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Abstract

We introduce a multicomponent unitary coupled cluster framework for quantum
simulations of molecular systems that incorporate both electronic and nuclear quantum
effects beyond the Born—Oppenheimer approximation. Using the nuclear—electronic or-
bital formalism, we construct mcUCC ansétze for positronium hydride and molecular
hydrogen with a quantum proton, and analyze hardware requirements for different ex-
citation truncations. To further reduce resource costs effectively, we employ the local

unitary cluster Jastrow ansatz and implement it experimentally on IBM Q’s Heron
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superconducting hardware. With the Physics-Inspired Extrapolation error mitigation
protocol, the computed ground-state energies remain within chemical accuracy, con-
sistent with the stated uncertainty level. These results provide the first demonstration
of error-mitigated multicomponent correlated simulations on quantum hardware and
outline a path toward scalable algorithms unifying electronic and nuclear degrees of

freedom.

1 Introduction

Many fundamental chemical processes involve nuclear quantum effects that challenge the
Born—-Oppenheimer (BO) separation of electronic and nuclear motion. Phenomena such
as proton tunneling, hydrogen transfer, and proton-coupled electron transfer are governed
by zero-point motion and nonadiabatic couplings that significantly influence reaction ther-
modynamics and kinetics.'® Classical treatments that confine nuclei to point particles can
therefore produce qualitatively incorrect predictions.

The nuclear—electronic orbital (NEO) framework addresses this limitation by treating
selected light nuclei (typically protons) quantum mechanically alongside electrons. By in-
corporating nuclear delocalization, tunneling, and electron—nucleus correlation directly into
the wavefunction, NEO theory provides a unified and systematically improvable approach
for systems in which electronic and nuclear degrees of freedom are strongly coupled.”®

Despite the accuracy of NEO-based methods, solving correlated electronic—nuclear struc-
ture problems remains computationally demanding. Classical algorithms for exact solutions
scale exponentially with system size, motivating the use of quantum computation as an
alternative route to scalable molecular simulation.?!'® Two major paradigms have emerged:
quantum phase estimation (QPE) and the variational quantum eigensolver (VQE). 13 QPE
can, in principle, yield exact eigenvalues efficiently, but its deep, coherent circuits remain im-
practical for current noisy intermediate-scale quantum (NISQ) devices.!* VQE, in contrast,

employs shallow parameterized circuits with classical optimization and has been successfully



demonstrated on small molecular systems. !>

Within VQE, the unitary coupled cluster (UCC) ansatz,?® derived from the coupled clus-
ter formalism,?! provides a physically grounded and systematically extensible representation
of correlated wavefunctions. While classical simulations of UCC scale exponentially, its quan-
tum implementation requires only polynomial resources, making it a natural foundation for
chemically realistic quantum algorithms.

Recent work has unified NEO theory with quantum algorithms via multicomponent UCC
(mcUCC) ansétze, enabling beyond-BO simulations that explicitly include quantum nuclear
motion in both the reference and variational spaces.???” This NEO—quantum computing
(NEO-QC) framework provides a rigorous route to first-principles modeling of electronic—
nuclear correlated systems, including positronic and protonic species, where classical approx-
imations fail.

However, the accuracy of hybrid quantum-—classical algorithms on present-day devices
remains constrained by noise and decoherence. Full quantum error correction is not yet
feasible, but quantum error mitigation (QEM) methods can substantially reduce systematic
bias without fault-tolerant overhead. Among the most widely used are zero-noise extrapo-
lation (ZNE), which estimates noise-free observables by deliberate noise amplification and

2829 and probabilistic error cancellation (PEC), which reconstructs unbiased

extrapolation,
estimators via quasi-probability sampling.?’ Complementary strategies such as symmetry
verification®® and virtual (state) distillation®' have further improved accuracy in quantum
chemistry experiments on real hardware. 3234

In this work, we employ a recently developed, physically motivated error mitigation ap-
proach, Physics-Inspired Extrapolation (PIE), which extends the ZNE framework by deriv-
ing its functional form from restricted quantum dynamics.3%¢ PIE provides an interpretable
extrapolation model, mitigates overfitting, and reduces sampling overhead relative to poly-

nomial ZNE, enabling chemically accurate energy estimates for beyond-BO benchmarks on

current NISQ hardware.



