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ABSTRACT: Checkpoint inhibitors targeting the PD-1/PD-L1 axis are key immunotherapies, but the dynamic and flexible nature
of PD-1 complicates rational antibody engineering. Here, we use computational saturation mutagenesis, AlphaFold prediction, and
molecular dynamics (MD) simulations to evolve pembrolizumab variants with suitable binding. Seven engineered antibodies form
additional salt bridges and hydrophobic contacts via refolding of both the antibody and the PD-1 interface. One variant, m7p.5,
displays improved biphasic kinetics and high-aflinity binding (KD,apparent = 62 pM). Structural changes include an a-helix to loop
transition in the antibody heavy chain and a 4.6-A Ca shift of a PD-1 loop. These results show that computational evolution can
access binding modes inaccessible to traditional rigid structural design, enabling high-affinity antibodies for flexible targets. It is
demonstrated that our integrated computational approaches including MD simulations can generate new picomolar high-affinity
antibodies targeting specific epitopes of proteins that may be intrinsically flexible and are difficult to target with reasonable
computational cost, which would be far less than an experimental cost for finding new antibodies with equivalent binding affinities.
This study provides a new tool that can be combined with other artificial-intelligence-based antibody generation against PD-1 from

the existing anti-PD-1 antibody library with broad applications in protein—protein interactions.

rogrammed death ligand-1 (PD-L1) is a type I trans-

membrane protein and a key immune checkpoint ligand
involved in tumor immune evasion."” Immunotherapies
targeting the PD-1/PD-L1 axis—particularly monoclonal
antibodies—have revolutionized cancer treatment, with static
structural insights from X-ray crystallography playing a central
role in their development.’”> Despite the success of
therapeutics such as pembrolizumab, which exhibits picomolar
binding affinity (Kp),° further affinity enhancement remains
difficult. This is largely due to the conformational plasticity of
the PD-1 epitope, especially its FG loop, which poses a
significant barrier to traditional structure-based antibody
optimization.

Here, we present a computational evolution pipeline
designed to overcome the conformational plasticity limitation.
The approach employs saturation mutagenesis at pembrolizu-
mab interface residues, guided by AlphaFold2 structural
predictions and refined via molecular dynamics (MD)
simulations.” This strategy yielded seven high-affinity antibody
variants featuring new interprotein salt bridges and hydro-
phobic interactions, arising from coordinated structural
rearrangements in both PD-1 and the antibody. Notably,
variant m7p.5 exhibited biphasic binding kinetics and
enhanced affinity (KD,apparent = 62 pM) likely driven by an a-
helix to loop transition in the antibody heavy chain. These
findings demonstrate that computational evolution can access
alternative binding modes beyond the reach of traditional rigid
design approaches, enabling the development of high-affinity
antibodies against conformationally dynamic targets.

Equilibrated pembrolizumab/PD-1 complex structures were
derived from MD-simulated ED maps. Starting from the
published crystal structure of the binary complex of
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pembrolizumab with PD-1 (PDB code SGGS at 2 A
resolution),® random saturation mutations were introduced
using PyMol.” Structures were filtered via AlphaFold2” and
then simulated in explicit solvent using the OPLS force field as
implemented in Maestro with periodic boundary conditions; "
400 ns production runs were analyzed for hydrogen bonding,
hydrophobic contacts, and root-mean-square deviation
(RMSD)."' ™" An extended description of materials and
methods can be found in the Supporting Information (SI).

IgG variants were expressed in Expi293F cells and purified
using Protein A columns (see Table S6 for cloning and
expression sequences). Binding to biotinylated PD-1-Fc was
measured with an Octet R8 instrument (Sartorius). Associa-
tion/dissociation were analyzed using two-phase exponential
fitting (SI).

Biotinylated PD-1-Fc was immobilized and exposed to
antibodies followed by PD-L1. No additional signal indicated
competitive inhibition. Interpretation of kinetic parameters for
pseudo-fast-order reaction follows earlier work.">'® Briefly, the
association rate in each phase is described by k = k,,[Ab], —
ks where [Ab] is the concentration of antibodies used for the
assay. In dissociation reactions, the dissociation rate is the
same as the off rate constant k. and independent of the
antibody concentration [Ab], where k,, and k. are rate
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constants. Once the antibody concentration is known, it is k,
= I:k + koff]/[Ab]O. The blndlng aﬂinity KD = koff/kon = [koff/(k
+ kog)] [Antibody], is determined using the fitted parameters
in the fast association phase and the slow dissociation phase.

We selected 7 interface residues of pembrolizumab—T31,
§32, L50, R96 in the light chain and T28, T30, S54 in the
heavy chain—for computational saturation mutagenesis
(Figure 1, Figure S1—SS, Table S1). All mutated complexes

Figure 1. (A) MD-derived equilibrium complex of pembrolizumab
with PD-1 and selection of seven interface targets of pembrolizumab
for saturation random mutagenesis marked by large spheres. (B,C)
Comparison of epitope contacts in the pembrolizumab/PD-1 complex
structure and the m7p.vS/PD-1 complex structure, shown as MD-
derived electron density (ED) maps contoured at 4. See Figure S1
for close-up view MD-derived ED maps for the parental
pembrolizumab-PD-1 complex and detailed interactions at the
interface, and Figure S2—S$S for other interactions with designed
antibodies.

were assessed using AlphaFold2 for structural plausibility, and
the top 10 variants (m7p.0—m7p.9) were evaluated with 400
ns explicit-solvent MD simulations (Table S1, Figure $6).”

