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ABSTRACT: Quantum harmonic oscillators, or qumodes,
provide a promising and versatile framework for quantum
computing. Unlike qubits, which are limited to two discrete levels,
qumodes have an infinite-dimensional Hilbert space, making them
well-suited for a wide range of quantum simulations. In this work,
we focus on the molecular electronic structure problem. We
propose an approach to map the electronic Hamiltonian into a
qumode bosonic problem that can be solved on bosonic quantum
devices using the variational quantum eigensolver (VQE). Our
approach is demonstrated through the computation of ground
potential energy surfaces for benchmark model systems, including
H2 and the linear H4 molecule. The preparation of trial qumode
states and the computation of expectation values leverage universal
ansatzes based on the echoed conditional displacement (ECD), or the selective number-dependent arbitrary phase (SNAP)
operations. These techniques are compatible with circuit quantum electrodynamics (cQED) platforms, where microwave resonators
coupled to superconducting transmon qubits can offer an efficient hardware realization. This work establishes a new pathway for
simulating many-fermion systems, highlighting the potential of hybrid qubit-qumode quantum devices in advancing quantum
computational chemistry.

1. INTRODUCTION
Understanding the ground and excited states of many-fermion
systems is one of the fundamental problems in chemistry and
physics. Accurate simulation of molecular electronic structure,
a many-fermion problem, is critical in understanding chemical
reaction mechanisms or designing new molecules and materials
with novel properties. Classical computers are fundamentally
restricted in simulating exact molecular electronic structure
problems beyond a certain system size,1 and approximate
classical computing methods fail to simulate a range of
electronic structure systems with strong electron correlation.2

The recent interest in developing algorithms based on
quantum computers can potentially address this issue.

The current era of noisy intermediate scale quantum
(NISQ) computers relies on the quantum information unit
known as qubits which are two-level quantum systems. NISQ
computers have inherent limitations due to the decoherence
associated with qubits and the quantum operators acting on
them. Nevertheless, several hybrid quantum-classical algo-
rithms have been developed to simulate molecular electronic
structure, that combine resources from both classical and
quantum devices.3−8 One of the steps in all these algorithms
involves mapping the fermionic Hamiltonian of the molecule
of interest to a qubit Hamiltonian.9,10

The development of bosonic quantum devices introduces a
fundamentally novel approach to quantum computing. Bosonic

quantum computing can be conceptually understood as
computations with quantum harmonic oscillators (QHOs),
also known as qumodes, instead of qubits. Qumodes can store
quantum information in the unbounded Hilbert space of
QHOs and naturally support continuous variable bases due to
the position and momentum operators associated with
oscillator modes. A range of applications has been demon-
strated using bosonic quantum devices for chemistry,11

including simulation of molecular vibronic spectra,12−14

understanding conical intersections,15 and implementing
quantum dynamics for modeling chemical processes.16,17

Qumodes can be realized with different hardware
approaches,18 including but not limited to electromagnetic
fields inside resonators,19,20 and the motion of trapped
ions.21,22 A promising and rapidly evolving hardware platform
for realizing bosonic quantum computation is the circuit
quantum electrodynamics (cQED) approach.23−26 The cQED
hardware comprises microwave resonators as the qumodes and
superconducting qubits based on Josephson junctions acting as
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the nonlinear element that controls and measures the quantum
information. Bosonic cQED devices with 3D resonator
geometries can have a photon lifetime of up to two seconds.27

Conceptually, the cQED devices are a hybrid qubit-qumode
hardware approach that promises a new quantum computing
paradigm.25

Quantum algorithms for molecular electronic structure
tailored for qubits, however, can not be trivially applied to
qumode hardware due to the fundamental difference between
qubits which are spin-1/2 systems, and qumodes which are
bosonic. An important step in simulating molecular electronic
structure on bosonic quantum computers would be to map the
corresponding fermionic Hamiltonian to a bosonic one. There
has been substantial past work on fermion to boson mapping,
including exact and approximate transformations.28−36 An
exact state mapping between fermionic Slater determinants and
bosonic Fock states of QHOs was established by Ohta based
on the fact that particle-hole excitations from the Fermi
vacuum can be represented as photon transitions.37 An exact
operator mapping between a number-conserving bilinear
fermionic operator and oscillator projection operators can be
derived from this state mapping, as shown by Dhar, Mandal,
and Suryanarayana,38 which we will call the direct mapping.
Although the direct mapping is conceptually appealing, it may
lead to an impractical number of bosonic operator terms in the
mapped Hamiltonian for larger electronic systems.

In this work, we introduce a qubit-assisted fermion to boson
mapping, where the fermionic operators will be first mapped to
qubit operators followed by a qubit to qumode mapping. We
will show how the direct and qubit-assisted fermion to boson
mappings can be applied to transform the molecular electronic
structure Hamiltonian to a system of qumodes. To the best of
our knowledge, this is the first time a molecular electronic
structure Hamiltonian has been simulated as a bosonic system,
which allows us to develop bosonic variational quantum
eigensolver (VQE) algorithms for finding the ground state of
the molecular electronic system using trial states generated by
a qubit-qumode device. Specifically, the bosonic VQE methods

can take advantage of the unique universal gate sets native to
the hybrid qubit-qumode device, such as the echoed
conditional displacement (ECD) gates combined with qubit
rotations or the selective number-dependent arbitrary phase
(SNAP) combined with qumode displacement gates. We apply
the resulting ECD-VQE and SNAP-VQE approaches to show
that the expectation value of a Hamiltonian of four qubits
representing the electronic structure of the dihydrogen
molecule can be computed using quantum hardware consisting
of two transmon qubits and one microwave resonator acting as
a qumode, as illustrated in Figure 1, while the trial energy is
optimized on a classical computer. We also generalize our
approach for larger systems where many qubits can be mapped
to a few qumodes with the operations modularized and
optimized for hardware efficiency. We illustrate our multi-
qumode generalization on the ground state of the linear H4
molecule to exemplify how our proposed method can
outperform traditional qubit-based variational approaches.
Although this work focuses specifically on the molecular
electronic structure Hamiltonian, the techniques presented
here can be applied to any many-qubit and many-fermion
Hamiltonians such as systems studied in condensed matter39

or nuclear physics.28

2. BACKGROUND
The electronic Hamiltonian under the Born−Oppenheimer
approximation can be represented in the second quantization
form as40,41

H h f f v f f f f
1
2pq

q
p

p q
pqrs

rs
pq

p q r selec = +† † †

(1)

where p, q, r, s indices represent molecular spin−orbitals {χp}
and {f p†,fq} are the corresponding fermionic creation and
annihilation operators, respectively. The scalars {hqp} and {vrspq}
are the one-electron and the two-electron integrals,

Figure 1. Illustration of a quantum device consisting of one qumode and two qubits. (Left) A conceptual illustration of a qumode coupled with two
qubits. (Right) A schematic of the quantum hardware where two transmon qubits are connected to a microwave resonator that acts as the qumode
in the cQED approach.
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where ∇ is the Laplacian operator representing differentiation
with respect to the coordinates of each electron, ZA is the
nuclear charge of the Ath nucleus, rA = |r − RA| is the distance
between an electron and Ath nucleus, r12 = |r1 − r2| is the
distance between two electrons. These elementary fermionic
operators follow the canonical anticommutation relation
(CAR)

f f f f f f, 0p q p q q p{ } = + =† † † † † †
(3a)

f f f f f f,p q p q q p pq{ } = + =† † †
(3b)

where the fermionic mode indices span the M number of
spin−orbital functions {χp}. The Pauli exclusion principle is
then equivalent to the relation f( ) 0p

2 =† , which is simply a
consequence of the CAR in eq (3).

We assume the number of spin−orbitals M to be an even
integer since there is an underlying M/2 number of spatial
functions {ϕp(r)} which can associate with either up-spin
α(ω) or down-spin β(ω) functions. Thus, N electrons in M

molecular spin−orbitals give rise to ( )M
N number of many-

electron basis states, each of which is an antisymmetrized
product state called the Slater determinants, defined as

p p f f, , N F p p F1 N1
| ··· ··· |† †

(4)

where |−⟩F is the physical vacuum representing the state with
N = 0 electrons and any f p|−⟩F = 0. We provide further context
to the electronic structure problem within the Supporting
Information. We note that the combinatorial number of many-
electrons basis states scales exponentially with the problem size
and thus proves challenging to enumerate and perform
operations on. This is where quantum computer promises to
be useful, as it can potentially address the problem of finding
stationary states and energies at a reduced computational cost.

