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The intersection of quantum computing and quantum chemistry represents a promising frontier for achieving
quantum utility in domains of both scientific and societal relevance. Owing to the exponential growth of classical
resource requirements for simulating quantum systems, quantum chemistry has long been recognized as a natural
candidate for quantum computation. This perspective focuses on identifying scientifically meaningful use cases
where early fault-tolerant quantum computers, which are considered to be equipped with approximately 25–100
logical qubits, could deliver tangible impact. We highlight near- to mid-term opportunities in algorithm and
software design, discuss representative chemical problems suited for quantum acceleration, and propose strategic
roadmaps and collaborative pathways for advancing practical quantum utility in quantum chemistry.

I. INTRODUCTION AND MOTIVATION

This year marks a significant milestone—roughly a cen-
tury since the formulation of quantum mechanics funda-
mentally reshaped our understanding of matter at the atomic
and molecular level [1–3]. The Schrödinger equation, intro-
duced during this transformative period, provided the the-
oretical bedrock for quantum chemistry, enabling, in prin-
ciple, the prediction of chemical properties and reactivity
from first principles, famously demonstrated for the hydro-
gen molecule [4]. Over the subsequent 100 years, the field
has witnessed impressive advances, with the development
and application of sophisticated classical computational
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methods, such as Density Functional Theory (DFT) [5–7]
and wave function-based approaches like Coupled Clus-
ter (CC) theory [8–10], achieving remarkable success in
explaining and predicting chemical phenomena [11, 12].

Despite a century of progress and the power of estab-
lished classical algorithms, substantial challenges remain.
The inherent complexity of the quantum many-body prob-
lem, the very challenge laid barely by quantum mechan-
ics itself, continues to limit the accuracy and applicability
of classical methods, particularly in the treatment of (i)
strongly correlated electronic systems (e.g., modeling com-
plex catalytic sites like FeMoco [13]), (ii) the description
of complex excited states crucial for photochemistry and
materials science [14], (iii) the simulation of open quantum
dynamics governing system-environment interactions [15],
and (iv) the accurate prediction of weak interaction and
thus transition state, which is critical to describe reaction
kinetics [16]. These enduring limitations, stemming di-
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rectly from the exponential growth of the Hilbert space with
system size, motivate the exploration of fundamentally dif-
ferent computational paradigms. Quantum computational
approaches, which leverage quantum phenomena directly,
offer a potential pathway to supplement or even surpass
classical techniques by tackling these intrinsically quantum
problems more naturally, as envisioned early on by Feyn-
man [17] and Lloyd [18], and extensively reviewed ever
since [19–21].

This perspective focuses on identifying strategies, op-
portunities, and roadblocks relevant to performing quan-
tum chemistry simulations using quantum hardware an-
ticipated in the near-to-intermediate future—specifically,
devices possessing approximately 25–100 logical qubits.
This regime represents a crucial transitional phase, bridging
the current era of noisy intermediate-scale quantum (NISQ)
devices [22] and the long-term vision of large-scale, fully
fault-tolerant quantum computing [23], known as Fault-
Tolerant Application-Scale Quantum (FASQ) [24]. This in-
termediate scale presents a unique window of opportunity to
potentially demonstrate impactful quantum computations,
possibly achieving quantum utility for specific, well-chosen
chemical problems. Success in this era will likely hinge
on leveraging resource-aware algorithm design [25], de-
veloping robust hybrid quantum-classical workflows [26],
and fostering interdisciplinary co-design between quantum
algorithms, chemistry domain expertise, and hardware ca-
pabilities [27].

Realizing this opportunity necessitates a clear-eyed un-
derstanding of both the burgeoning capabilities, demon-
strated by recent hardware milestones [28–31], and the
significant constraints of near-term fault-tolerant quantum
hardware platforms. Before delving into specific quantum
chemistry applications and the algorithms tailored for this
25–100 logical qubit regime, we first briefly overview the
rapidly evolving landscape of quantum hardware develop-
ment and further articulate the motivation for concentrating
efforts within this specific computational resource range.

II. THE 25–100 LOGICAL QUBIT REGIME: A
TRANSITIONAL LANDSCAPE

Recent advances in quantum hardware have significantly
improved the prospects for achieving early fault-tolerant
quantum computations. While current NISQ devices have
achieved important milestones, including small-scale quan-
tum simulations [32, 33] and sophisticated error mitiga-
tion [34], scalable quantum utility requires logical qubits
protected by quantum error correction (QEC) [22, 35].

Implementing a single logical qubit today demands thou-
sands of physical qubits, depending on error rates and the
chosen code, such as the surface code [23, 36, 37]. Never-
theless, improvements in coherence times, gate fidelities,
and system integration across leading platforms—including
superconducting qubits [29, 38], atom array [30], trapped
ions [39, 40], and photonic architectures [41, 42]—suggest
that processors comprising 25–100 logical qubits could
become available within the next several years [28, 43–45].

In comparison with long-term strategic directions, the 25–
100 logical qubit regime marks a pivotal near-term thresh-

old in the evolution of quantum computing applications in
quantum chemistry (see Figure 1). Devices in this range
may be the first to enable meaningful quantum chemistry
simulations that are intractable on classical computers, such
as accurately modeling complex molecules [13, 25]. How-
ever, the opportunity comes with substantial caveats: these
early fault-tolerant systems will still face non-negligible
logical error rates, limited coherence times relative to com-
putation depth, and practical constraints on connectivity,
measurement, and classical I/O [46].

Progress in this regime demands a re-evaluation of what
constitutes “quantum utility” in chemistry [47]. It is not
solely about outperforming classical solvers in compute
time or accuracy for all problems, but rather about de-
livering new scientific insights into problems that are in-
trinsically quantum and difficult to treat or beyond classi-
cal methods—including strongly correlated electrons [10],
quantum coherence in dynamics [48], and environmental
interactions [15].

Development efforts are therefore increasingly centered
around hybrid algorithms [26], embedding techniques [49–
60], and variational methods [61] that operate with shallow
circuits or make optimal use of limited logical qubit counts.
These strategies aim to optimize the use of limited quan-
tum resources while interfacing seamlessly with classical
simulation frameworks.

This regime is particularly well-suited for active space
quantum simulations, where a judiciously chosen set of
orbitals—often those associated with strong correlation
or reactive behavior—is treated on a quantum computer,
while classical components handle the weakly correlated
environment. Techniques such as downfolding [62–72] and
quantum embedding [49–60] provide viable pathways to
construct effective Hamiltonians for such active spaces.

In addition to ground-state energy estimation, quantum
dynamics is emerging as an area where early utilities may
arise [21, 48]. Simulating time-dependent processes, es-
pecially in open systems or photoinduced transformations,
poses considerable challenges for classical methods due
to memory bottlenecks and entanglement growth [73, 74].
Quantum processors may offer more efficient routes for
handling such inherently quantum phenomena using algo-
rithms like Trotterization or Qubitization [75–77].

Collectively, these considerations underscore the need for
focused, resource-aware, and problem-specific approaches
in the early fault-tolerant era of quantum computing. The
following sections explore these directions in detail, with
an emphasis on bridging algorithmic innovation, hardware
development, and domain relevance.