The remainder of this paper is organized as follows. Section 2 introduces the NEO
Hamiltonian and working equations. Section 3 describes the mcUCC ansatz used in classical
VQE simulations, which serve as surrogates for near-term quantum implementations limited
by circuit depth and hardware noise. Section 4 outlines the VQE framework and Hamiltonian
constructions for PsH and HHq systems. Section 5 presents PIE-based, error-mitigated VQE
results using the LUCJ ansatz on IBM Q’s Heron device. Finally, Section 6 summarizes the
results and discusses prospects for scalable, multicomponent quantum simulations beyond

the BO approximation.

2 Nuclear Electronic Orbital (NEO) Framework

Building upon prior work establishing the foundations of mcUCC methods for quantum

22 we perform simulations of the same systems on a quantum simulator and

computation,
analyze the computational requirements for execution on real NISQ devices. Two model
systems are considered: molecular hydrogen with one quantum mechanical proton (HHq)
and positronium hydride (PsH) (see Fig. 2).

In the NEO formalism, both electrons and selected light nuclei (e.g., protons or positrons)
are treated quantum mechanically, while heavier nuclei remain classical. The total NEO

Hartree-Fock (NEO-HF') wavefunction is expressed as a product of electronic and nuclear

components,

[WUngo-F (Xer Xp)) = [Pe(Xe)) ® | Pp(Xp)), (1)

where ®.(x.) and ®,(x,) are the electronic and quantum-nuclear wavefunctions, each ex-
panded in their respective molecular orbital bases, x. and x,.
The total Hamiltonian for a system containing electrons, quantum nuclei, and classical

nuclei is written as

Hxgo =To+ Ty + Vin + Von + Ve + Voo 4 Vip + Vivw, (2)



where 7, and Tp are the kinetic energy operators for electrons and quantum nuclei, respec-
tively, and the V terms represent the corresponding Coulomb interactions.

The one-particle operators are defined as
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Here, indices i, ) denote electrons, I,.J denote quantum nuclei, and r represents particle
coordinates. Z, and R, denote the charge and position of the a'® classical nucleus, V
is the Laplacian operator, and m, and m, are the electron and quantum-nuclear masses,

respectively. The classical nucleus—nucleus repulsion is given by
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which is constant for a fixed nuclear geometry.

For practical computations, these operators are expressed in a finite one-particle basis



{#} in terms of one- and two-particle integrals. The one-particle matrix elements are
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and the two-particle integrals are
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This multicomponent Hamiltonian mirrors the structure of the conventional electronic
Hamiltonian, with distinct one- and two-particle contributions, while extending it to include
explicit electronicnuclear and nuclear—nuclear interaction terms. Each operator term can
be evaluated using standard electronic structure integrals and serves as a foundation for

correlated methods that improve upon the mean-field NEO-HF energy bound.

3 Coupled Cluster Formalism

Electronic—nuclear correlation beyond the NEO-HF level can be systematically included
using the coupled cluster (CC) approach, which provides a size-extensive and systematically
improvable description of correlated wavefunctions. The NEO-HF wave function serves as
the reference state for constructing correlated multicomponent wave functions.

Gate-based quantum computers naturally implement unitary operations, making the
UCC ansatz an especially suitable form of the CC method for quantum algorithms. The

NEO-UCC wavefunction is generated by applying a unitary exponential operator®’ to the



NEO-HF reference:

[Unpo.uce) = €77 [ Ungo.nr), (14)

where T is the excitation operator, composed of fermionic creation (') and annihilation (a)

operators weighted by variational amplitudes ¢. That is,
T:T1+T2+T3+"', (15)

where the subscript on each T denotes the order of the excitation operator. For exam-
ple: Ty =3, ttala; + 3, , tialar, Ty = 1/4 > ijab t%’aialajai +1/43us tiBal abasar +
ZZA t?j“alala;ai and so on. Here, indices 1, j, ... refer to occupied electronic orbitals, and
a,b, ... to virtual electronic orbitals. For quantum nuclei (e.g., protons) or positrons, upper-
case indices I, J,... and A, B, ... denote occupied and virtual protonic/positronic orbitals,
respectively.

In practice, the cluster operator in Eq. 15 is truncated to singles and doubles (UCCSD)
due to the exponential scaling of higher-order excitations. The corresponding NEO-UCC
energy is obtained by minimizing the expectation value of the NEO Hamiltonian??*® with

respect to all variational amplitudes:

Exgo-ucc = H{lti}n<\IjNEO—UCC | Hxgo|¥ngo-ucc)- (16)

This variational formulation allows straightforward integration into hybrid quantum-—classical
algorithms such as the VQE, where the amplitudes {¢} are optimized iteratively using energy

feedback from a quantum device.