3. QUBIT-QUMODE CIRCUITS
It is possible to transform the electronic Hamiltonian of eq 1 to
a bosonic Hamiltonian with an algebraic map of Eqp = f p†fq
operators to bosonic operators based on its Fock basis.
However, it may not be an efficient approach for mapping
systems with a large number of electrons. We present this
direct mapping in Appendix A. In this section, we focus on a
more systematic approach to transform the electronic
Hamiltonian in terms of a linear combination of qubit-qumode
operators, with the help of a fermion to qubit mapping. We
discuss this qubit-assisted mapping for the rest of this article.
3.1. Fermion to qubit mapping. Let us review the basic

concepts related to qubits which are two-level quantum
systems. The elementary one-qubit operators are the Pauli
matrices

i
k
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Z
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1 0

,
0
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,

1 0
0 1

= = =
(5)

which can be generalized to multi-qubit operators by taking
tensor products of Pauli matrices (also known as a Pauli word),
e.g., X1 Y2 Z3 = X ⊗ Y ⊗ Z represents a three-qubit operator.
We will also use {σj} to denote Pauli matrices where j ∈ {x, y,
z} represent X, Y and Z matrices. Any qubit Hamiltonian can
be represented as a linear combination of Pauli words

H g g( )Q

N

p

N

j

N
N

1 1 1

( )
H Q

p

H
Q= =

= = = (6)

where {gμ} are scalar Hamiltonian coefficients and NQ is the
number of qubits. The number of terms NH is usually a
computationally manageable integer for a physical Hamil-
tonian.

The molecular electronic Hamiltonian of eq 1 can be
transformed to a qubit Hamiltonian of the form in eq 6 by
applying a fermion to qubit mapping. There are many fermion
to qubit maps that have been explored recently. For example,
the Jordan−Wigner transformation (JWT)42 maps the
fermionic creation and annihilation operators to the following
Pauli words

f X iY Z
1
2

( )p p p
q p

q
†

< (7a)

f X iY Z
1
2

( )p p p
q p

q+
< (7b)

where the qubit indices represent the spin−orbital indices of
the fermionic operators. This means Helec is transformed by
JWT to a qubit Hamiltonian of eq 6 with N M( )H

4= and
NQ = M, where M is the number of spin orbitals. We will focus
on JWT in this paper, but we note that recent developments
on fermion to qubit maps that go beyond JWT can reduce the
scaling of both NH and NQ in terms of the number of spin
orbitals.43,44

3.2. Qubit to Qumode Mapping. Usually, some of the gj
coefficients for different j

N( )Q operators in eq 6 may be the
same, in which case these operators can be grouped and Helec
can be written as

H g WQ

N
N

1

( )
H

Q=
= (8)

where W N( )Q{ } are either a single or a summation of NQ-qubit

Pauli words and NH′ <NH. Each W N( )Q operator can be
represented in the computational basis by a matrix of
dimensions 2NQ × 2NQ. We want to map the multi-qubit
W N( )Q operator to a parametrized qumode operator with the
help of an ancilla qubit, as implementable in a cQED
transmon-resonator device. Since the target multi-qubit
operator can be arbitrary, the implemented qumode operator
must be represented by a set of universal qubit-qumode gates.

There are different universal qubit-qumode gates that have
been explored in the past.45−50 We focus here on a qubit-
qumode universal unitary circuit UA

N( )d based on Nd unitary
blocks of the following form45,46,49

U U U( , , ) ( , , ) ( , , )A
N G G G

ER N
G

N
G

N
G

ER
G G G( )

1 1 1
d

d d d
= ···

(9a)
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U ECD R( , , ) ( ) ( , )ER = [ ] (9b)

where the symbols “A” and “G” represent the ansatz unitary
and the parameters for the target unitary gates, respectively.
We will denote Nd as the circuit depth of the universal ansatz
from now on. Each unitary gate UER, schematically represented
in Figure 2 consists of a qubit rotation

R i X Y( , ) exp ( /2)(cos sin )= [ + ] (10)

and an echoed conditional displacement (ECD) operator

ECD D D( ) 1 0 ( /2) 0 1 ( /2)= | | + | | (11)

with the displacement operator defined as

D b b( ) exp( )= *†
(12)

where b
†

and b̂ are the bosonic creation and annihilation
operators. We refer the reader to Appendix C for more details
on the ECD with qubit rotation ansatz.

Before discussing further, let us first formalize a general
multi-qubit to qubit-qumode mapping approach. Let us
assume we have a target operator WT corresponding to NQ
qubits, which means it can be also understood as a qumode
operator with Fock cutoff L = 2NQ. There is no constraint on
the WT except that it is a quantum operation, i.e., WT can be
non-unitary. We want to find a parametrized qubit-qumode
operator V such that the following is true

W V( ) 0 0T Q R Q R2 | | | | (13)

where “Q” and “R” represent the states of the qubit and
resonator and |ψ⟩ is an arbitrary qumode state. We have fixed
the qubit state to |0⟩ since our mapping is focused only on the
qumode space. This also allows us to optimize in the |0⟩Q
subspace of the full Hilbert space spanned by the combined
qubit-qumode basis states, thus making the numerical
optimization for finding the parameters more robust, as
discussed below. We express the qubit-qumode operator V as
a linear combination of ECD and rotation operators

V U( , , , ) ( , , )G G G

j

N

j j
N

j
G

j
G

j
G

1

( )
t

d=
= (14a)

U U U( , , ) ( , , ) ( , , )j
N

j
G

j
G

j
G

ER j N
G

j N
G

j N
G

ER j
G

j
G

j
G( )

, , , ,1 ,1 ,1
d

d d d
= ···

(14b)

where Nd is the depth of each unitary gate and Nt is the
number of terms in the linear expansion. We have to solve the
following optimization problem to find the parameters for a
given target matrix WT

F
L

n W m

n V m

min
1

0, ( ) 0,

0, ( , , , ) 0,

n m

L

T

G G G

, , , 2
, 0

1

2

2

G G G
= | | |

| | |
=

(15)

where |0, n⟩ ≡|0⟩Q ⊗|n⟩R and {|n⟩} are the qumode Fock basis
states. The Fock cutoff L = 2NQ is the dimension of the target
NQ-qubit operator WT. In the context of mapping the
Hamiltonian in eq 8 into a qubit-qumode system, each of
the W j

N( )Q represents the WT operator in eq 15. The qubit
Hamiltonian in eq 8 can then be approximated as

H g U ( , , )Q

N

j

N

j j
N

j
G

j
G

j
G

1 1
, ,

( )
, , ,

H t
d

= = (16)

where the parameters for the ECD and rotation gates can be
represented by the tensors βG, θG, φG. After the optimization of
eq 15 is achieved, these tensors may be stored in the memory
and can be reused for further calculations involving HQ.
3.3. Computation of Expectation Values. Our goal is to

find the ground state energy of the Hamiltonian HQ by
variationally updating a normalized trial state |ψ⟩ while we
compute the trial energy

E
H

Hmin ( ) Q
Q=

| |
|

= | |
(17)

with the help of a quantum device, following the variational
quantum eigensolver (VQE) approach.3 Since the mapped
Hamiltonian in eq 16 can now be understood as a Hamiltonian
of one qumode, we explore the space of qumode states {|ψ⟩} as
the trial state. Then the trial qumode states |ψ⟩ can be
generated from a universal qubit-qumode gate involving ECD
and qubit rotations. In other words, we prepare a parametrized
qubit-qumode state

U ( 0 0 )A
D

Q R
( )| = | | (18)

where the unitary is written as

U U U( , , ) ( , , ) ( , , )A
D

ER D D D ER
( )

1 1 1= ···
(19a)

U ECD R( , , ) ( ) ( , )ER = [ ] (19b)

and D is the circuit depth of the ansatz unitary circuit for the
trial state preparation. The qumode state |ψ⟩ can be projected
from the qubit-qumode state |Ψ⟩ by measuring the qubit part
and continuing with qumode circuit if the qubit measurement
results in state |0⟩. In other words, the disentangled qubit-
qumode state can be represented as

P
P

0 Q R
0

0
| | = |

| | (20)

where P 0 00 = | | and |Ψ⟩ is defined in eq 18. We note
that bosonic ansatz has also been recently explored for
molecular electronic structure in ref 51.

The expectation value of HQ for a trial state |ψ⟩ can now be
written as

H g U

g M

Re( ( , , ) )Q

N

j

N

j j
N

j
G

j
G

j
G

N

j

N

j j

1 1
, ,

( )
, , ,

1 1
, ,

H t
d

H t

| | | |

=

= =

= = (21)

where {Mμ,j} can be computed by a Hadamard test involving
another ancilla qubit. The controlled unitary in the Hadamard
test includes two types of gates: Qubit-controlled qubit
rotation and qubit-controlled ECD gate. The latter is two-

Figure 2. Qubit-qumode gate consisting of one qubit rotation as
defined in eq 10 and an ECD gate as defined in eq 11.
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qubit one-qumode gate and can be decomposed in terms of
two-qubit and qubit-qumode gates, as discussed in Appendix
E.1. The full circuit for the generation of the trial state and
computation of expectation values involving one qumode and
two qubits is illustrated in Figure 3. The two summations in eq
21 can be efficiently computed on a classical device after
getting the set of {Mμ,j} from quantum device measurements.
We name this approach to optimize eq 17 with ECD-rotation
circuits as ECD-VQE.