III. OPPORTUNITIES IN QUANTUM CHEMICAL
SIMULATIONS

Quantum chemistry presents a set of grand challenges
where quantum computers—even at the scale of 25–100 log-
ical qubits—are expected to make meaningful contributions.
Rather than aiming for a wholesale replacement of classi-
cal electronic structure methods, progress is anticipated
through hybrid approaches that integrate quantum comput-
ing with classical techniques, high-performance computing
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Figure 1. Strategic directions for quantum chemical simulation at different scales.

(HPC), and artificial intelligence (AI). This synergy enables
both targeted enhancement of computational workflows
and the exploration of scientific regimes where classical
models break down. In the following, we highlight several
directions that offer promising opportunities for near- to
mid-term demonstrations of quantum utility in quantum
chemical simulations.

A. Strong Correlation and Active Space Decomposition

Many chemically and industrially important sys-
tems—such as open-shell transition metal complexes [78–
80] and f -electron materials [81–83]—exhibit strong elec-
tronic correlation. This characteristic poses significant chal-
lenges for standard classical simulation methods. Den-
sity functional theory, for instance, while widely used in
catalysis [84], faces limitations in quantitatively describing
strong correlations, electron spin states in magnetic cata-
lysts, and weak intermolecular forces, which can impact the
accuracy of predicted reaction barriers. Single-reference
wavefunction approaches also struggle with strong corre-
lation [85, 86]. These limitations become particularly pro-
nounced when high precision is essential, such as in mod-
eling intricate catalytic mechanisms where quantitative ac-
curacy is critical for mechanism identification and catalyst
design, electronic excitations spanning valence and core lev-
els [14, 87], and relativistic effects in heavy elements [88–
90]. Capturing these properties often requires computation-
ally demanding multi-reference methods, whose cost scales
prohibitively [91, 92]. Consequently, these strongly corre-
lated systems are prime candidates for quantum-accelerated
solvers [20, 21, 93] and advanced embedding strategies [49–
60], potentially overcoming classical barriers and handling

complexities (like multiple active sites or interfaces in catal-
ysis) currently beyond reach. Quantum algorithms applied
within carefully chosen active spaces, derived via embed-
ding or selection protocols, are already being explored
for catalytic problems such as molecule-surface interac-
tions [94, 95].

A key insight facilitating these approaches is that electron
correlation is often spatially localized within molecular frag-
ments. This motivates fragment-based methods like the Lo-
calized Active Space (LAS) approach, which has emerged
as a particularly promising framework [96–99]. LAS con-
structs the total wavefunction as an antisymmetrized prod-
uct of local active space wavefunctions defined on weakly
entangled fragments. Each fragment is treated with high-
level methods, while inter-fragment interactions are cap-
tured at a mean-field level. The LAS State Interaction
(LASSI) refinement recovers spin symmetries by diagonal-
izing the full Hamiltonian within a basis of LAS-configured
states. Notably, the inclusion of charge transfer (CT) config-
urations between fragments within the LASSI Hamiltonian
can be crucial for achieving quantitative accuracy, for ex-
ample, when calculating magnetic coupling constants in
multinuclear complexes. The applicability and scalability
of LAS/LASSI have been demonstrated through calcula-
tions on systems like Cr(III) dimers [98, 100, 101] and
spin ladder in Fe3 compound [97], and large-scale LASSCF
calculations are being applied to systems with over 1000
orbitals (e.g., Fe4S4, Cr2, NiFe2, and Ni2). LAS is part of
a broader family of embedding techniques; related meth-
ods like Density Matrix Embedding Theory (DMET) [102]
are also being combined with high-level solvers for large
systems and specific applications such as core-level spec-
troscopy [103]. Together, these strategies provide a scal-
able foundation for integrating classical and quantum work-
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flows, potentially targeting specific active sites identified
by classical methods with high-accuracy quantum calcula-
tions [99, 104, 105].

To further reduce complexity, downfolding methods
can be employed to derive effective Hamiltonians that
retain essential many-body physics within minimal ac-
tive spaces [62–72]. Chemically motivated diagnos-
tics—such as orbital occupation analysis and entanglement
entropy—guide the selection of these reduced spaces [106],
enabling the targeting of chemically significant regions us-
ing limited quantum resources.

B. Quantum Dynamics and Noise-Informed Simulation

Real-time quantum dynamics, particularly for open quan-
tum systems (OQS), has been highlighted as a promis-
ing domain for near-term quantum utility [107]. Simu-
lating processes such as photoinduced charge transfer, vi-
brational energy redistribution, and nonadiabatic transi-
tions provides critical insights into reaction mechanisms
and non-equilibrium phenomena beyond static approxima-
tions [108]. However, these simulations are computation-
ally intensive for classical methods. Techniques like Multi-
configurational Time-Dependent Hartree (MCTDH) [109]
and Hierarchical Equations of Motion (HEOM) [110] face
the “curse of dimensionality,” scaling poorly with system
size, while tensor network approaches can be limited by the
area law in capturing highly entangled dynamics compared
to quantum circuits [111, 112].

Quantum devices may be well-suited to this regime due
to their natural ability to implement unitary time evolu-
tion and sample from high-dimensional entangled states.
Methods such as Trotterized real-time evolution, variational
dynamics [113], and Krylov-subspace propagation (related
to quantum signal processing, or Qubitization) have been
proposed as viable quantum algorithms (see e.g. Ref. 107
for a recent overview). However, challenges remain, in-
cluding the accurate preparation of initial states (which
can be non-trivial and propagate errors), significant mea-
surement overhead due to wavefunction collapse, and the
difficulty of accurate Trotterization, especially for coupled,
time-dependent systems.

Simulating OQS presents the additional challenge that
quantum computers naturally perform unitary evolution,
while open systems exhibit non-unitary dynamics due to
environmental interaction. Standard quantum approaches
to OQS include embedding the system within a larger envi-
ronment simulated unitarily (ancilla-based methods), using
stochastic quantum trajectories, or implementing Kraus op-
erators [114–120]. Intriguingly, noise, traditionally viewed
as an impediment, has been proposed as a resource [121].
Hardware-induced decoherence, if properly characterized
or engineered, may serve as a proxy for environmental inter-
actions, thereby facilitating OQS simulation. This “noise-
assisted” approach has been explored in analog and digital
quantum computing [122–125], potentially reducing over-
head compared to full error mitigation by using techniques
like partial error correction [126, 127] or pulse control.

The encoding of bosonic modes—representing vibra-
tional, solvent, or bath degrees of freedom—also requires

careful consideration. Strategies include truncated Fock
spaces, coherent-state encodings, and squeezed-state rep-
resentations [128]. Opportunities arise from the poten-
tially simpler Hamiltonian structures in exciton-boson sys-
tems (O(N2) or O(N) terms) compared to standard elec-
tronic structure (O(N4) terms). Furthermore, embedding
approaches and the development of advanced Gaussian
ansatzes are being explored to reduce the resource re-
quirements for representing these bosonic degrees of free-
dom [129]. Non-Hermitian Hamiltonians are also rele-
vant for modeling dissipation, although simulating their
dynamics on quantum hardware often involves mapping
back to larger unitary systems or specific simulation tech-
niques [119].

