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Quantum computing has entered a new era—an era

where quantum coherence is no longer an elusive
phenomenon observed only in specialized laboratories, but a
working principle guiding the design of real devices,
algorithms, and applications. The 2025 Nobel Prize in Physics,
awarded to John Clarke, Michel Devoret, and John Martinis
“for the discovery of macroscopic quantum mechanical
tunneling and energy quantization in an electric circuit,”
captures this transition in a single, elegant stroke.' > The prize
recognizes not just an experiment, but a shift in scientific
imagination: the moment when quantum behavior, once
confined to the microscopic scale, was coaxed into the
macroscopic realm of circuits and devices.””> That discovery
laid the foundation for superconducting qubits and, with them,
the modern quantum computer.®~

It is remarkable to consider how swiftly this field has
evolved.'” In less than a decade, what began as fragile, few-
qubit prototypes has matured into multiqubit processors that
can execute thousands of entangling operations with
measurable fidelity. Alongside these hardware advances, the
algorithmic, chemical, and physical sciences have converged in
ways that few could have predicted.'®'” The language of
“gates” and “circuits” now mingles effortlessly with that of
“wavefunctions” and “correlation.” The experimentalist’s qubit
calibration routine has become as vital to progress as the
theorist’s Hamiltonian decomposition. Quantum computing,
once a thought experiment, has become a shared experiment—
one conducted by physicists, chemists, engineers, and
computer scientists alike.

This collection on Quantum Computing reflects that
integration. The six reviews gathered here are not isolated
commentaries but interconnected chapters of a single
narrative: the transformation of quantum mechanics from
fundamental science to functional technology. Each article
illuminates a layer of the “quantum stack”—from the physics of
open quantum systems and gate fidelity to the architectures,
algorithms, and applications that together define the road to
scalable quantum advantage.

THE QUANTUM FRONTIER: FROM OPEN SYSTEMS TO
REAL DEVICES

Every qubit is a conversation with its environment, and
understanding that dialogue is central to progress. In Quantum
Algorithms and Applications for Open Quantum Systems,
Kowalewski and co-workers address the challenge head-on:
how to design quantum algorithms that thrive, not collapse, in
the presence of dissipation and decoherence. By uniting
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theoretical constructs such as Lindblad equations and non-
Markovian baths with algorithmic tools like quantum jump
trajectories and variational solvers, they outline strategies that
make noise not just tolerable, but instructive. Their work
reminds us that every realistic quantum device is an open
system and that embracing rather than ignoring this fact may
lead to more robust algorithms and more predictive models for
chemistry, biology, and materials.

MEASURING, DIAGNOSING, AND MASTERING ERROR

Progress in quantum computing is inseparable from progress in
measurement. In Benchmarking Quantum Gates and Circuits,
Emerson and colleagues take readers on a tour through the
intricate landscape of quantum error characterization. Ran-
domized benchmarking, process tomography, cross-entropy
tests, and emerging deterministic methods each serve as
diagnostic instruments in the experimentalist’s toolkit. But
benchmarking is more than a calibration protocol—it is a
language of accountability, a way to translate the imperfections
of physical qubits into actionable metrics. Their review
illustrates how carefully designed benchmarking experiments
can reveal the hidden anatomy of noise, guiding the design of
both hardware and error correction strategies. As the field
advances, the authors argue, benchmarking will become not
merely a report card, but a feedback loop—where measuring,
modeling, and mitigating errors form a continuous cycle of
improvement.

TOWARD FAULT-TOLERANT QUANTUM
COMPUTATION

If benchmarking is the microscope of quantum computing,
then error correction is its immune system. In Quantum Error
Correction and Mitigation: Pathways Toward Fault-Tolerant
Computation, Terhal, Preskill, and coauthors explore the
architecture of that system in exquisite detail. They map the
terrain of quantum codes—from the planar geometry of
surface codes to the infinite-dimensional landscapes of bosonic
and cat codes—and analyze how these mathematical
constructs can be made physically real. Their review does
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not stop at the asymptotic limit of fault tolerance; it also
surveys pragmatic strategies for the noisy present, such as zero-
noise extrapolation and probabilistic error cancellation. The
story they tell is one of balance: between overhead and
resilience, between theory and implementation, between the
ideal of logical qubits and the reality of their imperfect
ancestors.