It should be noted that for some specific electronic structure
systems, the global ground state of the mapped qubit
Hamiltonian HQ may not have the desired electron number
of the system of interest since after mapping the fermion to
qubit mapping, the Hilbert space of qubits contains all of the
fermion number sectors. In that case, explicit particle number
constraint can be imposed by modifying the cost function52

C H N Nmin ( )N Q
,

2= | | + [ | | ]
(22)

where λ is a Lagrange multiplier, N is the number of electrons
and N f fp

M
p p1= =
† is the fermionic total number operator,

which can be mapped to the following qubit operator

N Z1
2

( )
p

M

p p
1

+
= (23)

using the Jordan-Wigner transformation. The expectation value
N| | can be computed following the discussion above for

computing ⟨ψ|HQ|ψ⟩. This constrained cost function approach
of eq 22 can also be applicable to spin-symmetries by mapping
the fermionic SF

2
to its corresponding qubit operator SQ

2
and

optimizing the cost function below52

C H S S Smin ( 1)S Q Q
,

2 2= | | + [ | | + ]
(24)

where S is the total spin quantum number. However,
optimization of eq 17 is sufficient for many electronic systems,
including the dihydrogen molecule discussed here, which we
discuss below.

3.4. Ground State Energy of the Dihydrogen
Molecule. As a specific example, we apply the ideas discussed
above to simulate the electronic structure of the H2 molecule
in a minimal basis in this section.40 We choose one spatial
function per hydrogen atom, which leads to the following
molecular spatial orbitals

s s(1 1 )g g 1 2= + (25a)

s s(1 1 )u u 1 2= (25b)

where g and u are the normalization factors based on the
spatial functions chosen, and one popular choice is the STO-
3G minimal basis53 that approximates the Slater-type atomic
functions with three real-valued Gaussian functions.40 Having
two spatial orbitals means we have an electronic system of two
electrons in four spin−orbitals, as shown by the molecular
orbital diagram in Figure 4. Let us define the four spin−orbitals
as

, , ,g g0 1| | | | (26a)

, , ,u u2 3| | | | (26b)

where α and β denote spin−orbitals with up and down
electron spins, respectively.

The electronic structure Hamiltonian of the dihydrogen
molecule in a minimal basis can be written as9

H h h f f h f f h f f h f f v f f f f

v f f f f v f f f f v f f f f v v f f f f

v v f f f f v f f f f v f f f f

( )

( ) ( h.c.) ( h.c.)

F nuc 0
0

0 0 1
1

1 1 2
2

2 2 3
3

3 3 10
01

0 1 1 0

32
23

2 3 3 2 30
03

0 3 3 0 21
12

1 2 2 1 20
02

02
02

0 2 2 0

31
13

13
13

1 3 3 1 12
03

0 3 1 2 32
01

0 1 3 2

= + + + + +

+ + + +

+ + + + +

† † † † † †

† † † † † † † †

† † † † † †

(27)

which can then be expressed as the following four-qubit
Hamiltonian using JWT9

H H g g Z Z g Z Z g Z Z

g Z Z Z Z g Z Z Z Z g Z Z

g X Y Y X Y X X Y X X Y Y Y Y X X

( ) ( )

( ) ( )

( ),

F Q 1 2 0 1 3 2 3 4 0 1

5 0 2 1 3 6 0 3 1 2 7 2 3

8 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

= + + + + +

+ + + + +

+ + (28)

Figure 3. Full circuit involving one qumode with two qubits for computing the expectation value of a qubit-qumode unitary U for a qumode state
|ψ⟩, where the UER operation is defined in Figure 2. After generating a qumode state |ψ⟩, the Hadamard test computes Re(⟨0, ψ|U|0, ψ⟩). The
controlled-ECD gates can be decomposed further in terms of CNOT and conditional displacement gates, as discussed in Appendix E.1 and Figure
19.
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where the scalars {gj} are defined in Table 1 and tensor
product is assumed. For example, the term Z1Z3 represents the
four-qubit operator Z Z, and so on. Following eq
8, we can also represent eq 28 as

H g g WQ 1
2

8
(4)= +

= (29)

where W2
(4) = Z0 + Z1, W3

(4)= Z2 + Z3, and so on. We have
observed that after the optimization is achieved based on the
loss function defined in eq 15, we can expand eq 29 as

H g g U ( , , )Q
j

j j j
G

j
G

j
G

1
2

8

1

15

, ,
(10)

, , ,+
= = (30)

where each of the Wμ
(4) operator is written as linear

combination of Nt = 15 ECD-rotation unitaries, each with
circuit depth Nd = 10. The converged loss function for each of

the Wμ
(4) operators is shown in Table 2, where the Broyden−

Fletcher−Goldfarb−Shanno (BFGS) method was used as the

optimizer as implemented in SciPy.54 The expectation value of
HQ for a qumode state generated by the ECD-rotation ansatz
can now be computed by following the discussions in Section
3.3 and Figure 3.

Computation of expectation values allowed the emulation of
VQE for the dihydrogen molecule on a classical computer,
where the ECD-VQE optimization as defined in eq 17 has
been achieved using the BFGS method. As shown in Figure 5,
the ECD-rotation ansatz circuit with a depth D = 9 accurately
reproduces the ground state energies of the dihydrogen
molecule in the STO-3G basis, where the exact ground state
energies in this basis can be found by diagonalizing the
Hamiltonian, also known as full configuration interaction
(FCI). All calculations were done using QuTip55 and
OpenFermion.56 We compare the approximate trial energies
computed using the decomposed Hamiltonian defined by eq
30 with the exact trial energies in Figure 6. The energy errors
in Figure 6 show that it is possible that the approximate
energies can sometimes go below the exact energies. However,
these negative errors are numerically tolerable since the error
ranges are far smaller than the chemical accuracy regime.

Figure 4. A molecular orbital diagram corresponding to the H2
molecule in a minimal basis. The molecular orbitals, σg and σu, are
built from 1s atomic orbitals of the two hydrogen atoms. In second
quantization, the diagram represents the Slater determinant |0,1⟩F =
f 0†f1†|−⟩F, where the first and second spin−orbitals share the σg spatial
function.

Table 1. Definition of Scalars in Equation 28 Using Nuclear Repulsion and One-Electron and Two-Electron Integral Terms

Coefficient Definition

g1
h h h h h v v v v v v

v v

1
2

( )
1
4

( )

( )

nuc 0
0

1
1

2
2

3
3

10
01

32
23

30
03

21
12

20
02

02
02

31
13

13
13

+ + + + + [ + + + +

+ ]

g2 h v v v v1
2

1
4

( )0
0

10
01

30
03

20
02

02
02[ + + ]

g3 h v v v v1
2

1
4

( )2
2

32
23

21
12

20
02

02
02[ + + ]

g4 v1
4 10

01

g5 v v1
4

( )20
02

02
02

g6 v1
4 30

03

g7 v
1
4 32

23

g8 v1
4 12

03

Table 2. Converged Losses for the Hamiltonian Operator
Terms Corresponding to Equation 29 Following the
Optimization of the Loss Function Defined in Equation 15a

Operator Converged Loss

W2
(4) 5 × 10−12

W3
(4) 3 × 10−11

W4
(4) 5 × 10−12

W5
(4) 2 × 10−11

W6
(4) 1 × 10−11

W7
(4) 1 × 10−11

W8
(4) 2 × 10−12

aThe results are for a linear combination of Nt = 15 unitaries, each of
depth Nd = 10.
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4. QUMODE MAPPING WITHOUT ANCILLA QUBIT
Another universal bosonic unitary can be implemented by
repeating blocks of the following parametrized gate47,50

U S D( , ) ( ) ( )SD = (31)

where D(α) is the displacement gate and S(θ) is the selective
number-dependent arbitrary phase (SNAP) gate57

S e n n( )
n

L
i

0

1
n= | |

= (32)

where |n⟩⟨n| is the Fock basis projection operator and L is the
Fock cutoff for the qumode. We illustrate the SNAP-
displacement gate in Figure 7 and discuss more details on
this gate set including its universality for a single qumode in
Appendix D. Since the parametrization of the SNAP gate
already includes a complex phase, the displacement coefficient
in eq 31 can be assumed to be real-valued.