C. Hybrid Pipelines and AI Integration

The integration of quantum computing (QC) with arti-
ficial intelligence (AI) and high-performance computing
(HPC) is rapidly advancing, with major initiatives devel-
oping platform-level solutions for accelerating chemistry
and materials discovery [47, 130–134]. At the forefront
of innovation is NVIDIA’s DGX Quantum system, which
enables low-latency, tightly coupled execution between
quantum processing units (QPUs) and GPUs to support
real-time AI-assisted quantum error correction (QEC), cali-
bration, control, and readout [130]. To program such hetero-
geneous quantum–classical systems, NVIDIA introduced
the CUDA-Q platform [135], a single-source, hardware-
agnostic programming framework that unifies quantum and
classical workflows, leveraging NVIDIA’s existing CUDA
and AI ecosystems. Another approach is provided by Mi-
crosoft’s Discovery platform (formerly, Azure Quantum
Elements), which offers a cloud-based solution that inte-
grates access to multiple quantum hardware backends with
Azure’s HPC infrastructure and specialized AI tools, en-
abling users to build scalable hybrid quantum applications
within a managed cloud environment [131].

In such hybrid ecosystems, AI models—often trained
on large synthetic datasets generated via HPC simulations
or augmented with quantum data—are used to accelerate
discovery by enabling rapid screening, property prediction,
and system-level optimization. For example, AI models
deployed within Azure Quantum Elements have been used
to evaluate millions of potential battery materials [136],
while NVIDIA has developed generative AI approaches
such as GQE [137] and QAOA-GPT [138] to automate
the synthesis of optimal quantum circuits with desirable
characteristics, such as low depth and high expressivity.
In addition to algorithm development, NVIDIA has also
demonstrated the use of AI for QEC in collaboration with
QuEra [139].

This tiered, adaptive computational approach allocates
quantum resources to the most challenging subproblems
where classical methods struggle—such as transition states
poorly captured by DFT or systems with strong multirefer-
ence character [140, 141]. AI is integral across this hybrid
workflow: from hardware design and calibration to device
control, algorithm optimization, QEC decoding, and post-
processing [142, 143]. Diagnostic tools—including uncer-
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tainty quantification in AI models, convergence analysis of
classical solvers (e.g., DMRG), and AI-driven screening
and circuit optimization—support dynamic resource alloca-
tion across the classical-quantum-AI stack [144–146].

AI’s role spans the entire quantum computing stack [130].
In hardware development, it accelerates qubit character-
ization, architecture exploration, and control pulse opti-
mization. During operation, AI automates calibration and
tuning, enabling closed-loop control strategies adaptive
to evolving noise environments. In software, AI aids cir-
cuit synthesis and compression, variational optimization,
and hybrid workload scheduling. It enhances QEC by im-
proving decoder performance [29] and enabling scalable,
low-latency strategies. In post-processing, AI reduces mea-
surement overhead and mitigates errors in tasks like tomog-
raphy [147], observable estimation, and readout classifi-
cation. This end-to-end integration of AI is essential for
scalable, fault-tolerant quantum computing and efficient
use of hybrid resources.

D. Benchmarking and Experimental Validation

Robust benchmarking remains essential for validating
quantum methods and ensuring reproducibility. A three-
way validation framework—incorporating quantum simu-
lations, high-level classical reference data, and experimen-
tal observations—has been endorsed [21, 43, 44]. This
framework allows for iterative refinement of algorithms and
facilitates the identification of performance gaps.

Benchmark systems that are well-defined chemically rel-
evant, experimentally tractable, and computationally chal-
lenging have been proposed as community-wide testbeds.
These systems allow simulations at different levels and
experiments to interact closely, enabling to guide method
development, hardware requirements, and software stacks
across multiple disciplines. Table I summarizes several
classes of model systems identified as focal points for al-
gorithm validation and workflow integration. These span
catalysis, photochemistry, and energy materials.

IV. ALGORITHMIC INNOVATIONS

The development of quantum algorithms capable of ad-
dressing chemically relevant problems using 25–100 logical
qubits must be guided by co-design principles that account
for fault-tolerant constraints. These include limited cir-
cuit depth, restricted qubit connectivity, noise resilience,
and modular architecture [167, 168]. The goal is to cre-
ate a unified framework for evaluating algorithms across
diverse problems, establishing robust metrics and method-
ologies to uniformly measure performance [169]. Rather
than converging on a single dominant paradigm, the current
landscape favors the parallel exploration of diverse algo-
rithmic strategies tailored to specific problem structures
and hardware capabilities [20, 21, 142]. Many algorithms
exist, balancing accuracy and efficiency, as exact solutions
scale exponentially and are often impractical for large sys-
tems. Below, we highlight several promising algorithmic

directions in this context.

A. Structured Ansatzes and Adaptable Methods

Traditional variational quantum eigensolver (VQE) ap-
proaches [61] employing unitary coupled-cluster (UCC)
ansatzes face challenges such as barren plateaus, spin con-
tamination, and instability across geometries [26]. Develop-
ments in areas like neural network ansätze for solids [170],
most innovation has been focused on more chemically in-
spired and hardware-efficient ansatzes [32, 171]:

• Real, imaginary, and complex parameterizations
of the unitary Cluster Jastrow (uCJ) ansatz [172,
173]. For instance, the real antisymmetric uCJ form
is widely used and offers a more physically mean-
ingful treatment of strong correlation than the gener-
alized unitary coupled-cluster with singles and dou-
bles (GUCCSD) [174], while significantly reducing
quantum resource requirements [173]. Alternative
parameterizations—such as the imaginary symmetric
(Im-uCJ) and general complex (g-uCJ) forms—are
also promising, particularly in challenging scenarios
like bond dissociation. These findings suggest that
tuning the parameterization strategy can improve ac-
curacy and robustness, though care must be taken to
evaluate potential drawbacks, such as spin contami-
nation.

• Optimization-free and adjustable subspace con-
struction methods. Representative examples include
quantum subspace expansion [175], non-orthogonal
configuration interaction approaches [167], hybrid
and quantum Krylov/Lanczos methods [176–179],
quantum computed moment techniques [180], the
quantum equation-of-motion approach [181, 182],
and generator coordinate-inspired strategies [183].
The subspace basis can range from individually op-
timized determinants (e.g., Hartree–Fock states) to
coherent states, enabling access to multiple eigen-
states while reducing circuit depth and enhancing
sampling efficiency. Notably, error mitigation tech-
niques such as shadow tomography may also help
reduce measurement overhead.

• Adaptive, parallel, and heuristic enhancements
to VQE. Adaptive strategies like ADAPT-VQE and
operator pooling dynamically construct compact
ansatzes tailored to the correlation structure of the
system, minimizing circuit depth without sacrific-
ing accuracy. In parallel, recent work has intro-
duced techniques for parallel parameter optimiza-
tion to accelerate convergence in VQE [184, 185].
Heuristic methods inspired by quantum annealing
have also been explored to guide variational opti-
mization and improve initial state preparation [186].
Complementing these efforts, quantum-information-
informed approaches such as PermVQE [187] and
ClusterVQE [188] exploit mutual information to re-
duce circuit depth via entanglement-aware qubit per-
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Table I. Representative chemical systems in quantum chemical simulations, including scientific context and simulation goals.