4 Variational Quantum Eigensolver Method

4.1 Variational Quantum Eigensolver in the NEO framework

The inclusion of electronic—nuclear correlation effects within a quantum computing frame-
work can be achieved using the hybrid quantum-classical VQE algorithm, 161819 schemat-
ically illustrated in Fig. 1. In this approach, the molecular Hamiltonian is precomputed
classically and encoded in a qubit representation, while a quantum processor evaluates ex-
pectation values for a parametrized trial wavefunction. The variational parameters are iter-
atively optimized by a classical optimizer to minimize the total energy until self-consistency

is achieved.
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Figure 1: Schematic representation of the (VQE) algorithm. The molecular Hamiltonian is
precomputed classically, while the quantum device evaluates expectation values and supplies
energy feedback to the classical optimizer.

In this work, the NEO-HF problem is first solved classically to obtain the reference
orbitals and molecular integrals for a given molecular geometry and basis set. Each op-
erator term in the NEO Hamiltonian (Eq. 2) is evaluated in the atomic orbital basis and
subsequently transformed into the molecular orbital basis through a standard congruence

transformation. The resulting Hamiltonian is then expressed in its second-quantized form.



The second-quantized Hamiltonian is mapped to qubit operators using a fermion-

39,40

to-qubit transformation. Common mappings include the Jordan—Wigner and

L' transformations. In this work, both mappings were imple-

Bravyi-Kitaev?
mented using the OpenFermion library?? (openfermion.transforms.jordan_wigner and
openfermion.transforms.bravyi_kitaev), with results reported primarily using the
Jordan—Wigner transformation.

Parallel to the Hamiltonian encoding, the multicomponent CC excitation operators (sin-
gles, doubles, and selected triples) are constructed classically following the mcUCC formal-
ism.?? These operators define the parameterized trial state used in VQE, typically in the
form of a UCC ansatz with variational amplitudes serving as tunable parameters.

During VQE execution, the quantum circuit corresponding to the chosen ansatz is eval-

uated on a quantum backend or simulator, such as those provided in Qiskit.*® The expec-

tation value of the energy is computed as
E(6) = (¥(0)|Hxro|¥(8)), (17)

where 6 represents the set of variational parameters. A classical optimizer (e.g., COBYLA

or SPSA) updates 0 iteratively to minimize the energy:
Eunin = moin E(0). (18)

This iterative feedback loop continues until the convergence criterion is met, yielding the

lowest energy consistent with the chosen ansatz and hardware precision.

4.2 Implementation for Representative Systems

To enable direct comparison with prior multicomponent studies, our simulations are per-
formed within a minimal basis framework. Specifically, the 6-31G basis set** is used for

all quantum particles in positronium hydride (PsH), while for dihydrogen (HHq), the elec-



tronic orbitals are described using the STO-3G basis set*®

and the quantum proton with a
dedicated 2s basis set?? (Fig. 2). Although this work focuses on these minimal systems, the
same workflow is readily extendable to larger basis sets and other multicomponent molecular
systems.

Each system comprises six spin—orbitals and three quantum particles: (i) PsH, containing
two quantum electrons and one quantum positron; and (ii) HHq, containing two quantum
electrons and one quantum nucleus. Each electron contributes two spin—orbitals, while the

positron or quantum proton contributes two spatial orbitals. The orbital arrangement and

particle composition are depicted in Fig. 2.
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Figure 2: Top: Schematic representations of the hydrogen molecule with a quantum mechan-
ical proton (HHq) and positronium hydride (PsH). Bottom: Spin-orbital configurations for
both systems under the chosen bases: 6-31G for electronic and positronic orbitals in PsH;
STO-3G for electronic orbitals and 2s for protonic orbital in HHq.

To reduce circuit depth and gate count for near-term quantum implementation, we con-
sider two strategies. First, only spin-conserving excitations are included for the electronic
subspace, while the positron and quantum proton are both fixed to the alpha spin state.

In a minimal basis, the second-quantized CC excitation operators restricted to spin-allowed
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transitions are given by:

tie = (Bcbeg — t9ches) + (L3ckey — ticles), (19)
ty = (tiches — tiches), (20)
taee = (t51chcherco — thhchelesca), (21)
t (t c CTC —t T t35 Tt _ t14 Tt 29
2ep = (L04CaC5C4Co 2500040502) + (t1acscseact — tzsercacses), (22)
L3eep = (t3?20203cgc4clco tg%gcoclclcg,c;),cz) (23)

Here, indices 0-3 label electronic spin orbitals, while 4 and 5 correspond to the protonic (or
positronic) spatial orbitals.