Following Section 3.2, we can now approximate an arbitrary
target unitary operator VT with our parametrized unitary

U U U( , ) ( , ) ( , )N G G
SD N N SD

( )
1 1

d
d d

= ··· (33)

where Nd is the circuit depth. The corresponding optimization
problem to find the parameters for a given target unitary VT
now becomes

F
L

n V m n U mmin
1

( , )
n m

L

T
N G G

, 2
, 0

1
( ) 2

G G
d= | | | | | |

=
(34)

where {|n⟩} are the qumode Fock basis states and the Fock
cutoff L is given by the dimension of VT. We note that even
though we can understand the parametrized unitary ansatz in
eq 33 as a sequence of qumode gates conceptually, the
hardware implementation of these gates do require an ancilla
qubit, as discussed in Appendix D.
4.1. Dihydrogen Molecule. We now apply this to the

qubit Hamiltonian for the dihydrogen molecule in a minimal
basis, as defined in eq 28. We have observed that it is possible
to accurately approximate each of the Pauli words of the
Hamiltonian in eq 28 with SNAP-displacement circuit of depth
Nd = 16, as shown in Table 3. Thus, we can write the electronic
structure Hamiltonian of the dihydrogen molecule as

H g v U ( , )Q
j

j j j
G

j
G

1
1

14
(16)+

= (35)

where the coefficients {vj} can be easily deduced from eq 28.

The computation of expectation value ⟨ψ|HQ|ψ⟩ for a trial
qumode state |ψ⟩ can be achieved by a little modification of the
circuit described in Section 3.3 and Figure 3. A major
improvement of the SNAP-displacement approach over the
ECD with qubit rotation approach can be understood by
comparing Eq. 30 and Eq. 35. Specifically, the Hadamard test
of only 14 unitaries are needed in the case of SNAP-
displacement approach compared to 120 unitaries in the case
of ECD with qubit rotation for computing the trial energy of

Figure 5. Comparison of dihydrogen molecule ground state energies
in STO-3G minimal basis using the ECD-VQE approach as discussed
in Section 3 with the FCI energies. The ECD with qubit rotation
ansatz circuit for the trial state preparation has a depth of D = 9.

Figure 6. Accuracy in energies computed using the linear
decomposition involving ECD with qubit rotation unitaries. Here,
E0 represents the energy computed with the original qubit
Hamiltonian defined in eq 28, whereas E1 represents energy
computed with its decomposition defined in eq 30. The qumode
states for the expectation values are taken from the converged trial
states corresponding to the ECD-VQE calculations shown in Figure 5.

Figure 7. Qumode gate consisting of one displacement gate as
defined in eq 12 and a SNAP gate as defined in eq 32.

Table 3. Converged Losses for the Four-Qubit Pauli Words
Corresponding to Equation 28 Following the Optimization
of the Loss Function Defined in Equation 34a

Operator
Converged

Loss Operator
Converged

Loss

Z 8 × 10−14 Z Z 5 × 10−14

Z 1 × 10−13 Z Z 2 × 10−13

Z 3 × 10−14 Z Z 3 × 10−14

Z 9 × 10−14 X ⊗ Y ⊗ Y ⊗ X 5 × 10−14

Z Z 8 × 10−15 Y ⊗ X ⊗ X ⊗ Y 1 × 10−13

Z Z 3 × 10−14 X ⊗ X ⊗ Y ⊗ Y 1 × 10−13

Z Z 4 × 10−14 Y ⊗ Y ⊗ X ⊗ X 6 × 10−14

aThe results are for the SNAP-displacement circuit as the para-
meterized circuit with depth Nd = 16.
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the dihydrogen molecule. We illustrate the full circuit for the
SNAP-displacement approach in Figure 8, where the qumode

trial ansatz |ψ⟩=UA(D)|0⟩ is also parametrized with a SNAP-
displacement circuit ansatz

U U U( , ) ( , ) ( , )A
D

SD D D SD
( )

1 1= ··· (36)

where D is the trial ansatz circuit depth and USD is defined in
Eq. 31. We name this approach to optimize Eq. 17 with SNAP-
displacement circuits as SNAP-VQE. As mentioned above, the
auxiliary qubit for implementing the SNAP gate may be
omitted in circuits conceptually. For the controlled SNAP-
displacement ansatz, the two-qubit one-qumode controlled-
SNAP gates can be implemented by combining two-qubit
CNOT with qubit-qumode SNAP gates following Eq. 84, as
illustrated in Figure 9. It should be noted that since the
qumode state preparation is separate from the expectation
value computation part in Figure 8, it can also be achieved with
an ECD with qubit rotation ansatz or any other universal
bosonic circuits in principle.

We compare the ECD-VQE and SNAP-VQE approaches for
the dihydrogen molecule on a classical computer in Figure 5,
where the BFGS method has been applied for the classical
optimization part as defined in Eq. 17. All calculations were
done using QuTip and OpenFermion. The ECD-rotation
ansatz circuit has a depth of D = 9 whereas the SNAP-
displacement ansatz circuit has a depth of D = 4 for the trial
state preparation part. It is clear from the right panel of Figure
10 that the SNAP-VQE is a better approach in terms of
accuracy and circuit depth, although both the methods achieve
energetic error well below the chemical accuracy regime.
Overall, we have observed that the SNAP-displacement ansatz
has greater variational flexibility than the ECD-rotation ansatz,
thus can represent unitary circuits more compactly for both
Pauli words and as a trial state. This is justified by more

tunability of the SNAP parameters that can precisely affect
each of the Fock basis states. An important distinction between
ECD and SNAP gates is that the ECD can be implemented in
the weakly dispersive regime between the qubit and qumode,45

where a strong dispersive interaction is currently needed for
implementing the latter.47 We refer the readers to Appendix
E.2 for more details on the comparison of the hardware
implementation of ECD and SNAP gates.
4.2. Generalization to Multiple Qumodes. The SNAP-

VQE approach allows a single unitary circuit with practical
depth for computing expectation values using a Hadamard test.
This allows the development of a modular approach to
generalize the SNAP-VQE approach for an arbitrary number of
qubits after mapping them to a few qumodes. We discuss how
to extend the SNAP-VQE approach for multiple qumodes and
the quantum hardware necessary to implement multimode trial
states here.

In principle, NQ qubits can be mapped to the unitary gates of
a single qumode with a Fock cutoff of L = 2NQ. In practice, it is
more appropriate to partition the tensor product space of NQ
qubits, which still has the advantage of replacing many qubits
with a few qumodes, while having more control over the
hardware. Let us assume we want to map NQ qubits to NR
(<NQ) qumodes with corresponding Fock cutoffs given by
{L1,···, LNdR

}. The NQ-qubit Hamiltonian in Eq. 6 can then be
represented as

H g gQ

N
N N

N
N

1

( ) ( )

1

(1) ( )
H

Q Q NR
H

R,1 ,= ··· ···
= =

(37)

whe re N( )Q j, i s a Pau l i wo rd o f NQ , j qub i t s ,

N N NQ Q Q N,1 , R
= + ··· + , and j( ) is a SNAP-displacement

ansatz with a Fock cutoff Lj = 2NQ,j. Let us also assume that any
NQ,j ≤ 4, which means the Fock cutoff for each qumode can
not be more than 16, consistent with the current qumode
hardware capabilities.13 This gives us the blueprint to
generalize SNAP-VQE to a qubit Hamiltonian with an
arbitrary number of qubits, as mentioned below.

• The optimization problem of Eq. 34 is solved for all
possible Pauli words of up to 4 qubits. This classical
optimization involves matrices up to 16 × 16
dimensions. The optimal parameters are then stored as
a library.

• Any qubit Hamiltonian HQ with NQ number of qubits is
partitioned into subsystems, each containing no more
than 4 qubits.

• The mapping of Eq. 37 is known based on the parameter
library mentioned above, and a maximum of 4-fold

Figure 8. Full circuit involving one qumode with one qubit for
computing the expectation value of a qubit-qumode unitary U for a
qumode state |ψ⟩. After generating a qumode state |ψ⟩, the Hadamard
test computes Re(⟨ψ|U|ψ⟩).

Figure 9. Implementation of controlled-SNAP gate with the ancilla qubit dispersively coupled to the qumode explicitly shown. The circuit is based
on the fact the SNAP gate implementation needs the ancilla qubit to be returned to |0⟩ state after the operation, as defined in Eq. 84.
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resource reduction can be achieved in terms of the qubit
to qumode mapping.

We show the optimal loss function values defined in Eq. 34 for
all possible four-qubit Pauli words in Figure 11. It is clear from
Figure 11 that all the converged values are at least less than
10−11, which represents the error bound for the Hamiltonian
mapping.