Model/System Category Scientific Significance and Features Simulation Target

CO/CO2 on a catalyst
[94, 148, 149] Surface catalysis Surface-supported reaction network;

Activation barriers
Reaction barrier;
Intermediate species and energetics

Transition metal oxides
[78, 80, 100, 150] Metal complexes Strong correlation;

Oxygen atom transfer
Spin states;
Oxidation potentials

Chromophores in solvents
[151–153] Photochemistry

Intramolecular proton transfer;
Fluorescence;
Vibronic and nonadiabatic effects

Excited-state spectra;
Charge/exciton recombination

PCET in enzymes
[115, 121, 154]

Open quantum
systems

Coupled nuclear-electronic dynamics;
Tunneling and dissipation

Vibronic coupling;
Solvent decoherence

Li[Fe/Mn/Ni/Co]yOx
[155–157] Battery materials Redox-driven polymorphism;

Multiconfigurational complexity
Phase transitions and Jahn-Teller effect;
Polaron hopping

Benzene, OLED molecules
[158–160] Correlated organics π-electron delocalization;

Singlet-Triplet Inversion and gaps
Benchmarking correlated methods;
Gap prediction

Iron-sulfur clusters
[161, 162]

Strong correlation
testbeds

Magnetic coupling and spin
frustration in bioinorganic settings Multi-reference solver performance

Alkali metal hydrides
(NaH, KH, RbH) [27]

Quantum computing
benchmarks

Evaluation of quantum computing
performance for electronic
structure calculations

Ground-state energy calculations
on quantum hardware

QM9 molecules with
QH9, MultiXC-QM9
datasets [163, 164]

Machine learning in
quantum chemistry

Prediction of Hamiltonian matrices
using supervised learning

Accelerated electronic structure
predictions

VQM24 dataset
molecules [165]

Large-scale quantum
chemical datasets

Comprehensive coverage of small
molecules for benchmarking

Evaluation of quantum chemical
methods across diverse molecules

Non-equilibrium
non-covalent
complexes [166]

Non-covalent
interactions

Benchmarking interaction energies
in non-equilibrium geometries

Assessment of computational
methods for weak interactions

mutation and to enable scalable parallel VQE through
graph-based decomposition, respectively.

• Automation and user-accessible deployment of
quantum solvers. Recent efforts have focused on
automating the ansatz and subspace construction
process to facilitate the broader adoption of non-
orthogonal quantum solvers [189]. These efforts aim
to make quantum algorithm deployment more acces-
sible to non-experts by reducing the manual complex-
ity of circuit design, subspace definition, and error
mitigation integration.

B. Downfolding and Renormalization Techniques

Effective Hamiltonian construction via downfolding of-
fers a powerful way to reduce resource requirements while
maintaining chemical accuracy [71]. By integrating out
external degrees of freedom and targeting compact active
spaces, these approaches bridge high-level accuracy with
qubit efficiency:

• Coupled Cluster Downfolding: Techniques like
subsystem embedding subalgebras (SES) [62, 69]
and Double Unitary Coupled Cluster (DUCC) down-
folding [65, 72] construct effective Hamiltonians in
reduced active spaces. The accuracy depends on the
treatment of commutator terms [70]. These can be
applied to ground [69] and excited states [67] and
dynamics [68].

• Quantum Flow (Q-Flow) and related renormal-
ization flow methods transform Hamiltonians into
energy-dependent effective models [63].

• Tensor Factorization: Recent approaches use tensor
factorizations within recursive downfolding to opti-
mize the scaling complexity on classical and quantum
computers [190].

• Hybrid Green’s function and wave function meth-
ods In recent development, wave function and
Green’s function methods are combined [191, 192].
The latter is used for the quantum bath (environment),
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while wave-function solvers are used for the active
space. The embedding is somewhat different as the
bath is derived from a Green’s function.

These techniques enable scalable embedding
schemes [49, 53, 60] and are compatible with clas-
sical solvers and quantum subspace diagonalization
methods. Combined with Green’s function embedding and
self-energy projection, they provide access to spectral and
dynamic properties beyond ground states [193].

C. Quantum Phase Estimation (QPE) and Variants

QPE remains the gold standard for precision energy es-
timation [19] but typically exceeds available fault-tolerant
resources. It is a key subroutine in many quantum algo-
rithms [20, 21, 35]. Several modified QPE protocols have
emerged to address resource constraints:

• Iterative QPE and Bayesian QPE minimize ancilla
qubits and circuit depth, trading circuit depth for
more measurements [194–196]. Here, Bayesian ap-
proaches can optimize parameter selection, and im-
prove efficiency and robustness against errors.

• Statistical Phase Estimation: Alternatives to stan-
dard QPE that use lower-depth circuits and fewer
auxiliary qubits, making them more suitable for
early fault-tolerant devices and error mitigation tech-
niques [197]. Recent methods improve accuracy for
a given circuit depth compared to earlier analyses.

• Filtered QPE, involves enhancing QPE algorithms
by incorporating filtering techniques, like Gaussian
and subspace filters, to improve precision and ro-
bustness [198–200]. These filters help to refine the
estimation of eigenphases, especially in the presence
of noise or when dealing with complex systems.

• Hybrid QPE-VQE workflow that employs VQE
for initial state preparation and then incorporating
QPE techniques to accelerate the optimization pro-
cess [201].

These variants improve scalability, particularly when
paired with classical compression techniques such as clas-
sical shadows or active error mitigation [34, 197]. Re-
cent experimental demonstrations include Bayesian QPE
on trapped-ion systems [196] and statistical phase estima-
tion on superconducting processors [197]. Simulations
are also advancing, for instance, using tools like QPESIM
for ground and core-level states [202]. Fault-tolerant al-
gorithms based on QPE are also being developed for
other properties, such as interaction energies via symmetry-
adapted perturbation theory [203].

D. Benchmarking, Resource Modeling, and Modular
Execution

Realistic resource estimation and performance assess-
ment are critical for determining algorithm viability in

early fault-tolerant conditions and understanding progress
towards utility-scale problems [27, 204]. Benchmarks
mapped across problem complexity and solver classes help
identify promising targets, compare solver capabilities, and
understand what makes specific problems challenging for
different algorithms. The QB GSEE Benchmark [169], for
example, aims to provide a cohesive and unified framework
for evaluating algorithms across diverse problems using
robust, standardized metrics. This involves incorporating
problem instances of various sizes, from small examples to
utility-scale challenges, sourced from established datasets
like Varbench [205], the Gaussian-2 (G2) set [206], transi-
tion metal studies [207], and other high-utility systems.

• Difficulty-feature space maps: To understand prob-
lem similarity and complexity, instances are charac-
terized by Hamiltonian features chosen for their rele-
vance to algorithm complexity [27, 130, 169]. These
features include electron/orbital counts, norms, graph
properties (vertex degree, weight, edge order distribu-
tions), number of terms, estimated Full Configuration
Interaction (FCI) dimension, and double-factorized
properties (rank, eigenvalue gap). Techniques like
Principal Component Analysis or Nonnegative Ma-
trix Factorization can visualize this high-dimensional
feature space.

