we employed the Local Unitary Cluster Jastrow (LUCJ) ansatz, ⁴⁸ a variational wavefunction specifically designed for correlated electronic ground states on near-term quantum processors. The LUCJ ansatz captures both dynamic and static correlation effects while substantially reducing circuit depth and two-qubit gate requirements compared to traditional quantum chemistry ansätze such as quadratic unitary coupled cluster singles and doubles (qUCCSD).

Unlike qUCCSD, which involves deep, nonlocal circuits with many variational parameters, the LUCJ ansatz starts from a restricted Hartree–Fock reference and applies a physically motivated correlator inspired by the repulsive Hubbard model. By penalizing double occupancy on the same spatial orbital (opposite-spin electrons) and restricting correlations to local orbital neighborhoods, the LUCJ formulation balances accuracy and hardware efficiency.

The general LUCJ wavefunction is constructed as a product of L local layers:

$$|\Psi\rangle = \prod_{\mu=1}^{L} e^{\hat{K}_{\mu}} e^{i\hat{J}_{\mu}} e^{-\hat{K}_{\mu}} |\Psi_{\text{NEO-HF}}\rangle, \tag{25}$$

where

$$\hat{K}_{\mu} = \sum_{s,\sigma} K_s^{\mu} \hat{a}_{s\sigma}^{\dagger} \hat{a}_{s\sigma}, \qquad \hat{J}_{\mu} = \sum_{s,\sigma\tau} J_{s,\sigma\tau}^{\mu} \hat{n}_{s\sigma} \hat{n}_{s\tau}.$$
 (26)

Here, \hat{K}_{μ} and \hat{J}_{μ} represent one-body rotation and two-body number–number correlation operators, respectively, with s indexing spatial orbitals and σ , τ denoting spin. For simplicity, all quantum particles (electrons, positrons, and quantum nuclei) are represented by a unified orbital index s. This convention is followed in Figs. 3 and 4.

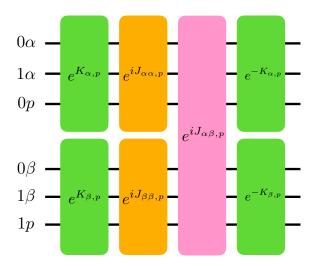


Figure 3: Example circuit block for the LUCJ ansatz applied to PsH, following Eq. 25. Orbitals $\{0,1\}$ correspond to the two electronic spatial orbitals, while p labels the positron without any spin orbital. The complete circuit decomposition is shown in Fig. 4.

Because the circuit depth required by UCC-based approaches remains prohibitive for current hardware, we employ a single LUCJ layer (L=1) to approximate the ground-state energies of HHq and PsH. This ansatz achieves a $\sim 57\%$ reduction in CNOT gate count relative to the minimal UCC ansatz including $\{t_{1e}, t_{1p}\}$ excitations, while maintaining comparable accuracy (see Table 1).

The LUCJ circuits were implemented and executed on the 133-qubit IBM Q Heron superconducting processor (ibm torino). A six-qubit subset was selected, as shown in Fig. 4, to represent the low- and high-energy electron spin orbitals $(0\alpha, 0\beta, 1\alpha, 1\beta)$ and the positron/nucleus spatial orbitals (0p and 1p). Only local two-qubit operations between adjacent qubits were used, respecting the device topology and minimizing cross-talk.

5.3 Quantum Error Mitigation via Physics-Inspired Extrapolation (PIE).

To mitigate hardware noise, we implemented the recently proposed Physics-Inspired Extrapolation (PIE) method. ³⁵ PIE builds on the Error Mitigation by Restricted Evolution (EMRE)

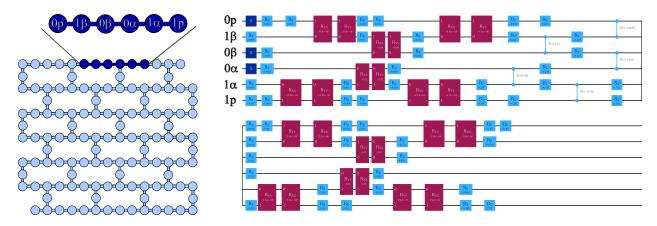


Figure 4: (Left) Topology of the 133-qubit IBM Heron superconducting processor (ibm torino); the 6-qubit subset used for the demonstration is highlighted in dark blue. (Right) LUCJ circuit expressed in the {rz, rxx, ryy, rzz, x} gate basis. Each qubit corresponds to one spatial or spin orbital, and the circuit is initialized in the NEO-HF reference state.