The Hamiltonian mapping to multiple qumodes discussed
above also allows us to generalize the circuit from the one
qumode scenario for computing the expectation value to the
multimode case. The hardware needed involves one transmon
qubit connected to multiple qumodes.48 Given a multi-
qumode trial state |ψ⟩, we can compute the expectation
value using a Hadamard test approach

Figure 10. Comparison of dihydrogen molecule ground state energies in STO-3G minimal basis using ECD-VQE and SNAP-VQE approaches, as
discussed in Section 3 and Section 4, respectively. The ECD with qubit rotation ansatz circuit has a depth of D = 9 and the SNAP with
displacement ansatz circuit has a depth of D = 4 for the trial state preparation parts. The orange horizontal line in the right panel represents the
minimum energy error needed for chemical accuracy, usually in the miliHartree range.

Figure 11. Converged losses for all possible non-trivial Pauli words based on the optimization defined in Eq. 34. The results are for the SNAP-
displacement universal circuit ansatz with depth Nd = 16.
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H gQ

N
N

1

(1) ( )
H

R| | = | ··· |
= (38)

using a sequence of qubit-controlled SNAP displacement
unitaries { } followed by measuring the ancilla qubit. The
multiple-qumode trial ansatz state can be implemented by
augmenting the SNAP-displacement ansatz with a two-
qumode beam splitter gate

BS e( , )j k
i e b b

,
/2( h.c.)i

j k= +†

(39)

since universality for one qumode combined with beam splitter
implies multimode universality.46,49 Specifically, the multimode
trial state can then be written as

vU ( ) 0 , ..., 0A
D

N
( )

1 R
| = | (40a)
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< = (40c)

where the subscripts j, k represent qumodes, v represents all
the parameters, and D is the trial ansatz circuit depth.

We will now discuss the implementation of the universal
ansatz on near-term qubit-qumode devices. As mentioned
above, an ancilla transmon qubit is assumed for implementing
all the qumode gates such as SNAP, whereas the controlled-
SNAP gates for each of the qumodes can be implemented
following Figure 9. Indeed, a tunable beam splitter between
two qumodes in the cQED formalism can be realized by
coupling the resonator qumodes to a bichromatically driven
superconducting transmon,59,60 although it can also be
implemented by connecting the resonators with a super-
conducting coupler.61,62 The full circuit is illustrated in Figure
12, where it is assumed that one transmon qubit is helping
implement all one-qumode SNAP or displacement gates and
two-qumode beam splitter gates where all the other qumodes
are assumed to be unaffected. In reality, this approach can lead
to crosstalk among the qumodes in the strongly dispersive
regime where the SNAP-displacement ansatz is imple-
mented.46 A straightforward way to avoid the crosstalk
would be to have separate ancilla transmon qubits for each
of the qumodes. Even though this approach will need as many
qubits as the qumodes, the qubits are only used for
implementing qumode gates. There has been a pioneering
development in ref 58 which avoids crosstalk in qumodes by

realizing efficient switching of the qubit-qumode interaction
regimes without impacting the resonators. The authors in ref
58 achieve this by combining a standard resonator coupled to a
superconducting quantum interference device (SQUID)-based
transmon with a cleverly designed magnetic hose.63 The
magnetic hose is a cylinder consisting of concentric aluminum
and mu-metal layers and is placed perpendicular to the SQUID
coax line, as illustrated in Figure 13.

We also discuss an alternative approach below, where the
ancilla transmon qubit is connected only to two primary
qumodes whereas the other qumode gates are implemented
using qumode-SWAP gates. The two-qumode SWAP gates can
be implemented as BS(π, π/2),25,64 which means that beam
splitter interactions are needed between the primary and the
other qumodes for this approach. As mentioned above, the
beam splitter between two resonators without an ancilla
transmon qubit can be achieved by implementing a super-
conducting coupler between them, such as a superconducting
nonlinear asymmetric inductive element (SNAIL)65 as
demonstrated in ref 62. We illustrate the qumode SWAP and
beam splitter gates in Figure 14. Then the multimode trial
ansatz as defined in eq (40) can now be implemented using
SNAP and displacement gates on the primary qumodes
combined with SWAP gates with other qumodes, as illustrated
in Figure 15. Similarly, the controlled unitaries for the
Hadamard test can also be implemented on the primary

Figure 12. Full circuit involving multiple qumodes with one qubit for computing the expectation value as defined in Eq. 38 based on the trial state
defined in eq (40). The circuit contains an additional ancilla qubit not shown here which is coupled to all qumodes.

Figure 13. Qubit-qumode hardware that can efficiently switch
between different interaction regimes, as described in ref 58. The
microwave resonator is coupled to a superconducting quantum
interference device (SQUID)-based transmon, which is connected to
a magnetic hose made from aluminum and mu-metal layers.
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qumodes with SWAP gates, as illustrated in Figure 16. This
approach is also resource-adaptive since more than two
primary qumodes can be chosen by introducing additional
ancilla transmon qubits based on the connectivity of the
couplers connecting the primary qumodes to other qumodes.

We apply our multimode approach to the ground states for
the dissociation of linear H4 molecule, where all the H−H
bonds are assumed the same. Although this is a simple system
with four electrons and eight spin−orbitals in a minimal basis,
it is known to be a challenging problem when the molecule
dissociates giving rise to strongly correlated electronic
systems.66 Indeed, the classical gold-standard electronic
structure methods such as traditional coupled cluster
completely fail to describe the dissociation curves of hydrogen
chains, making it a family of benchmark problems for strong
electron correlation.67 After the JWT mapping, the qubit
Hamiltonian for the H4 molecule in STO-3G basis can be
represented in the form of Eq. 6 with NH = 185 Pauli word
terms. Each of the resulting eight-qubit Pauli words is then
mapped to two qumodes. Thus, each of the qumode
represented four qubits with a Fock cutoff L = 16. We
compare our multimode SNAP-VQE for the H4 molecule with
qubit-based VQE based on the unitary coupled cluster with
singles and doubles (UCCSD) in Figure 17.3 The SNAP-VQE
was implemented using QuTip and OpenFermion with the
BFGS optimizer as implemented using TensorFlow,68 whereas
UCCSD-VQE was implemented using Qiskit with a limited
memory variant of the BFGS optimizer.69 The trial states for
SNAP-VQE with D = 20 blocks provide highly accurate
ground state energies compared to the exact energies even

when the molecule dissociates. The depth for the qubit-based
UCCSD scales as N N( )Q

2 3 , where N is the number of
electrons and NQ is the number of qubits. It is clear from the
right panel of Figure 17 that in the strong correlation regime
for H4, the SNAP-VQE approach outperforms the qubit-based
UCCSD-VQE energy errors which stay barely close to the
chemical accuracy range.

5. DISCUSSION
We have introduced a general scheme for mapping the
molecular electronic structure Hamiltonian in terms of unitary
operations native to bosonic quantum devices such as in the
cQED architecture involving microwave resonators coupled
with transmon qubits with the help of fermion to qubit
mapping such as the Jordan−Wigner transformation. Our work
opens the door for simulating molecular electronic structure,
and by extension, any many-fermion or many-qubit system, on
bosonic quantum devices that use qumodes as the building
blocks of quantum information.

After mapping the fermionic Hamiltonian to a qumode
Hamiltonian, one can consider the electronic structure of
interest as a bosonic problem and apply a bosonic ansatz as the
trial state for variationally finding the ground state using a
classical-quantum hybrid approach. This is related to the qubit
coupled cluster approach, where a hardware-efficient qubit
ansatz is used after mapping the electronic structure
Hamiltonian to a qubit Hamiltonian.70 We have shown how
to compute the expectation values using a hybrid quantum
device involving one qumode coupled with up to two ancilla
qubits. We have also discussed two different hybrid qubit-
qumode universal ansatze that efficiently reproduce the exact
energies for the potential energy surface of the H2 molecule.
The SNAP-VQE approach is shown to be more robust than
the ECD-VQE from the perspective of mapping the qubit
Hamiltonian. It is possible to numerically map a Pauli word to
SNAP-displacement gates with manageable circuit depth,
whereas the ECD-rotation needs a linear combination of
unitary approach to make the circuit depth practical.

The robustness of the SNAP-VQE approach inspired us to
generalize the qubit to qumode mapping to multiple qumodes.

Figure 14. Left: Illustration of how a two-qumode SWAP gate can be
implemented by a beam splitter. Right: Illustration of realization of
beam splitter of two microwave resonator qumodes without an ancilla
transmon by coupling them with a superconducting nonlinear
asymmetric inductive element (SNAIL) device.