• Solver performance assessment: Evaluating al-
gorithm performance under realistic conditions, in-
corporating noise models and hardware constraints
where feasible, is crucial [208, 209]. Machine learn-
ing tools offer complementary approaches for assess-
ing performance, potentially by building surrogate
models or evaluating performance on high-utility
problems that lack exact classical reference solu-
tions [130]. Establishing robust and uniform perfor-
mance metrics across diverse algorithmic approaches
is a key goal to enable fair comparisons.

• Active learning protocols: Active learning strategies
can potentially optimize the curation and evolution of
benchmark suites by efficiently identifying the most
informative or challenging problem instances [130].
This allows for systematic targeting of known hard ar-
eas in computational chemistry, such as strongly cor-
related transition metal complexes [100, 101], com-
plex excited state phenomena [14, 87], and open-
shell systems [78–80], thereby focusing benchmark-
ing efforts where they are most needed. Specific
protocols tailored for quantum benchmark curation
represent an ongoing area of research.

• Benchmarking Toolkits and Programs: Com-
munity efforts aim to standardize resource es-
timation and performance evaluation. Exam-
ples include the DARPA Quantum Benchmarking
(QB) program [210] and open-source toolkits like
BenchQC [208]. Benchmarking specific components,
such as classical optimizers used within VQE under
noise, is also crucial [209].

Modular workflows, like the one implemented in the
GSEE benchmark (Problem Database → Solution Genera-
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tion → Feature Computation → Performance Analysis →
Reporting/ML Tools), decompose quantum algorithms into
reusable and trackable stages (e.g., using unique identifiers
for provenance). Emphasizing qubit-efficient state prepara-
tion, error-mitigated measurements, and standardized post-
processing pipelines promotes modularity. Furthermore,
the development of open-source toolkits and standardized
datasets is vital for supporting community-wide contribu-
tions and ensuring reproducibility.

V. COMPUTATIONAL DESIGN AND HYBRID
INTEGRATION

Realizing practical quantum simulations in the 25–100
logical qubit regime necessitates deep integration across
quantum algorithms, classical computing resources, and
emerging hardware architectures [131]. Quantum utility in
this intermediate scale is unlikely to be achieved by quan-
tum processors in isolation but is increasingly viewed as
contingent on well-orchestrated hybrid systems that enable
co-designed, end-to-end workflows [47, 132]. Understand-
ing the interplay between algorithms, software stacks, and
hardware is paramount.

A. Hardware-Aware Algorithm Design and Execution
Frameworks

Quantum chemistry simulations impose specific archi-
tectural demands, including high two-qubit gate fidelities,
error correction throughput, and fast classical control [95].
Emerging platforms—such as NVIDIA’s accelerated quan-
tum supercomputing framework [211]—are designed to
address these demands by coupling GPUs with QPUs via
low-latency interconnects. Understanding hardware limita-
tions (gate speeds, fidelities, error rates, connectivity, coher-
ence times across different platforms like superconducting,
ion traps, or neutral atoms) is crucial for near-term algo-
rithm design. AI-powered error correction decoders [130]
and real-time control loops are incorporated into such plat-
forms to support scalable execution and circuit calibration.
Frameworks like the Transpiler-Architecture Codesign Op-
timization explore hardware-informed circuit optimization
(e.g., using native gates like RX(π/4) alongside T gates)
and cost-aware transpilation, recognizing the different re-
source costs of gates like RZ vs CX in the fault-tolerant
regime [212]. Heterogeneous error correction architectures,
potentially combining surface codes with quantum low den-
sity parity check codes like the Gross code, are also being
investigated to optimize resource usage [213].

Key enablers for hardware-aware quantum computing
include:

• Compact fermionic encodings, such as Bravyi-
Kitaev and parity mappings, requiring minimal an-
cilla overhead.

• Mid-circuit measurement support and layout-
aware transpilation.

• Noise-informed scheduling and AI-based decoder
models, enabling rapid inference for fault-tolerant
circuits. Collaboration with hardware providers can
yield high-fidelity noise models for simulation and
tailored error management strategies [34].

Runtime orchestration must coordinate tasks across
QPUs, GPUs, and CPUs, potentially requiring latencies
on the order of hundreds of nanoseconds [211]. Compiler
stacks must bridge the quantum-classical interface and ide-
ally incorporate chemistry-aware abstractions and recog-
nize important pre-compiled primitives (like Trotter steps
or block encodings [75–77]).

B. Hybrid Workflows and Adaptive Execution Models

The modular hybrid model—where classical computa-
tion handles pre- and post-processing while quantum rou-
tines solve reduced subproblems—remains the most feasi-
ble strategy in the near term. Quantum acceleration is typi-
cally applied to chemically active subsystems, such as mul-
ticonfigurational fragments or correlated sites [54, 55, 60],
identified through classical methods or machine learning
heuristics. Techniques like quantum embedding [49, 51–
53, 56, 57, 59, 60] and downfolding [63, 66, 69, 71, 190]
are crucial for partitioning the problem. Green’s func-
tion methods can provide high-fidelity descriptions of the
environment (bath) for embedding or downfolding ap-
proaches [50, 193]. Accordingly, workflows increasingly
leverage:

• Active space identification using methods like
DMRG-based entropy diagnostics [145], orbital en-
tanglement entropy [214], or automated schemes
such as AutoCAS [215–217].

• Post-processing using high-level classical solvers
(e.g., Semistochastic Heat-bath Configuration Inter-
action [218–220], CCSD(T) [10]) for result valida-
tion or refinement. Molecuiar energetics can be im-
proved beyond VQE via post-processing by invok-
ing perturbation theory in a manner analogous to
CCSD(T) [221, 222].

• Runtime task delegation across heterogeneous
resources with shared memory and synchroniza-
tion [132].

Furthermore, classical pre-processing can extend beyond
problem decomposition to optimizing the quantum rou-
tine itself; for instance, the stabilizer bootstrap technique
leverages classical simulation of stabilizer circuits to pre-
optimize parameters and analyze the potential for improve-
ment in quantum machine learning models before quantum
execution [223, 224]. These methods may offer a frame-
work for integrating fault-tolerant quantum computing tech-
niques with NISQ-era devices [225].
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C. Hybrid qubit–qumode devices and gates

Qumodes or quantum harmonic oscillators are known
for their infinite-dimensional Hilbert space and offer a
compelling resource beyond the two-level systems of con-
ventional qubits [226]. In practice, the Fock basis of a
qumode within an energy cutoff represents a discrete multi-
dimensional generalization of a qubit, also known as a
qudit [227]. There has been significant progress on quan-
tum devices consisting of qumodes coupled to a qubit,
based on the circuit quantum electrodynamics (cQED) ap-
proach [228], where the qumodes are realized as microwave
cavities dispersively coupled to a superconducting trans-
mon acting as the qubit [229]. In addition to more re-
sources than qubit-only architecture, cQED devices provide
a diverse range of universal gate sets [230–233] such as
echoed conditional displacement (ECD) with qubit rota-
tions [231], selective number-dependent arbitrary phase
(SNAP) gates with displacements and beamsplitters [230],
and conditional-not displacement gates [232], to name a
few. These gates have been recently explored for chem-
istry [234–236], optimization [237], and quantum machine
learning [238] applications. These hybrid qubit-qumode
gates are also hard to mimic using shallow qubit-only cir-
cuits [239, 240], so have a potential advantages for specific
problems suitable to bosonic problems [239] or optimiza-
tion landscapes favourable to these circuits [241]. The
high-quality and long-lived cavity qumodes have already
demonstrated quantum error correction beyond break-even
for both logical qubits [242] and qudits [243]. However,
these benefits can be undermined by the noise originating
from the ancillary qubit coupled to the qumodes [244]. This
is where a logical qubit dispersively coupled to multiple
qumodes will be highly impactful.