framework, ³⁶ which provides an analytical form for the extrapolation function used to recover noise-free observables. Unlike polynomial extrapolation, PIE yields interpretable extrapolation parameters, constant runtime scaling, and reduced sampling overhead. In PIE, noise is systematically amplified via circuit folding, and expectation values are measured at multiple noise levels. The results are then extrapolated to the zero-noise limit using a linearized model derived from EMRE. Depending on circuit complexity, full or partial folding is employed to achieve controlled noise amplification.

The experimental execution of the LUCJ circuits and the implementation of the error mitigation protocol are shown in Fig. 5. Optimal LUCJ parameters were first obtained through noiseless classical simulations, yielding energies of -1.079406 Ha for HHq and -0.569178 Ha for PsH. The corresponding quantum circuits were then executed on the ibm torino processor using 4096 shots per circuit. Noisy runs produced raw energies of -0.996468 ± 0.013563 Ha (HHq) and -0.393893 ± 0.013127 Ha (PsH), indicated by the experimental data at $\lambda = 1$ in Fig. 5. After applying PIE-based error mitigation, the extrapolated energies improved to -1.076668 ± 0.009229 Ha and -0.551371 ± 0.031024 Ha, respectively. These mitigated results are denoted by red dots at $\lambda = 0$ in Fig. 5. Uncertainties correspond to the standard deviation from repeated runs. The experimental result is significantly lower than the

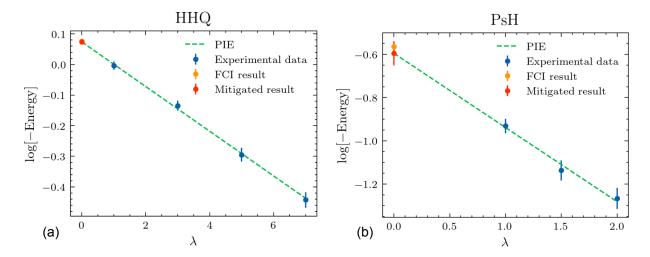


Figure 5: Extrapolated energy results using the PIE method for HHq and PsH. The logarithm of the negative energy is plotted as a function of the number of circuit foldings, with the zero-noise limit obtained from a linear fit. Raw quantum circuit executions correspond to experimental data at $\lambda = 1$, while the noise-mitigated energies are denoted by red dots at $\lambda = 0$.

NEO-HF energy for HHq, but it is similar to the NEO-HF energy for PsH, although the uncertainties encompass the NEO-FCI energy.

The error-mitigated results achieved with the LUCJ ansatz and PIE are chemically accurate, closely matching the classical VQE results obtained using the $\{t_{1e}, t_{2ee}\}$ UCC operator set, while requiring substantially fewer gates. Although the results remain several millihartrees above the FCI limit for HHq and around 20 millihartrees above the FCI limit for PsH, this demonstration highlights the viability of combining physically motivated ansätze and advanced error mitigation to achieve multicomponent quantum simulations on current NISQ hardware.

6 Concluding Remarks

In this work, we carried out multicomponent electronic structure calculations for positronium hydride (PsH) and dihydrogen with a quantum mechanical proton (HHq) using quantum computing frameworks. Simulations on a quantum computer emulator enabled us to systematically assess the contributions of different excitation operators within the mcUCC ansatz and to quantify the correlation energy recovered under various truncation schemes.

In addition, we performed experimental demonstrations on IBM's superconducting quantum hardware using the Local Unitary Cluster Jastrow ansatz in combination with the Physics-Inspired Extrapolation error mitigation technique. This hybrid strategy achieved chemically accurate ground-state energies for both PsH and HHq while operating within the resource constraints of current noisy intermediate-scale quantum devices. The LUCJ ansatz provided a compact, hardware-efficient alternative to traditional coupled-cluster-based ansätze, and PIE successfully mitigated hardware noise to recover high-fidelity energies from noisy measurements.