Figure 15. A crosstalk-resistant implementation of multi-qumode trial ansatz circuit originally illustrated in Figure 12. The qumode SWAP gates
make sure that all the other gates are implemented using the first two qumodes which are coupled to an ancilla transmon qubit not shown here.
The qumode SWAP gates between the first two and the rest of the qumodes can be realized by a superconducting coupler, as illustrated in Figure
14.
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We have introduced a modular approach to partition an
arbitrary number of qubits into a few subsystems, each mapped
to the Fock basis of a qumode. We have shown that the
expectation values can be computed by a sequence of qubit-
controlled one-qumode gates followed by measurements in the
ancilla qubit. This allowed us to introduce a multi-qumode
universal circuit as the trial state ansatz. The universality for
the multi-qumode ansatz is achieved by combining the SNAP-
displacement gates with two-qumode beam splitter inter-
actions. We have proposed three hardware-efficient approaches
to tackle crosstalk constraints between multiple qumodes:
using one ancilla transmon qubit per qumode, adapting recent
progress on SQUID-based transmons, and employing qumode-
SWAP gates to minimize the qubit-qumode connectivity
required for high-fidelity operations.

We have applied our multi-qumode SNAP-VQE approach to
the linear H4, a benchmark molecular electronic system that
shows strong electron correlation when all three H−H bonds
are stretched. We have numerically demonstrated that the
SNAP-VQE approach can provide highly accurate ground state
energies for the linear H4 molecule with two qumodes coupled
to one qubit instead of eight qubits in a qubit-centric approach,
with a manageable number of qumode gates. We concluded by
comparing our method with the benchmark qubit-based

UCCSD-VQE method with a noiseless simulator, which
suggests that our approach has the potential to outperform
the traditional qubit-based variational approaches for molec-
ular electronic structure in terms of fewer quantum resources
and circuit depth. An important aspect of the qumode gates we
have explored here would be understanding their optimization
landscape for VQE,49 which we leave for future development.
We remark that the circuits for the two examples presented in
our work (H2 molecule and linear H4 chain) are shallow such
that the intrinsic noisiness of quantum computers, especially
photon loss in the qumode resonators, is less significant. We
leave the exploration of the effects of noise on our qumode
approaches to future work.

■ APPENDIX A: DIRECT MAPPING FROM FERMIONS
TO BOSONS

We will assume real-valued molecular orbitals from now on
which leads to the following relations between electron integral
tensor elements

h hq
p

p
q= (41a)

v v v vrs
pq

qs rp
sq

qp
srpr= = = (41b)

Figure 16. A crosstalk-resistant implementation of part of the circuit corresponding to the multi-qumode Hadamard test originally discussed in
Figure 12. The qumode SWAP gates make sure that all the other gates are implemented using the first qumode which is coupled to an ancilla
transmon qubit not shown here. The qumode SWAP gates between the first two and the rest of the qumodes can be realized by a superconducting
coupler, as illustrated in Figure 14.

Figure 17. Comparison of linear H4 molecule ground state energies in STO-3G minimal basis using qubit-based UCCSD-VQE and qumode-based
SNAP-VQE approach discussed in Section 4.2. All the H−H bond distances are assumed to be the same and plotted on the horizontal axis. The
multimode ansatz circuit for the SNAP-VQE has a depth of D = 20 for the trial state preparation part. The black horizontal line in the right panel
represents the minimum energy error needed for chemical accuracy, usually in the miliHartree range.
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in addition to vrspq = vsrqp due to the indistinguishability of
electrons. It is then possible to write Helec in an alternate form
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where we have defined τrspq ≡ vrspq − vsrpq such that

rs
pq

rs
qp

sr
pq

pq
rs= = = (43)

and h.c. represents the Hermitian conjugate of its preceding
operator term.

Each term of the electronic Hamiltonian in Eq. 42 has
creation and annihilation operators in pairs, which reflects the
fact that Helec is number-conserving. Let us define the bilinear
fermionic operators42

E f f E( )q
p

p q p
q=† †

(44)

which is equivalent to the number operator when p = q and
generalized singles excitation otherwise.71 A set of {Eqp} can be
successively applied to transform between any two Slater
determinants with the same number of electrons. The bilinear
fermionic operators follow a simple commutation relation

E E E E,q
p

s
r

qr s
p

ps q
r[ ] = (45)

and generate the u(M) Lie algebra,72 whereM is the number of
spin orbitals. Thus, we can rewrite the electronic Hamiltonian
as
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where we have applied the adjoint relation for the bilinear
fermionic operators and the relations in Eq. 43. Thus, we have
written Eq. 46 in such a way that the knowledge about the
bilinear fermionic operators {Eqp} with p ≥ q is sufficient to
represent Helec.

Our goal is to map Eq. 4 to a bosonic state and Eq. 1 to a
bosonic Hamiltonian, so that the molecular electronic structure
problem can be tackled with bosonic quantum computers. The
key results for the direct mapping are given below.

• A system with N fermions can be mapped to a system of
N quantum harmonic oscillators (QHOs) or bosonic
modes with a maximum of M − N + 1 oscillator levels
for each.

• An exact injective state mapping exists between Slater
determinants and Fock states of QHOs.

• An exact mapping exists between {Eqp} and Fock state
projection operators of QHOs.

State Mapping
Elementary bosonic operators follow the canonical commuta-
tion relation (CCR)

b b b b b b, 0p q p q q p[ ] = =† † † † † †
(47a)

b b b b b b,p q p q q p pq[ ] = =† † †
(47b)

where bp
†

and bp are the bosonic creation and annihilation
operators. These operators are defined such that their action
on the Fock state {|q⟩| 0 ≤ q ≤ ∞} of a single qumode is

b q q q1 1B B| + | +†
(48a)

b q q q q1 , 0B B| | > (48b)

b 0 0B| (48c)

which can be trivially generalized to multimodal bosonic
systems by taking tensor products of single-mode Fock states.
Similar to the fermionic case, the bosonic mode indices in Eq.
(47) represent an orthogonal one-particle basis. Each of the
bosonic or QHO mode can have inifinite levels or occupancies
since there is no nilpotency in the CCR. Thus, we define a
Fock state of N QHOs as

q q
b b

q q
, ,

( ) ( )
0, , 0N B

q
N

q

N
B1

1

1

N1

| ··· ···
!··· !

| ···
† †

(49)

where |0, ···, 0⟩B is the ground state of the N oscillators. It
should be noted that we only require a bosonic Fock basis of
Eq. 49 for this paper, and our approach is agnostic of the
properties of the underlying oscillators such as their
anharmonicity.

The indices in Eq. 49 represent occupied levels of each
mode, in contrast to Eq. 4 where the occupied modes
themselves are indexed. This distinction between Eq. 4 and Eq.
49 is simply the result of Pauli exclusion principle and how we
have chosen the index ordering in Eq. 4. For example, the
bosonic states |2, 2⟩B, |2, 3⟩B, |3, 2⟩B, and |3, 3⟩B are all
legitimate bosonic states involving the second and third levels
of two bosonic modes, whereas |2, 3⟩F is the only legitimate
fermionic state involving the second and third spin-orbitals.
Note that |2,3⟩F = f 2†f 3†|−⟩F = −f 3†f 2†|−⟩F respects the
permutation of its underlying operators and the resulting
sign change, which is similarly true for any Slater determinant
defined in Eq. 4.

An injective state mapping exists between Slater determi-
nants of N fermions defined in Eq. 4 and state of N QHOs
defined in Eq. 4937,73

p p q q, , , ,N F N B1 1| ··· | ··· (50)

where the relation between the two sets of indices are

q p j Nifj 1= = (51a)

p p 1 otherwiseN j N j1= + (51b)

We refer the reader to the Supplementary Information for a
justification of the state mapping. Clearly, the Fermi vacuum |0,
···, N − 1⟩F maps to the Fock ground state |0, ···, 0⟩B following
Eq. (51). Then the physical interpretation of Eq. 50 is that the
holes created from the Fermi vacuum and their impact on it
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are regarded as bosonic excitations, as in photoelectron
spectroscopy. A schematic for an example state mapping of a
system with N = 4 electrons is shown in Figure 18.

It is thus possible to apply the state mapping of Eq. 50 to
map the full configuration interaction (FCI) state for an N-
fermion system as

C p p

C q q
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, ,
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N
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1
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···

<···<
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(52)

where the scalars C p pN1
{ }··· are the FCI coefficients and the {qj}

indices are defined in Eq. (51). Since any N-fermion state can
be represented as a special case of FCI, Eq. 52 allows mapping
any state corresponding to a fermionic system with a fixed
particle number to a bosonic state with the number of modes
same as the number of fermions. Based on Eq. (51), it is easy
to see that the highest integer corresponding to the indices {qj}
in Eq. 52 is L = M − N. Thus, the state mapping naturally
truncates the dimension of the Fock basis, i.e., number of
qumode levels, based on the M number of spin-orbitals for a
given electronic system, which makes the relevant bosonic
Hilbert space isomorphic to the Hilbert space of N qudits74 of
M − N + 1 dimension.