D. AI-Augmented Simulation Pipelines

AI plays a multifaceted role in enabling efficient hybrid
quantum chemistry workflows [130, 133]:

• Preprocessing: circuit compilation, active space
scoring, and orbital selection using trained mod-
els [92, 141], and techniques like the stabilizer boot-
strap for optimizing variational circuits [223].

• Quantum Circuit Generation: approaches such as
the Generative Quantum EigenSolver use transformer
models to synthesize low-depth circuits without opti-
mization loops. Quantum autoencoders can compress
quantum states, optimizing qubit usage [137].

• Error correction and control: AI decoders for sur-
face codes can exceed classical maximum likelihood
performance, essential for QEC scalability [37, 130].

• Post-processing and compression: learning-based
estimators, like projected quantum kernels or clas-
sical shadows, can reduce quantum measurement
overhead and enable real-time observable estima-
tion [245].

AI–quantum integration, sometimes termed Quantum
Machine Learning (QML) [246, 247], is seen as critical not
only for enhancing performance but also for overcoming
training bottlenecks (like barren plateaus [26]) and general-
izing algorithms across molecule types or basis sets [248].

E. Co-Design Strategies and Modular Architecture

Realizing quantum utility requires a shift from isolated
algorithm development to full-stack engineering and co-
design [131]. Co-design efforts span:

• Cross-platform modular workflows—supporting
portable components for state preparation, encoding,
and measurement compression [132, 169].

• Tensor network abstraction and recursive opti-
mization—to manage circuit scaling and problem
decomposition [111].

• AI-in-the-loop runtime control—for latency-aware
scheduling and dynamic resource allocation [130].

• Bridging Algorithmic Paradigms—Leveraging in-
sights and efficient classical simulation techniques
from fault-tolerant approaches (e.g., stabilizer formal-
ism) to optimize and analyze near-term variational
algorithms like QML [223].

Leveraging chemical insights, such as partitioning based
on weakly interacting fragments, can inspire developments
lower down the software/hardware stack. Ultimately, the
trajectory toward fault-tolerant quantum chemistry hinges
on tight coupling of chemical knowledge, hardware con-
straints, and scalable computing infrastructure [44].

VI. ROADMAP AND COLLABORATIVE PATHWAYS

Achieving quantum utility in quantum chemical simula-
tion is not solely a technical endeavor but also a challenge
in strategic alignment and realistic assessment [44, 47]. Re-
alizing utility in the 25–100 logical qubit regime requires
coordinated efforts across algorithm development, hard-
ware architecture, software integration, and cross-sector
collaboration. The roadmap outlined below reflects both
immediate opportunities and long-term visions grounded in
chemistry-driven use cases [120].

A. Benchmark Design and Problem Class Prioritization

The need for chemically grounded benchmark problems
will go beyond idealized or academic systems [27, 169].
Prioritized use cases include challenging electronic struc-
ture problems relevant to the model systems relevant to
energy and materials science as described in Table I.

Benchmarks can further be organized into classes [249]
based on the evaluation metrics distinguishing moderately
correlated systems tractable in the near-term from strongly
correlated systems requiring large-scale fault tolerance:
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Figure 2. Strategic roadmap for quantum chemistry simulation with increasing logical qubit budgets.

• Class 1: Moderately multireference systems with
localized correlations—potentially tractable within
25–100 logical qubits (e.g., cyclobutadiene [250],
Fe2S2 clusters [161, 162]).

• Class 2: Strongly multiconfigurational systems
with global entanglement—requiring >1000 logical
qubits and full fault tolerance (e.g., FeMoco [13]).

Class 0 systems (weakly correlated ones) also remain im-
portant targets for verifying methods [249].

Notably, the evaluation metrics were encouraged to in-
clude quantitative agreement with experiment, convergence
behavior, scaling trajectories, and chemical observables
such as excitation energies, spin state gaps, and phase
boundaries.

B. Community Infrastructure and Interoperability

Community-driven infrastructure is considered essential
for enabling reproducibility and scaling collaboration. Crit-
ical components include:

• Modular, open-source codebases for hybrid quantum-
classical workflows (e.g., frameworks integrating
classical chemistry packages with quantum li-
braries [251]).

• Interoperable APIs and intermediate data formats for
quantum and classical backends.

• Public benchmark repositories with problem in-
stances, convergence criteria, and reference out-
puts [163, 165, 169].

• Cloud-accessible simulation environments and em-
ulators, potentially integrated with HPC ecosys-
tems [132].

We encourage efforts to bridge the language gaps be-
tween chemists, software engineers, and hardware develop-
ers, as well as build up compiler tool chains with chemistry-
aware abstractions (domain-specific languages) and auto-
mated translation between Hamiltonians and quantum cir-
cuits [251].

C. Strategic Roadmap and Time-Phased Goals

Staged roadmaps have typically been discussed to guide
the evolution of capabilities across the next five years,
though specific timelines remain speculative [47]. Pub-
lic roadmaps from hardware vendors also inform expecta-
tions [28]. Here, we emphasize realistic targets tied to hard-
ware constraints (e.g., progress in error correction [37, 38]),
software stack maturity, and community readiness, as sum-
marized in Figure 2.

Reverse engineering of hardware requirements from tar-
get applications, such as defining chemical accuracy thresh-
olds to determine necessary qubit counts and gate fideli-
ties [149, 204, 252, 253], can be employed as a guiding
principle. Also, defining realistic capabilities requires un-
derstanding the practical performance limits and optimiza-
tion potential of near-term algorithms. For variational ap-
proaches like QML, techniques such as the stabilizer boot-
strap are being developed to assess when and how these
circuits might offer utilities or be efficiently optimized, in-
forming feasibility assessments along the roadmap [223].

D. Collaborative and Cross-Disciplinary Models

Progress toward these goals was linked to structured
collaboration across institutions and disciplines [44]. Sug-
gested models include:

• Shared fellowships and postdoctoral exchanges
across chemistry, computer science, and physics.
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• Multi-institutional consortia aligned around bench-
mark testbeds (e.g., DOE National Quantum Informa-
tion Science Research Centers [254], DARPA Quan-
tum Benchmarking Program [210], and NSF Na-
tional Quantum Virtual Laboratory [255] and Quan-
tum Leap Challenge Institutes [256]).

• Hackathons and challenge problems with well-
defined resource and accuracy targets.

• Standardized terminology (e.g., logical vs. physical
qubits, QEC-protected operations) to improve com-
munication.