Together, these results demonstrate a viable path toward scalable, beyond–Born–Oppenheimer quantum simulations that explicitly incorporate nuclear quantum effects. By combining physically motivated ansätze, resource-efficient circuit constructions, and advanced error mitigation, this work establishes a foundation for accurate, multicomponent quantum chemistry on near-term quantum processors and offers a roadmap toward chemically relevant quantum simulations in the NISQ era.

7 Acknowledgements

This material is based upon work supported by the National Science Foundation for the Center for Quantum Dynamics on Modular Quantum Devices, grant number CHE-2124511.

References

(1) Waluk, J. Nuclear Quantum Effects in Proton or Hydrogen Transfer. *The Journal of Physical Chemistry Letters* **2024**, *15*, 598–607.

- (2) Meisner, J.; Kästner, J. Atom Tunneling in Chemistry. Angew. Chem. Int. Ed. 2016, 55, 5400–5413.
- (3) Hammes-Schiffer, S. Proton-Coupled Electron Transfer: Moving Together and Charging Forward. J. Am. Chem. Soc. 2015, 137, 8860–8871.
- (4) Tyburski, R.; Liu, T.; Glover, S. D.; Hammarström, L. Proton-Coupled Electron Transfer Guidelines, Fair and Square. J. Am. Chem. Soc. 2021, 143, 560–576.
- (5) Klinman, J. P.; Kohen, A. Hydrogen Tunneling Links Protein Dynamics to Enzyme Catalysis. *Annu. Rev. Biochem.* **2013**, *82*, 471–496.
- (6) Hammes-Schiffer, S. Exploring Proton-Coupled Electron Transfer at Multiple Scales.

 Nat. Comput. Sci. 2023, 3, 291–300.
- (7) Webb, S. P.; Iordanov, T.; Hammes-Schiffer, S. Multiconfigurational nuclear-electronic orbital approach: Incorporation of nuclear quantum effects in electronic structure calculations. The Journal of Chemical Physics 2002, 117, 4106–4118.
- (8) Hammes-Schiffer, S. Nuclear-electronic orbital methods: Foundations and prospects. J. Chem. Phys. 2021, 155, 030901.
- (9) Abrams, D. S.; Lloyd, S. Simulation of Many-Body Fermi Systems on a Universal Quantum Computer. *Phys. Rev. Lett.* **1997**, *79*, 2586.
- (10) Aspuru-Guzik, A.; Dutoi, A. D.; Love, P. J.; Head-Gordon, M. Simulated Quantum Computation of Molecular Energies. *Science* **2005**, *309*, 1704.
- (11) Bauer, B.; Bravyi, S.; Motta, M.; Kin-Lic Chan, G. Quantum Algorithms for Quantum Chemistry and Quantum Materials Science. *Chem. Rev.* **2020**, *120*, 12685.
- (12) Cao, Y.; Romero, J.; Olson, J. P.; Degroote, M.; Johnson, P. D.; Kieferová, M.; Kivlichan, I. D.; Menke, T.; Peropadre, B.; Sawaya, N. P. D.; Sukin, S.; Veis, L.;