As a specific example, let us discuss the state mapping of Eq.
50 for a system with N = 2 with arbitrary M > 2 number of
spin-orbitals. Mapping between an arbitrary Slater determinant

p q f f, F p q F| |† †
(53)

and the mapped state of two qumodes

j k
j k
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( ) ( ) 0, 0B
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(54)

is given by the following relations

p k j q p q j k, 1, 1= = = + + (55)

For example, if M = 4, then the transformations are

0, 1 0, 0 , 0, 2 1, 0 , 0, 3 2, 0F B F B F B| | | | | |
(56a)

1, 2 0, 1 , 1, 3 1, 1 , 2, 3 0, 2F B F B F B| | | | | |
(56b)

We have so far focused on mapping a Slater determinant
into a multimodal bosonic state, but as evident from Eq. 50,
the reverse is also true. For example, we write the bosonic
states that did not appear in Eq. (56) but still correspond to
two harmonic oscillator modes with three levels below

1, 2 2, 4 , 2, 1 1, 4 , 2, 2 2, 5B F B F B F| | | | | |
(57)

which are mapped to a Slater determinants of a N = 2 system
that have M > 4 spin-orbitals.
Operator Mapping
The Dhar−Mandal−Suryanarayana (DMS) transformation
maps {Eqp} operators into Fock state projection operators of
QHOs.38 The DMS transformation was derived from the state
mapping of Eq. 50 in ref 38. We simply state the resulting
expressions of the DMS transformation here and refer the
reader to the Supplementary Information for more insight into
its derivation.

Let us define the bosonic Fock space projection operator
corresponding to a given set of k harmonic oscillator modes as

r r r r, ..., , ...,r r k k,..., 1 1k1
| | (58)

and similarly define a related operator as

k a
r r

a
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k

k
1

1
=

+··· +
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where each index {rj | 0 ≤ rj ≤ L} has a specific range based on
the highest physical mode level that needs to be accessed
following the state mapping. The expectation value of the
operator in Eq. 59 can be computed from the same set of
photon number measurements. Let us also denote the identity
operator acting on the first k harmonic oscillator modes as

k k1 ··· (60)

Then the DMS mapping for any number operator Epp is

E p pp
p

N
k

N

k N k p N k1
1

1

1 1,| | +
=

+ +
(61)

where 0 ≤ p ≤ M − 1. Thus, there is N number of operator
terms in Eq. 61 of the form defined in Eq. 59. Operator terms
involving more than one number operators can be similarly
expressed and simplified due to the projection operator in Eq.
61.

Let us now define the normalized bosonic creation and
annihilation operators

q q 1B B| | +† (62a)

q q q1 , 0B B| | > (62b)

0 0B| (62c)

which can easily be extended for multimodal systems. The
DMS mapping expression for the p > q case consists of Fock
projection operators as in Eq. 61 with the {σk†,σk} operators.
We show an example of the generalized singles excitation
mapping with q = p + 1 below

Figure 18. State diagrams corresponding to the state mapping as
defined in Eq. 50 and eq (51). Here, a system with N = 4 electrons is
mapped to a system of four quantum harmonic oscillators. In the
initial state, the Slater determinant |0, 1, 2, 3⟩F corresponds to four
electrons occupying the lowest four spin−orbitals, which is mapped to
the oscillator vacuum state |0, 0, 0, 0⟩B. When some of the occupied
spin−orbitals are now excited to get the Slater determinant |0, 1, 4,
7⟩F, it gets mapped to the Fock state |2, 2, 0, 0⟩B. The occupied spin−
orbitals for electrons and excitation levels for oscillators are
represented by blue and brown circles, respectively.
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and state the general expression for the mapping of {Eqp}
operators in the Supplementary Information.

As a specific example, let us discuss the DMS operator
mapping for the specific case of N = 2 with an arbitrary M > 2
number of spin-orbitals. The number operators can be mapped
as

E p p j k j k, ,p
p
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| | + | |
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where p = 0, 1, ..., M − 1. The off-diagonal fermionic bilinear
operators can be mapped as
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where q = 0, 1, ..., M − 1 and p = 1, 2, ..., M − q − 1. It is also
possible to have an alternate representation of the DMS
mapping for the N = 2 case by applying Eq. (62)
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We mention two examples of mapping the number operators
below

E 0 00
0 | | (67a)

E 1 1 0, 0 0, 01
1 | |+| | (67b)

Similarly, the off-diagonal bilinear fermionic operators can
be mapped, with two examples given below
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where we truncated the expansion based on the highest
relevant level of the bosonic modes. We refer the reader to the
Supplementary Information for applying the direct mapping to
the electronic structure Hamiltonian of the dihydrogen
molecule in a minimal basis.

■ APPENDIX B: MATRIX REPRESENTATION OF
BOSONIC OPERATORS

We review the finite matrix representation of bosonic operators
in the Fock basis, where the matrix dimensions are L × L with
L being the Fock cutoff chosen for the qumode. For a bosonic
operator , the matrix elements are given by n mn m, = | | ,
where {|n⟩} are the Fock basis states. The matrices for the
bosonic creation and annihilation operators are
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y

{

zzzzzzzzzzzzzzzzzzzzzz

b

L

0 1 0 0

0 0 2 0
0 0 0 0

1
0 0 0 0

=†

(69b)

The matrix form for the bosonic number operator is simply

µ

µ

µ

µ

i

k

jjjjjjjjjjjjjjjjjjjj

y

{

zzzzzzzzzzzzzzzzzzzz

n

L

0 0 0 0
0 1 0 0
0 0 2 0

0 0 0 1

=

(70)

Thus, any qumode operator can now be represented with L ×
L matrices by using matrix multiplications involving eq (69)
and Eq. 70.

■ APPENDIX C: ECD WITH QUBIT ROTATION

Alternate Forms
The position and momentum operators of the qumode are

q b b
1
2

( )= +†

(71a)

p
i

b b
2

( )= †

(71b)

where we assumed atomic units. The displacement operator
can now be written as

D e e( ) b b i q p2 Im( ) Re( )= =* [ ]†

(72)

The conditional displacement operator is defined as

CD e e e( ) iZ b b iZ q p iZ( ) 2 Im( ) Re( ) ( )= = =* [ ]
†

(73)

where ( ) ( )= . We now Taylor expand Eq. 73 to
get
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(74)
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where we have used the relation Z2 = . We now rearrange Eq.
74 to arrive at an alternate form of the conditional
displacement operator

CD D D( ) 0 0 ( ) 1 1 ( )= | | + | | (75)

Thus the ECD operator is related to the conditional
displacement as

ECD CD D D( ) ( ) ( /2) 1 0 ( /2) 0 1 ( /2)x= = | | + | |
(76)

T h e E CD w i t h q u b i t r o t a t i o n o p e r a t o r
U ECD R( , , ) ( ) ( , )ER = [ ] can be written in a
block matrix form as45,60

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅÅÅ

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑÑÑ
D D

D D

U

e

( , , )

sin( /2) ( /2) cos( /2) ( /2)

cos( /2) ( /2) e sin( /2) ( /2)

ER

i

i

( /2)

( /2)

=

(77)

where the qubit rotation R(θ,φ) = exp[−i(θ/2)(cos φσx + sin
φσy)] is generated by the σx and σy Pauli matrices. Here, D(β)
in Eq. 77 represents the L × L matrix representation of the
displacement operator following Appendix B, where L is Fock
cutoff chosen for the qumode.
Universality
A Hamiltonian H is called a generator of the corresponding
unitary U = eiH. The set of ECD gates and qubit rotations has
shown to be universal since linear combinations of repeated
nested commutators of the elementary set generators cover the
full Lie algebra corresponding to the combined space of a
qubit-qumode system.45,60 Let us review the justification here.
Given a set of generating Hamiltonians A and B, the following
relations are true75,76

e e e te e ( )t A B i tA i tB i tA i tB, 32
= +[ ] (78a)

e e e e e t( )i t A B i t A i t B i t B i tA( ) /2 /2 /2 3= ++ (78b)

which can be applied to generate the unitary corresponding to
the Hamiltonians − i [A, B] and A + B in the δt → 0 limit. By
the repeated application of Eq. (78), it is possible to generate
unitaries corresponding to the linear combination of the nested
commutators of the original set of generators. Thus, universal-
ity for a qubit-qumode system means the ability to implement
any unitary transformation that can be generated from an
arbitrary linear combination of Hamiltonians of the form q pi

j k

, where j, k are non-negative integers and , , ,i x y z2{ } is
one of the Pauli matrices.