Notably, we realize that it is also important to disseminate
negative results, clarify failed optimization strategies, and
share classical-quantum crossover boundaries for guiding
future design.

VII. CONCLUSION AND OUTLOOK

A. A Pragmatic Shift Towards Quantum Utility in
Chemistry

The field of quantum computing for quantum chemistry
is undergoing a significant strategic shift. Rather than
awaiting the arrival of large-scale, fault-tolerant machines,
the community is coalescing around a more pragmatic ap-
proach focused on the emerging regime of 25–100 logical
qubits [44]. This scale is viewed not as a temporary con-
straint but as a crucial proving ground for demonstrating
tangible quantum utility in the coming years. The emphasis
has moved towards hybrid, modular, and application-aware
strategies that maximize the utility of currently available,
limited quantum resources. These strategies often involve
techniques like embedding, downfolding, adaptive algo-
rithm design, and importantly, principled integration with
classical HPC and AI tools [130, 132, 257].

The central goal has been refined towards achieving
“Quantum Utility”—demonstrating that a quantum device
can outperform the best classical methods for specific, well-
chosen tasks, considering metrics like speed, accuracy, effi-
ciency, and resource costs [258]. This means prioritizing
niche but meaningful problems where quantum computers
are most likely to provide an impact, such as strongly cor-
related systems, quantum dynamics, and catalysis. Recent
demonstrations, like simulating H2 using logical qubits with
error detection [259], signal tangible progress towards fault
tolerance. Quantum chemistry continues to be a cornerstone
application driving these advancements [20, 21, 142].

B. Co-Design, Collaboration, and Building the Foundation

Looking ahead, progress hinges critically on the principle
of co-design. This involves deep collaboration: between
algorithm development and hardware capabilities, across
different stages of simulation workflows, and among di-
verse disciplinary communities [44, 120, 131]. Continued
innovation in theory, hardware, and software is essential,

particularly focusing on techniques like downfolding, low-
depth subspace methods, renormalized embeddings, and
novel fault-tolerant frameworks (e.g., combining fermion
and qubit codes) [260]. Integrating quantum workflows
with efficient classical pre-processing and optimization
strategies, potentially leveraging structural properties or
fault-tolerant concepts even for near-term methods [223],
will also be key.

The near-term roadmap prioritizes several concrete ac-
tions:

• Design of chemically relevant, resource-annotated
benchmarks to guide development and measure
progress [27, 169].

• Development of efficient classical pre-processing and
optimization strategies tailored for quantum algo-
rithms [223].

• Creating modular, testable hybrid workflows that are
explicitly co-designed with hardware constraints and
capabilities [131, 251].

• Integration of AI and classical HPC as scalable part-
ners within quantum simulation workflows [130,
132].

• Building a robust ecosystem, including open infras-
tructure and community benchmarks, to ensure re-
producible and reliable scientific outcomes.

Ultimately, the work ahead is inherently collaborative.
Achieving production-quality quantum chemical simula-
tions requires a shared vision, coordinated investment, and
a commitment to open science [44, 120]. The current mo-
mentum indicates that the era of practical quantum chem-
istry enabled by quantum computers is rapidly approaching,
and its foundations—built on pragmatic goals, collabora-
tive co-design, and targeted applications—are being firmly
established today.
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[8] Jiřı́ Čı́žek. On the correlation problem in atomic and
molecular systems. calculation of wavefunction compo-
nents in ursell-type expansion using quantum-field theo-
retical methods. J. Chem. Phys., 45(11):4256–4266, 1966.
doi:10.1063/1.1727484.

[9] Josef Paldus. Chapter 7 - the beginnings of coupled-cluster
theory: An eyewitness account. In Clifford E. Dykstra, Ger-
not Frenking, Kwang S. Kim, and Gustavo E. Scuseria, edi-
tors, Theory and Applications of Computational Chemistry,
pages 115–147. Elsevier, Amsterdam, 2005. ISBN 978-0-
444-51719-7. doi:10.1016/B978-044451719-7/50050-0.

[10] Rodney J. Bartlett and Monika Musiał. Coupled-cluster
theory in quantum chemistry. Rev. Mod. Phys., 79(1):291–
352, 2007. doi:10.1103/RevModPhys.79.291.

[11] Henry F Schaefer III. Quantum chemistry: The develop-
ment of ab initio methods in molecular electronic structure
theory. Courier Corporation, 2012.

[12] Walter Kohn. Nobel lecture: Electronic structure of mat-
ter—wave functions and density functionals. Rev. Mod.

Phys., 71(5):1253, 1999.
[13] Markus Reiher, Nathan Wiebe, Krysta M. Svore, Dave

Wecker, and Matthias Troyer. Elucidating reaction
mechanisms on quantum computers. Proc. Natl.
Acad. Sci. U. S. A., 114(29):7555–7560, 2017. doi:
10.1073/pnas.1619152114.

[14] Andreas Dreuw and Martin Head-Gordon. Single-reference
ab initio methods for the calculation of excited states of
large molecules. Chem. Rev., 105(11):4009–4037, 2005.
doi:10.1021/cr0505627.

[15] Heinz-Peter Breuer and Francesco Petruccione. The The-
ory of Open Quantum Systems. Oxford University Press,
Oxford, 2002. ISBN 978-0198520634.

[16] Stephen J. Klippenstein, Vijay S. Pande, and Donald G.
Truhlar. Chemical kinetics and mechanisms of com-
plex systems: A perspective on recent theoretical ad-
vances. J. Am. Chem. Soc., 136(2):528–546, 2014. doi:
10.1021/ja408723a.

[17] Richard P. Feynman. Simulating physics with comput-
ers. Int. J. Theor. Phys., 21(6/7):467–488, 1982. doi:
10.1007/BF02650179.

[18] Seth Lloyd. Universal quantum simulators.
Science, 273(5278):1073–1078, 1996. doi:
10.1126/science.273.5278.1073.

[19] Alán Aspuru-Guzik, Anthony D. Dutoi, Peter J. Love, and
Martin Head-Gordon. Simulated quantum computation of
molecular energies. Science, 309(5741):1704–1707, 2005.
doi:10.1126/science.1113479.

[20] Sam McArdle, Suguru Endo, Alán Aspuru-Guzik, Si-
mon C. Benjamin, and Xiao Yuan. Quantum computa-
tional chemistry. Rev. Mod. Phys., 92(1):015003, 2020.
doi:10.1103/RevModPhys.92.015003.

[21] Bela Bauer, Sergey Bravyi, Mario Motta, and Garnet Kin-
Lic Chan. Quantum algorithms for quantum chemistry and
quantum materials science. Chem. Rev., 120(22):12685–
12717, 2020. doi:10.1021/acs.chemrev.9b00829.

[22] John Preskill. Quantum computing in the nisq era and
beyond. Quantum, 2:79, 2018. doi:10.22331/q-2018-08-
06-79.

[23] Austin G. Fowler, Matteo Mariantoni, John M. Martinis,
and Andrew N. Cleland. Surface codes: Towards practical
large-scale quantum computation. Phys. Rev. A, 86(3):
032324, 2012. doi:10.1103/PhysRevA.86.032324.