- Aspuru-Guzik, A. Quantum Chemistry in the Age of Quantum Computing. *Chem. Rev.* **2019**, *119*, 10856.
- (13) Bharti, K.; Cervera-Lierta, A.; Kyaw, T. H.; Haug, T.; Alperin-Lea, S.; Anand, A.; Degroote, M.; Heimonen, H.; Kottmann, J. S.; Menke, T.; Mok, W.-K.; Sim, S.; Kwek, L.-C.; Aspuru-Guzik, A. Noisy intermediate-scale quantum algorithms. Rev. Mod. Phys. 2022, 94, 015004.
- (14) Preskill, J. Quantum Computing in the NISQ era and beyond. Quantum 2018, 2, 79.
- (15) Peruzzo, A.; McClean, J.; Shadbolt, P.; Yung, M.-H.; Zhou, X.-Q.; Love, P. J.; Aspuru-Guzik, A.; O'brien, J. L. A Variational Eigenvalue Solver on a Photonic Quantum Processor. *Nat. Commun.* **2014**, *5*, 4213.
- (16) O'Malley, P. J. J.; Babbush, R.; Kivlichan, I. D.; Romero, J.; McClean, J. R.; Barends, R.; Kelly, J.; Roushan, P.; Tranter, A.; Ding, N. Scalable Quantum Simulation of Molecular Energies. *Phys. Rev. X* 2016, 6, 031007.
- (17) Kandala, A.; Mezzacapo, A.; Temme, K.; Takita, M.; Brink, M.; Chow, J. M.; Gambetta, J. M. Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets. *Nature* **2017**, *549*, 242–246.
- (18) Romero, J.; Babbush, R.; McClean, J. R.; Hempel, C.; Love, P. J.; Aspuru-Guzik, A. Strategies for Quantum Computing Molecular Energies Using the Unitary Coupled Cluster Ansatz. *Quantum Sci. Technol.* **2019**, *4*, 014008.
- (19) Hempel, C.; Maier, C.; Romero, J.; McClean, J.; Monz, T.; Shen, H.; Jurcevic, P.; Lanyon, B. P.; Love, P.; Babbush, R. Quantum Chemistry Calculations on a Trapped-Ion Quantum Simulator. *Phys. Rev. X* 2018, 8, 031022.
- (20) Anand, A.; Schleich, P.; Alperin-Lea, S.; Jensen, P. W. K.; Sim, S.; Díaz-Tinoco, M.;

- Kottmann, J. S.; Degroote, M.; Izmaylov, A. F.; Aspuru-Guzik, A. A quantum computing view on unitary coupled cluster theory. *Chem. Soc. Rev.* **2022**, *51*, 1659–1684.
- (21) Coester, F.; Kümmel, H. Short-range correlations in nuclear wave functions. *Nuclear Physics* **1960**, *17*, 477–485.
- (22) Pavošević, F.; Hammes-Schiffer, S. Multicomponent Unitary Coupled Cluster and Equation-of-Motion for Quantum Computation. *Journal of Chemical Theory and Computation* **2021**, *17*, 3252–3258, PMID: 33945684.
- (23) Kovyrshin, A.; Skogh, M.; Tornberg, L.; Broo, A.; Mensa, S.; Sahin, E.; Symons, B. C. B.; Crain, J.; Tavernelli, I. Nonadiabatic Nuclear–Electron Dynamics: A Quantum Computing Approach. The Journal of Physical Chemistry Letters 2023, 14, 7065–7072.
- (24) Nykanen, A.; Miller, A.; Talarico, W.; Knecht, S.; Kovyrshin, A.; Skogh, M.; Tornberg, L.; Broo, A.; Mensa, S.; Symons, B. C.; others Toward accurate post-born-oppenheimer molecular simulations on quantum computers: An adaptive variational eigensolver with nuclear-electronic frozen natural orbitals. *Journal of Chemical Theory and Computation* **2023**, *19*, 9269–9277.
- (25) Kovyrshin, A. et al. Approximate quantum circuit compilation for proton-transfer kinetics on quantum processors. 2025; https://arxiv.org/abs/2507.08996.
- (26) Kovyrshin, A.; Skogh, M.; Broo, A.; Mensa, S.; Sahin, E.; Crain, J.; Tavernelli, I. A quantum computing implementation of nuclearelectronic orbital (NEO) theory: Toward an exact pre-Born-Oppenheimer formulation of molecular quantum systems. *The Journal of Chemical Physics* **2023**, *158*.
- (27) Culpitt, T.; Chen, Z.; Pavošević, F.; Yang, Y. Constrained Nuclear-Electronic Orbital Theory for Quantum Computation. *Journal of Chemical Theory and Computation* **2025**, *21*, 7845–7854.