The simulations revealed that variants m7p.3—m7p.7 and
m7p.9 retained interface complementarity and were very stable
across MD trajectories (Figure 1, S2—S5). As detailed in
Figure 1 and supported by the well-defined MD-derived
electron density (ED) maps, these variants formed some new
persistent interactions that are not present in the parental
pembrolizumab complex.

MD analysis revealed that all engineered variants introduced
new interprotein salt bridges that are not present in the
parental complex. In particular, T31D and R96D formed
multiple H-bonds with PD-1 R86, which are not present in the
parental pembrolizumab complex (Table S2-SS), stabilizing its
FG loop (residues 85—90) into a new defined rotamer. These
interactions were correlated with higher binding stability, as
confirmed by cumulative hydrogen bond occupancies over
simulation time (Figure S6, Tables S2—SS). These con-
formations include a weak paired arginine—arginine inter-
action, which is a well-documented t;rpe of interaction known
as a magic arginine—arginine pair. It is noted that the
charge reversion mutation such as R96D would not typically be
considered a viable choice in the traditional approach of
affinity maturation or rigid structure-based protein design.

Another key structural change was observed in the G26—
T30 region of the heavy chain CDRI. In pembrolizumab, this
region adopts an a-helical turn with minimal PD-1 contact, not
making significant interactions with PD-1. In contrast, variants

with T28Q and T30G (e.g., m7p.5) adopted a compact loop,
forming hydrogen bonds with PD-1 Q7S and D77 (Figure 1).
This induced a conformational shift in PD-1’s FG loop near
S73 by approximately 4.6 A, enabling new hydrophobic
contacts—particularly in variants carrying S32F/Y/H sub-
stitutions (Table S5).

Biolayer interferometry (BLI) was used to determine the
binding properties of the engineered antibodies. Variants
m7p.3—m7p.7 and m7p.9 exhibited strong association
responses and formed stable complex formation with PD-1
(Figure 2, Figure S7, S8). Association curves followed a
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Figure 2. Binding assay of designed anti-PD-1 antibodies using
biolayer interferometry (BLI) methods. (A) The sensor graphs for
association of the m7p.0, m7p.1 (V1) to m7p.9 (V9) and
pembrolizumab to immobilized PD-1 for 2 min followed by
dissociation for other 2 min. (B) Maximal response units from
three independent measurements. (C,D) Typical competition assay in
three phases. Phase-1 is for the binding of V5 or buffer control (panel
C) or other designed anti-PD-1 antibodies plus pembrolizumab
control (panel D). Phase-2 is for dissociation of antibodies and
binding of PD-L1. Phase-3 is for dissociation in buffer. Fitted models
for VS and residual function are also shown (panel C). See Figure S7
and S8 for detailed fitting of biphasic kinetic parameters.

biphasic kinetic profile, best fit by two exponential
components—fast and slow binding phases (Figure 2, Figure
S7, SS) For example, m7p.S had a fast association rate of 14.4
min~’, a slower phase of 2.7 min™", and Kp, apparent = 62 pM—
comparable to pembrolizumab (42 pM, see Table 1).
Dissociation phases also followed biphasic behavior (Figure
S8B), where slow off-rates dominated. For m7p.S5, 88% of the
complex dissociated via a slow phase, suggesting enhanced
kinetic trapping via the engineered interfacial network. This

Table 1. Binding Kinetics of Selected Variants vs
Pembrolizumab

Antibody ky (m™) ky (m™") Kp app. (pM)
Pembrolizumab 15.8 2.5 42
m7p.5 14.4 2.7 62
m7p.4 16.0 2.9 56
m7p.3 133 2.1 68
m7p.6 132 2.3 68
m7p.7 12.2 2.2 74
m7p.9 10.5 2.0 85
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kinetic profile may reflect the multistep structural docking
observed in MD.

Three-phase binding competition assays showed that all
high-affinity variants block binding of PD-L1 to PD-1. In Phase
1, association with designed antibodies occurs. In Phase 2, no
additional signal was observed upon PD-L1 introduction,
indicating that association with PD-1 occurs only with the
uncomplexed fraction of PD-1, which is either the
uncomplexed PD-1 from Phase 1 to start with or after
dissociation of bound antibody variants in Phase 1, i.e.,, PD-L1
shares the same or overlapping binding sites of designed
antibodies. Phase 3 dissociation phases were for both PD-L1
and designed antibodies (in Phase 2), further validating their
direct competition. These results confirm that, despite
sequence and structural divergence from the parental antibody,
the engineered variants retain the desired therapeutic
mechanism of action.

This study shows that our computational evolution—
combining saturation mutagenesis, structural prediction, and
MD simulations—can produce antibody variants with new
structural and kinetic properties. Importantly, the variants
refold themselves and their antigen targets to establish new
interactions that would be invisible to traditional design. This
method offers a generalizable framework for engineering
antibodies against flexible or poorly structured epitopes.

In conclusion, it has been demonstrated that a combination
of computational saturation mutations, AlphaFold complex
predictions, and molecular dynamics simulations can solve
antibody affinity maturation problems. Although this is a
proof-of-principle study, beginning with a high affinity
antibody pembrolizumab, it could work better with low-affinity
antibodies, which should have much larger room for affinity
improvement. It might be relatively straightforward and
inexpensive both experimentally and computationally to
generate many low-affinity antibodies against a given specific
antigen; this study could pave a new path toward affinity
maturation of these antibodies to generate high-affinity
antibodies.
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