As an alternative strategy to operator selection, we also employ the ADAPT-VQE frame-
work. ¢ Unlike conventional VQE, ADAPT-VQE dynamically constructs the ansatz by iter-
atively selecting the operator from a predefined pool that yields the largest energy gradient
at each step. This adaptive procedure typically results in a more compact ansatz, often with
significantly fewer operators than the full operator pool, thereby reducing both circuit depth

and total quantum resource requirements.

5 Results and Discussion

5.1 Classical Simulations

Classical simulations were performed to evaluate different combinations of cluster excita-
tion operators, categorized by particle type (electronic or protonic/positronic) and excita-
tion order (singles, doubles, triples). The simulations were executed on the FakeNairobiV2
backend, a seven-qubit architecture containing one additional qubit beyond the minimum
required for these systems. This device was used to assess circuit composition and resource
requirements prior to deployment on real quantum hardware. Table 1 summarizes the gate

counts, circuit depths, and corresponding VQE energies for each operator pool. The bench-
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mark energy was obtained from a NEO full configuration interaction (NEO-FCI) calculation.

It is evident that the highest accuracy is obtained when all excitation operators are
included; however, the resulting circuit depth and gate count far exceed the practical limits
of current NISQ devices. Reducing the operator pool by truncating higher-order or mixed
excitations decreases computational cost but also limits the recoverable correlation energy.
When only single electronic and protonic excitations (ti.,?1,) are included, the computed
energy is identical to the Hartree—Fock reference, confirming that individual single excitations

do not contribute to correlation energy in these systems.

Table 1: Energies, circuit depths, and gate counts for the VQE simulations of HHq and PsH
systems using the Jordan—Wigner qubit mapping.

HHq Operator Pool RZ SX CNOT X Total Depth Energy (Hartree)
tie,t1p 5H 48 A7 1 151 112 -1.059569
tip,t2ce 109 86 68 2 265 178 -1.079396
tie,toce 144 113 80 3 340 225 -1.079406
oee toep 211 170 115 4 500 329 -1.079421
tie,tiptace,toep 246 192 129 6 573 379 -1.079431
tretipstoce:toepstscen 499 380 227 12 1118 743 -1.079433
LUCJ ansatz (numerical) 39 20 16 8 83 25 -1.079406
LUCJ ansatz (experimental) —1.077 £ 0.009
NEO-HF (classical) -1.059569
NEO-FCI (classical) -1.079434
PsH Operator Pool RZ SX CNOT X Total Depth Energy (Hartree)
tie,tp 5H 48 47 1 151 112 -0.558727
tipstoee 107 86 68 2 263 175 -0.569124
tie,t2ee 144 113 80 3 340 224 -0.569124
Tocest2ep 202 166 115 5 488 328 -0.572710
tie,tipytace,toep 234 188 129 7 9558 373 -0.572710
tretip,tocestoepstscen 475 366 227 14 1082 727 10.572714
LUCJ ansatz (numerical) 55 M4 20 3 112 43 -0.569178
LUCJ ansatz (experimental) —0.55 4+ 0.03
NEO-IF (classical) “0.558727
NEO-FCI (classical) -0.572838

Intermediate levels of correlation can be recovered by including double excitations. For
HHq, using {tie, 2.} yields an energy of —1.079406 Ha, sufficient for chemical accuracy

and closely matching the NEO-FCI limit. Adding mixed electron—proton double excitations

12



{toee, taep} further lowers the energy by approximately 15 pHa, reducing the deviation from
the FCI value to about 13 pyHa. This agrees with previous results for Hy in a minimal STO-
3G basis, where inclusion of the double electronic excitation operator alone recovers nearly
the full correlation energy.“°

For HHq, the electron—proton correlation contribution is significantly smaller than the
electron—electron correlation term (107° vs. 1072 Ha), due to the large proton mass.
In contrast, in PsH the electronic—positronic correlation energy is comparable to the
electron-electron correlation energy (i.e., Eg,,, +,.,3 = —0.572710 Ha relative to Eg,, ...} =
—0.569124 Ha is similar to the latter relative to Ey,, ;, 1 = —0.558727 Ha). This arises from
the comparable masses of the electron and positron, which yield matrix elements of similar
magnitude. In HHq, the corresponding mixed terms are suppressed by the proton—electron
mass ratio (~ 2000), reducing the overall protonic correlation contribution. These trends
suggest that a balanced trade-off between computational cost and accuracy can be achieved
by including electronic and mixed electron—positron double excitations, which effectively
capture correlation while maintaining feasible circuit depth.