As discussed in Section C.1, the generators of ECD with
qubit rotation are q p, , ,z z x y{ }. We will now show how to
expand this generator set using commutators to achieve
universality. First, we apply the following commutators

q i q q i q p i p

p i p

, 2 , , 2 , , 2 ,

, 2

z x y z y x z x y

z y x

[ ] = [ ] = [ ] =

[ ] = (79)

to include the generators q p,a a{ } with a ∈ {x, y, z}.
Repeated applications of the following commutators

q q i q q q i q q q i q, 2 , , 2 , , 2x y z y z x z x y
2 2 2[ ] = [ ] = [ ] =

(80a)

p p i p p q i p p q i p, 2 , , 2 , , 2x y z y z x z x y
2 2 2[ ] = [ ] = [ ] =

(80b)

q q i q q q i q q q i q, 2 , , 2 , , 2x y z y z x z x y
2 3 2 3 2 3[ ] = [ ] = [ ] =

(80c)

p p i p p p i p p p i p, 2 , , 2 , , 2x y z y z x z x y
2 3 2 3 2 3[ ] = [ ] = [ ] =

(80d)

include generators qa
j with j ≥ 2. Similarly, by repeated

application of the following commutators

q p i pq j i q, 2 ( 1)x
j

y z
j

x y
j1 1[ ] = + ++ +

(81a)

q p i pq j i q, 2 ( 1)y
j

z x
j

y z
j1 1[ ] = + ++ +

(81b)

q p i pq j i q, 2 ( 1)z
j

x y
j

z x
j1 1[ ] = + ++ +

(81c)

pq p i p q j i pq, 2 ( 1)x
j

y z
j

x y
j1 2 1[ ] = + ++ +

(81d)

q p p i p q j i pq, 2 ( 1)y
j

z x
j

y z
j1 2 1[ ] = + ++ +

(81e)

q p p i p q j i pq, 2 ( 1)z
j

x y
j

z x
j1 2 1[ ] = + ++ +

(81f)

we have covered all polynomial terms q pc
j k with c ∈ {x, y, z},

which has sufficient for universality for the composite qubit-
qumode system, where we have used the relation
q p j iq, ( 1)j j1[ ] = ++ . The universality for only the qumode
can be shown by using the commutator

p q p i k p q, ( 1)a
j k

a
j k1[ ] = ++ (82)

which eliminates the Pauli operators. It should be noted that
this proof does not specify how many blocks of ECD gate with
qubit rotation can reproduce an arbitrary qubit-qumode
unitary or an arbitrary qumode unitary.

■ APPENDIX D: SNAP-DISPLACEMENT ANSATZ
The SNAP gate defined in Eq. 32 allows the application of
different phases on each Fock basis state of a qumode and can
also be equivalently defined as

i
k
jjjjjj

y
{
zzzzzzS i n n( ) exp

n

L

n
0

1

= | |
= (83)

where L is the Fock cutoff chosen for the qumode. Although
conceptually understood as a qumode operator, realistically the
SNAP gate is implemented via strongly dispersive qubit-cavity
interactions in which the ancillary qubit is rotated whenever
the cavity has n photons, consecutively for each n between 0
and L − 1.77 Since the qubit remains in |0⟩ after the SNAP
operation,47 it can also be written as

i
k
jjjjjj

y
{
zzzzzzS i n n( ) 0 0 exp 1 1

n

L

n
0

1

= | | | | + | |
= (84)

Equivalently, it can also be represented by the following
qubit-qumode operator25

i
k
jjjjjj

y
{
zzzzzzS iZ n n( ) exp

n

L

n
0

1

= | |
= (85)

We note that the exact energies for the potential energy
surface for the H2 can be obtained by the Hadamard test as
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shown in Figure 8, where each layer of the controlled-(SNAP-
displacement) ansatz can be decomposed as a controlled-
SNAP and controlled-displacement. Similar to Appendix C.2,
to prove the universality of the SNAP with displacement
ansatz, as defined in Eq. 33, we focus on its initial generator
set. The generators for the displacement operator D(α) with
real-valued α is p̂ and the generator for SNAP operator is

Q n nn
n

n

0

= | |
= (86)

The commutator of the initial generator set

J i p Q n n n, 1 ( 1 h.c.)n n= [ ] = + | + | + (87)

can selectively couple the basis states |n⟩ and |n − 1⟩. Thus, for
any integer L > 0, the operators Jn n

L
0
1{ } = and Q n n

L
0
1{ } = are

sufficient to generate the Lie algebra u(L) over the truncated
Fock space, which implies universal oscillator control.47

■ APPENDIX E: HARDWARE IMPLEMENTATION OF
UNIVERSAL BOSONIC GATES

Decomposition of Controlled-ECD Operation
We provide here an explicit, hardware-efficient compilation of
the controlled-ECD (cECD) operation, defined as a qubit (a)
controlling the native dispersive interaction between a bosonic
mode (b) and its auxiliary qubit:

Ö́ÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖ ÆÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖ

c ECD

D D

( ) 0 0 1

1 1 0 ( /2) 0 1 ( /2)
a b a a b a

a b b b b b b
ECD ( ) as defined in Eq. (11)b

= | | + |
| [| | + | | ]

(88)

Here, we assume native access to qubit−qubit CNOT
operations and conditional displacement (CD) gates. Apart
from previous demonstration in the strong dispersive limit,78

Eq. 76 suggests that the CD gate is also implementable in the
weakly dispersive regime with one native ECD operation and
one bit-flip

CD X ECD( /2) ( ) ( )b b b b= (89)

We now show analytically that the compiled circuit as shown
in Figure 19 holds. Indeed,
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{
zzz i

k
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D D
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D D

D D

D D

D D

D
D
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4
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4
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( )

( 0 0 ( /4) 1 1 ( /4))

( 0 0 ( /4) 1 1 ( /4))

0 0 ( 0 0 ( /4) 1 1 ( /4))

1 1 ( 1 0 ( /4) 0 1 ( /4))

0 0 1 1 1 0 ( /2) 0
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( )

b a b b

a b b b b

a b

a b b b b

a b b b b

a a b b b b

a a b b b b

a a b a a b b b

b

a b

= [ | | + | | ]

× [ | | + | | ]

= [ | | + | | ]

× [| | | | + | | +

| | | | + | | ]

= | | + | | [| | + |
| ]

=
(90)

Comparison of ECD-Rotation and SNAP-Displacement
Gates
Both the ECD with qubit rotation and SNAP with displace-
ment gates are implemented at the hardware by tuning the
dynamics of an oscillator qumode with an ancilla qubit. The
Hamiltonian of the qubit-qumode system for the SNAP gate
is47

H H H H0 1 2= + + (91)

Here, H0 represents a dispersively coupled qubit and cavity
oscillator

H e e n e e nq c0 = | | + | | (92)

where ωq is the transition frequency between the qubit states |
g⟩ and |e⟩, ωc is the oscillator frequency, n b b= †

is the number
operator of the qumode, and χ is the dispersive coupling. The
Hamiltonian H1 represents the time-dependence of the
oscillator

H t e b( ) h.c.i t
1

c= +†
(93)

with the oscillator drive denoted by ϵ(t). The Hamiltonian H2
represents the time-dependence of the qubit

H t e e g( ) h.c.i t
1

q= | | + (94)

with the qubit drive denoted by Ω(t). The control scheme for
the SNAP gate requires that |Ω(t)|≪ χ, i.e., the qubit drive is
weak compared with the dispersive coupling.47 In contrast, the
ECD gate is implemented in the weak dispersive regime, where
χ ≤ max(Γ1, Γ2, κ), where Γ1, Γ2 are qubit decoherence and
relaxation rates, and κ is the oscillator relaxation rate.45 In
other words, the SNAP operation is only natively available in
the strong dispersive region, whereas the ECD operation only
operates in the weak dispersive region and involves unselective
ancilla control which allows higher resiliency against cross-
talk.46 A mixed hardware architecture comprising both SNAP
and ECD gates could potentially be enabled by a program-
mable, fast beam splitter with a three-wave mixing coupler,62

which remains an exciting future direction.

■ ASSOCIATED CONTENT
Data Availability Statement
The Python code and data for the ansatz optimization, state
preparation simulations and figure generation can be found at
https://github.com/CQDMQD/qumode_est_paper.
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Additional theoretical details including overview of the
electronic structure problem, justification and derivation
of the DMS operator mapping, bosonic Hamiltonian for
the H2 molecule alongside illustrations of the parametric
dependence of its coefficients (Figure S1), heatmap of

Figure 19. Compiled circuit for controlled-ECD operation using
native gates. |ψb⟩ and its corresponding wire represents a qumode
whereas the other wires represent ancilla qubits.
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the Hamiltonian matrix elements (Figure S2), cQED-
based subspace tomography for photon transfer expect-
ation values, hybrid variational approach with the
universal bosonic ansatz for two qumodes and one
ancilla qubit (Figure S3), and comparison of ground
state energies of H2 molecule with various approaches
(Figure S4) (PDF)
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