[24] John Preskill. Beyond nisq: The megaquop machine, 2025.



13

[25] Joonho Lee, Dominic W. Berry, Craig Gidney, William J.
Huggins, Jarrod R. McClean, Nathan Wiebe, and Ryan
Babbush. Even more efficient quantum computations of
chemistry through tensor hypercontraction. PRX Quantum,
2:030305, 2021. doi:10.1103/PRXQuantum.2.030305.

[26] Marco Cerezo, Andrew Arrasmith, Ryan Babbush, Si-
mon C. Benjamin, Suguru Endo, Keisuke Fujii, Jarrod R.
McClean, Kosuke Mitarai, Xiao Yuan, Lukasz Cincio, and
Patrick J. Coles. Variational quantum algorithms. Nat.
Rev. Phys., 3(9):625–644, 2021. doi:10.1038/s42254-021-
00348-9.

[27] Alexander J. McCaskey, Zachary P. Parks, Jacek Jakowski,
Shirley V. Moore, Titus D. Morris, Travis S. Humble, and
Raphael C. Pooser. Quantum chemistry as a benchmark for
near-term quantum computers. npj Quantum Inf., 5(1):99,
2019. doi:10.1038/s41534-019-0209-0.

[28] Jay Gambetta, Jerry Chow, and Dario Gil. The hardware
and software roadmap for the quantum decade and beyond,
September 2022. Accessed: 2025-04-29.

[29] Google Quantum AI and Collaborators. Quantum error
correction below the surface code threshold. Nature, 638:
920–926, 2025. doi:10.1038/s41586-024-08449-y.

[30] D. Bluvstein, S.J. Evered, A.A. Geim, L. Li, H. Zhou,
T. Manovitz, S. Ebadi, M. Cain, M. Kalinowski,
D. Hangleiter, A.A. Zapata, N. Karle, H. Pichler, M.D.
Lukin, G. Semeghini, and H. Levine. Logical quantum
processor based on reconfigurable atom arrays. Nature,
626:58–65, 2024. doi:10.1038/s41586-023-06927-3.

[31] Microsoft Azure Quantum., M. Aghaee, A. Al-
caraz Ramirez, et al. Interferometric single-shot parity mea-
surement in InAs–Al hybrid devices. Nature, 638(8026):
651–655, feb 2025. doi:10.1038/s41586-024-08445-2.

[32] Abhinav Kandala, Antonio Mezzacapo, Kristan Temme,
Maika Takita, Markus Brink, Jerry M. Chow, and Jay M.
Gambetta. Hardware-efficient variational quantum eigen-
solver for small molecules and quantum magnets. Nature,
549(7671):242–246, 2017. doi:10.1038/nature23879.

[33] Google AI Quantum and Collaborators. Hartree-fock on
a superconducting qubit quantum computer. Science, 369
(6507):1084–1089, 2020. doi:10.1126/science.abb9811.

[34] Zhenyu Cai, Ryan Babbush, Simon C. Benjamin, Suguru
Endo Robert Frost Frank G. S. L. Brandão Alán Aspuru-
Guzik Samuel De Jong, and Xiao Yuan. Quantum error
mitigation. Rev. Mod. Phys., 95(4):045005, 2023. doi:
10.1103/RevModPhys.95.045005.

[35] Michael A. Nielsen and Isaac L. Chuang. Quantum Compu-
tation and Quantum Information: 10th Anniversary Edition.
Cambridge University Press, 2010. ISBN 978-1107002173.

[36] Craig Gidney and Martin Ekerå. How to factor 2048 bit rsa
integers in 8 hours using 20 million noisy qubits. Quantum,
5:433, 2021. doi:10.22331/q-2021-04-15-433.

[37] Google Quantum AI. Suppressing quantum errors by scal-
ing a surface code logical qubit. Nature, 614(7949):676–
681, 2023. doi:10.1038/s41586-022-05434-1.

[38] Sebastian Krinner, Nathan Lacroix, Arne Remm, Anto-
nio Di Paolo, Edouard Genois, Christophe Leroux, Chris-
tian Hellings, Stefania Lazar, Filip Swiadek, Johannes Her-
rmann, and et al. Realizing repeated quantum error correc-
tion in a distance-three surface code. Nature, 605(7911):
669–674, 2022. doi:10.1038/s41586-022-04566-8.

[39] Colin D. Bruzewicz, John Chiaverini, Robert McConnell,
and Jeremy M. Sage. Trapped-ion quantum computing:
Progress and challenges. App. Phys. Rev., 6(2):021314,
2019. doi:10.1063/1.5088164.

[40] Ivan Pogorelov, Thomas Feldker, Christian D. Marciniak,
Lukas Postler, Gouri Jacob, Otto Krieglsteiner, Vlad

Podlesnic, Michael Meth, Vladimir Negnevitsky, Michael
Stadler, and et al. Compact ion-trap quantum comput-
ing demonstrator. PRX Quantum, 2:020343, 2021. doi:
10.1103/PRXQuantum.2.020343.

[41] Galan Moody, Volker J. Sorger, Daniel J. Blumenthal,
Paul W. Juodawlkis, William Loh, Cheryl Sorace-Agaskar,
Alex E. Jones, Krishna C. Balram, Jonathan C. F. Matthews,
Anthony Laing, and et al. 2022 roadmap on integrated quan-
tum photonics. J. Phys.: Photonics, 4(1):012501, 2022.
doi:10.1088/2515-7647/ac1ef4.

[42] Dongxin Gao, Daojin Fan, Chen Zha, Jiahao Bei, Guo-
qing Cai, Jianbin Cai, Sirui Cao, Fusheng Chen, Jiang
Chen, Kefu Chen, and et al. Establishing a new benchmark
in quantum computational advantage with 105-qubit zu-
chongzhi 3.0 processor. Phys. Rev. Lett., 134:090601, 2025.
doi:10.1103/PhysRevLett.134.090601.

[43] National Academies of Sciences, Engineering, and
Medicine. Quantum Computing: Progress and Prospects.
The National Academies Press, Washington, DC, 2019.
ISBN 978-0-309-47969-1. doi:10.17226/25196.

[44] National Academies of Sciences, Engineering, and
Medicine. Advancing Chemistry and Quantum Informa-
tion Science: An Assessment of Research Opportunities
at the Interface of Chemistry and Quantum Information
Science in the United States. The National Academies
Press, Washington, DC, 2023. ISBN 978-0-309-69809-2.
doi:10.17226/26850.

[45] David Aasen, Morteza Aghaee, Zulfi Alam, Mariusz An-
drzejczuk, Andrey Antipov, Mikhail Astafev, Lukas Avilo-
vas, Amin Barzegar, Bela Bauer, Jonathan Becker, and et al.
Roadmap to fault tolerant quantum computation using topo-
logical qubit arrays. arXiv preprint, page arXiv:2502.12252,
2025. doi:10.48550/arXiv.2502.12252.

[46] Martin Roetteler and Krysta M. Svore. Quantum comput-
ing: Codebreaking and beyond. IEEE S&P, 16(5):22–36,
2018. doi:10.1109/MSP.2018.3761710.

[47] Torsten Hoefler, Thomas Häner, and Matthias Troyer. Dis-
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