To relate circuit complexity to hardware constraints, we adopt the heuristic introduced

by Leymann and Barzen,*

1
d-w < —, (24)
€

where d and w denote circuit depth and width, respectively, and € is the average gate error
rate. This inequality expresses the qualitative requirement for executing a quantum circuit
before decoherence dominates. While this metric does not prescribe an accuracy target, the
statistical precision of energy measurements can be improved by increasing the number of
measurement shots.

As an illustrative estimate, approximately 170 gates would be required to achieve a target
precision of 0.001 Ha for a six-qubit circuit. However, in practice, even single-excitation UCC
ansatze already entail ~ 47 CNO'T gates, exceeding the realistic depth limits of current NISQ

hardware. Consequently, accurate beyond-BO quantum simulations remain computationally

13



prohibitive on existing devices. Detailed resource requirements and corresponding energy

estimates are provided in Table 1.

5.2 Demonstration on IBM Q

To demonstrate the feasibility of multicomponent quantum simulations on real hardware, we
employed the Local Unitary Cluster Jastrow (LUCJ) ansatz,’® a variational wavefunction
specifically designed for correlated electronic ground states on near-term quantum processors.
The LUCJ ansatz captures both dynamic and static correlation effects while substantially
reducing circuit depth and two-qubit gate requirements compared to traditional quantum
chemistry ansétze such as quadratic unitary coupled cluster singles and doubles (qUCCSD).

Unlike qUCCSD, which involves deep, nonlocal circuits with many variational parame-
ters, the LUCJ ansatz starts from a restricted Hartree-Fock reference and applies a physically
motivated correlator inspired by the repulsive Hubbard model. By penalizing double occu-
pancy on the same spatial orbital (opposite-spin electrons) and restricting correlations to
local orbital neighborhoods, the LUCJ formulation balances accuracy and hardware effi-
ciency.

The general LUCJ wavefunction is constructed as a product of L local layers:

L
@) = [ [ e ere ™ [ Unponr), (25)
pn=1
where
K, =Y Klilae, — Ju=Y_ J! i (26)

Here, K . and j# represent one-body rotation and two-body number-number correlation
operators, respectively, with s indexing spatial orbitals and o, 7 denoting spin. For simplicity,
all quantum particles (electrons, positrons, and quantum nuclei) are represented by a unified

orbital index s. This convention is followed in Figs. 3 and 4.
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Figure 3: Example circuit block for the LUCJ ansatz applied to PsH, following Eq. 25.
Orbitals {0, 1} correspond to the two electronic spatial orbitals, while p labels the positron
without any spin orbital. The complete circuit decomposition is shown in Fig. 4.

Because the circuit depth required by UCC-based approaches remains prohibitive for
current hardware, we employ a single LUCJ layer (L = 1) to approximate the ground-
state energies of HHq and PsH. This ansatz achieves a ~ 57% reduction in CNOT gate
count relative to the minimal UCC ansatz including {¢y.,¢;,} excitations, while maintaining
comparable accuracy (see Table 1).

The LUCJ circuits were implemented and executed on the 133-qubit IBM Q Heron
superconducting processor (ibm torino). A six-qubit subset was selected, as shown in
Fig. 4, to represent the low- and high-energy electron spin orbitals (0a, 08, 1o, 15) and
the positron/nucleus spatial orbitals (Op and 1p). Only local two-qubit operations between

adjacent qubits were used, respecting the device topology and minimizing cross-talk.

5.3 Quantum Error Mitigation via Physics-Inspired Extrapolation
(PIE).

To mitigate hardware noise, we implemented the recently proposed Physics-Inspired Extrap-

olation (PIE) method.® PIE builds on the Error Mitigation by Restricted Evolution (EMRE)

15



Figure 4: (Left) Topology of the 133-qubit IBM Heron superconducting processor (ibm
torino); the 6-qubit subset used for the demonstration is highlighted in dark blue. (Right)
LUCJ circuit expressed in the {rz, rxx, ryy, rzz, x} gate basis. Each qubit corresponds to one
spatial or spin orbital, and the circuit is initialized in the NEO-HF reference state.

framework, *® which provides an analytical form for the extrapolation function used to recover
noise-free observables. Unlike polynomial extrapolation, PIE yields interpretable extrapola-
tion parameters, constant runtime scaling, and reduced sampling overhead. In PIE, noise is
systematically amplified via circuit folding, and expectation values are measured at multiple
noise levels. The results are then extrapolated to the zero-noise limit using a linearized model
derived from EMRE. Depending on circuit complexity, full or partial folding is employed to
achieve controlled noise amplification.