- (28) Li, Y.; Benjamin, S. C. Efficient Variational Quantum Simulator Incorporating Active Error Minimization. *Phys. Rev. X* **2017**, *7*, 021050.
- (29) Temme, K.; Bravyi, S.; Gambetta, J. M. Error Mitigation for Short-Depth Quantum Circuits. *Phys. Rev. Lett.* **2017**, *119*, 180509.
- (30) Bonet-Monroig, X.; Sagastizabal, R.; Singh, M.; O'Brien, T. E. Low-Cost Error Mitigation by Symmetry Verification. *Phys. Rev. A* **2018**, *98*, 062339.
- (31) Huggins, W. J.; McArdle, S.; O'Brien, T. E.; Lee, J.; Rubin, N. C.; Boixo, S.; Whaley, K. B.; Babbush, R.; McClean, J. R. Virtual Distillation for Quantum Error Mitigation. *Phys. Rev. X* **2021**, *11*, 041036.
- (32) Arute, F.; Arya, K.; Babbush, R.; others Hartree–Fock on a Superconducting Qubit Quantum Computer. *Science* **2020**, *369*, 1084–1089.
- (33) McCaskey, A. J.; Parks, Z. P.; Jakowski, J.; Moore, S. V.; Morris, T. D.; Humble, T. S.; Pooser, R. C. Quantum Chemistry as a Benchmark for Near-Term Quantum Computers. npj Quantum Information 2019, 5, 99.
- (34) Lolur, P.; Skogh, M.; Dobrautz, W.; Warren, C.; Biznárová, J.; Osman, A.; Tancredi, G.; Wendin, G.; Bylander, J.; Rahm, M. Reference-State Error Mitigation: A Strategy for High Accuracy Quantum Computation of Chemistry. J. Chem. Theory Comput. 2023, 19, 783–789.
- (35) Díez-Valle, P.; Saxena, G.; Baker, J. S.; Lee, J.-H.; Kyaw, T. H. Physics-Inspired Extrapolation for efficient error mitigation and hardware certification. arXiv:2505.07977, 2025.
- (36) Saxena, G.; Kyaw, T. H. Error Mitigation by Restricted Evolution. arXiv 2024,
- (37) Bartlett, R. J.; Kucharski, S. A.; Noga, J. Alternative Coupled-Cluster Ansätze II. The Unitary Coupled-Cluster Method. *Chem. Phys. Lett.* **1989**, *155*, 133.

- (38) Pavošević, F.; Hammes-Schiffer, S. Triple electron-electron-proton excitations and second-order approximations in nuclear-electronic orbital coupled cluster methods. arXiv 2022,
- (39) Jordan, P.; Wigner, E. Über das Paulische Äquivalenzverbot. Zeitschrift für Physik 1928, 47, 631–651.
- (40) Somma, R.; Ortiz, G.; Gubernatis, J. E.; Knill, E.; Laflamme, R. Simulating physical phenomena by quantum networks. *Phys. Rev. A* **2002**, *65*, 042323.
- (41) Seeley, J. T.; Richard, M. J.; Love, P. J. The Bravyi-Kitaev transformation for quantum computation of electronic structure. *The Journal of Chemical Physics* **2012**, *137*, 224109.
- (42) McClean, J. R. et al. OpenFermion: the electronic structure package for quantum computers. *Quantum Science and Technology* **2020**, *5*, 034014.
- (43) ANIS, M. S. et al. Qiskit: An Open-source Framework for Quantum Computing. 2021.
- (44) Ditchfield, R.; Hehre, W. J.; Pople, J. A. Self-Consistent Molecular-Orbital Methods. IX. An Extended Gaussian-Type Basis for Molecular-Orbital Studies of Organic Molecules. The Journal of Chemical Physics 1971, 54, 724–728.
- (45) Hehre, W. J.; Stewart, R. F.; Pople, J. A. Self-Consistent Molecular-Orbital Methods. I. Use of Gaussian Expansions of Slater-Type Atomic Orbitals. The Journal of Chemical Physics 1969, 51, 2657–2664.
- (46) Grimsley, H. R.; Economou, S. E.; Barnes, E.; Mayhall, N. J. An adaptive variational algorithm for exact molecular simulations on a quantum computer. *Nature Communications* **2019**, *10*, 3007.
- (47) Leymann, F.; Barzen, J. The bitter truth about gate-based quantum algorithms in the NISQ era. Quantum Science and Technology 2020, 5, 044007.

(48) Motta, M.; Sung, K. J.; Whaley, K. B.; Head-Gordon, M.; Shee, J. Bridging physical intuition and hardware efficiency for correlated electronic states: the local unitary cluster Jastrow ansatz for electronic structure. 14, 11213–11227.