QUANTUM CHEMISTRY AND MATERIALS AT THE
EDGE OF FEASIBILITY

Among the most compelling motivations for quantum
computing is its promise to revolutionize how we understand
and predict molecular behavior. In Quantum Simulation for
Chemistry and Materials Science, Reiher and co-workers bring
this promise into focus. They examine how molecular
Hamiltonians and spin models can be translated into quantum
circuits and how hybrid workflows—combining density
functional theory, coupled cluster theory, and quantum
routines—can reach chemical accuracy for systems beyond
the reach of classical methods. Through examples ranging from
small molecules to periodic solids, the authors delineate the
metrics that matter most: qubit count, circuit depth, and the
trade-offs between accuracy and feasibility. Their perspective
situates chemistry not as a distant application but as a guiding
compass for algorithmic and hardware design.

EMBEDDING, FRAGMENTATION, AND THE
QUANTUM CHEMISTRY OF REALITY

Chemical systems are often too large and too complex for
brute-force quantum simulation. Multireference Embedding and
Fragmentation Methods for Classical and Quantum Computers,
by Verma, Mitra, Wang, and Gagliardi, offers a conceptual
bridge between the worlds of chemistry and computation. The
authors trace the development of density matrix embedding
theory (DMET) and localized active space (LAS) frameworks
that partition complex systems into manageable fragments
while preserving quantum entanglement across their bounda-
ries. By extending these approaches to quantum computers—
integrating DMET with variational quantum eigensolvers
(VQE) and related hybrid algorithms—they show how the
computational burden of multireference methods can be
distributed across classical and quantum resources. Applica-
tions range from the dissociation of molecular bonds to the
study of transition-metal centers and color centers in diamond.
The review is both technical and visionary: it redefines how
quantum advantage might first appear—not as a sudden leap in
speed, but as a gradual broadening of the class of problems that
can be solved with realistic precision.

BEYOND THE STANDARD MODEL OF QUANTUM
COMPUTATION

The quantum landscape extends beyond qubits on chips. In
Emerging Paradigms for Quantum Computing: Architectures,
Algorithms, and Applications, Kim and collaborators explore
frontiers that challenge the conventional gate-based model.
Continuous-variable systems, photonic networks, analog
simulators, and hybrid architectures are not mere detours—
they are parallel evolutions, each probing a different balance of
controllability, scalability, and physical intuition. Their review
situates these platforms within a broader vision of modular,
interconnected quantum systems capable of specialized
computation and simulation. As the authors suggest, diversity

in architecture is not a weakness but a strength: the path to a
quantum future may well be plural, with multiple technologies
coexisting and complementing one another.

INTEGRATION, CODESIGN, AND THE ROAD AHEAD

What emerges from these six reviews is not a snapshot but a
living landscape. Quantum computing today is defined by
interplay—between physics and chemistry, hardware and
theory, error and correction, imagination and implementation.
It is a field in which progress depends not on isolated
breakthroughs but on codesign: algorithms that respect
hardware constraints, hardware that anticipates algorithmic
needs, and applications that inform both.

From a policy and programmatic perspective, this collection
underscores the need for integrative milestones. Benchmarks of
chemical accuracy, robust open-system simulations, exper-
imentally grounded error models, and hybrid workflows that
bridge classical and quantum resources all represent mean-
ingful steps toward practical quantum advantage. Just as the
transistor revolution required a synthesis of materials science,
electrical engineering, and computer architecture, the quantum
revolution will demand collaboration across every layer of
science and technology.

In celebrating this moment—when the physics of quantum
tunneling has blossomed into the technology of quantum
information—we are reminded that the story of quantum
computing is, at its core, the story of coherence harnessed by
creativity. The reviews in this collection invite the reader to
engage not only with equations and circuits but also with the
larger vision of what a quantum machine can mean: a new
scientific instrument, a new form of computation, and a new
way of understanding the physical world.

We hope this collection inspires curiosity and cross-
pollination across disciplines. The quantum future will not
arrive all at once; it requires vision and support, and it will be
built piece by piece, qubit by qubit, experiment by experiment.
And as these reviews show, that construction is already well
underway.
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