The experimental execution of the LUCJ circuits and the implementation of the error mit-
igation protocol are shown in Fig. 5. Optimal LUCJ parameters were first obtained through
noiseless classical simulations, yielding energies of —1.079406 Ha for HHq and —0.569178 Ha
for PsH. The corresponding quantum circuits were then executed on the ibm torino processor
using 4096 shots per circuit. Noisy runs produced raw energies of —0.996468 + 0.013563 Ha
(HHq) and —0.393893 + 0.013127 Ha (PsH), indicated by the experimental data at A = 1
in Fig. 5. After applying PIE-based error mitigation, the extrapolated energies improved
to —1.076668 £ 0.009229 Ha and —0.551371 £ 0.031024 Ha, respectively. These mitigated
results are denoted by red dots at A = 0 in Fig. 5. Uncertainties correspond to the stan-

dard deviation from repeated runs. The experimental result is significantly lower than the

16



HHQ PsH
0.1 T T T b T T T T T
-—-— PIE ! -== PIE
0.0 ¢ Experimental data ] —0.61 T‘\ ¢ Experimental data i
FCI result FCI result
5 01 ¢ Mitigated result = sl S ¢  Mitigated result
- \¢ &b-io ~
S S g AN
@ —02f . 1 & 4.
L s Jo—1ot N 1
20 S o0 N
S —-03F +\\ 7] 2 SN
\\\ *\\\
—04 SSo A -12F . +_
1 1 1 1 1 1 1 1 1
0 2 4 6 0.0 0.5 1.0 1.5 2.0
(a) \ (b) A

Figure 5: Extrapolated energy results using the PIE method for HHq and PsH. The loga-
rithm of the negative energy is plotted as a function of the number of circuit foldings, with
the zero-noise limit obtained from a linear fit. Raw quantum circuit executions correspond
to experimental data at A\ = 1, while the noise-mitigated energies are denoted by red dots
at A = 0.

NEO-HF energy for HHq, but it is similar to the NEO-HF energy for PsH, although the
uncertainties encompass the NEO-FCI energy.

The error-mitigated results achieved with the LUCJ ansatz and PIE are chemically accu-
rate, closely matching the classical VQE results obtained using the {ti., tocc } UCC operator
set, while requiring substantially fewer gates. Although the results remain several milli-
hartrees above the FCI limit for HHq and around 20 millihartrees above the FCI limit for
PsH, this demonstration highlights the viability of combining physically motivated ansatze

and advanced error mitigation to achieve multicomponent quantum simulations on current

NISQ hardware.

6 Concluding Remarks

In this work, we carried out multicomponent electronic structure calculations for positron-
ium hydride (PsH) and dihydrogen with a quantum mechanical proton (HHq) using quantum

computing frameworks. Simulations on a quantum computer emulator enabled us to system-

17



atically assess the contributions of different excitation operators within the mcUCC ansatz
and to quantify the correlation energy recovered under various truncation schemes.

In addition, we performed experimental demonstrations on IBM’s superconducting quan-
tum hardware using the Local Unitary Cluster Jastrow ansatz in combination with the
Physics-Inspired Extrapolation error mitigation technique. This hybrid strategy achieved
chemically accurate ground-state energies for both PsH and HHq while operating within
the resource constraints of current noisy intermediate-scale quantum devices. The LUCJ
ansatz provided a compact, hardware-efficient alternative to traditional coupled-cluster-
based ansatze, and PIE successfully mitigated hardware noise to recover high-fidelity energies
from noisy measurements.

Together, these results demonstrate a viable path toward scalable, be-
yond—Born—Oppenheimer quantum simulations that explicitly incorporate nuclear quantum
effects. By combining physically motivated ansatze, resource-efficient circuit constructions,
and advanced error mitigation, this work establishes a foundation for accurate, multicom-
ponent quantum chemistry on near-term quantum processors and offers a roadmap toward

chemically relevant quantum simulations in the NISQ era.
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