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Software and Hardware

All computations were executed using Python 3.11.5. The behavioral emulation of a quantum
device via classical computation was performed using the Qiskit (version 1.2.0) quantum
simulation package. Quantum state measurements were performed using the StateVector

simulator.! Circuit parameter optimization was achieved using the COBYLA optimizer, as
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implemented within Qiskit. Tensor calculations were facilitated by the PyTorch version 2.2.0
+ cul2l package.2 A comprehensive list of libraries used in this study is provided in this
link. All simulations delineated in this study were performed utilizing 16 processors in the
following hardware configuration: AMD Perlmutter EPYC CPUs equipped with 512 GB of
RAM and NVIDIA A100 Tensor Core GPUs, featuring 40 GB of HBM2.

Selectivity and Specificity
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Figure S1: Selectivity and specificity among the generated sets of residues predicted to
coordinate each metal ion type were evaluated. Overall, the model exhibits high specificity,
with the majority of values falling within the 0.9-1.0 range for all three ions, indicating a
low rate of false-positive predictions. In contrast, sensitivity displays substantially greater
variability and frequently approaches zero, suggesting that many true coordinating residues
are not identified. Nevertheless, instances of 100% sensitivity are observed, demonstrating
that, under favorable structural conditions, the model can achieve near-perfect detection of
coordinating residues.
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Coordination Numbers
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Figure S2: Comparison of the metal coordination number frequency for Ca?*-, Mg?*-, and
Zn*T-proteins in the real case (a-c) against generated structures containing 1 (d-f) and 4
(g-1) ions. The cutoffs are chosen so that the majority of coordination numbers match the
theoretical values.
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Normalized DOPE Score

Frequency

(d)

Frequency

Frequency
o4
>

o
IS

o
o

-3 -2 -1 0 1 2 3 -3 -2 -1 0 1
DOPE Score DOPE Score

2 3 -3 -2 =

1 0
DOPE Score

Figure S3: Distributions of N-DOPE scores for the generated structures of Ca®™- (a—c),
Mg?*- (d-f), and Zn?**-binding proteins (g-i) are shown, with the number of ions in the
models increasing from one on the left to three on the right. Following the criteria of
Eramian et al.,® models with N-DOPE scores below -1.5 are classified as near-native, whereas
those with scores above 1.0 are considered inaccurate. Accordingly, the histograms are
partitioned into green (near-native), red (inaccurate), and yellow (ambiguous) regions. Under
this classification, only a small fraction of the generated structures fall into the inaccurate
category, with the remaining models approximately evenly divided between ambiguous and
near-native quality.

S4



ESM Analysis
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Figure S4: Comparison of mean per-residue log-likelihood distributions for the training set
(blue) and sequences generated via random sampling (orange), a classical CNN-based VAE
(green), and QO-BRA (red). Log-likelihoods were computed using ESM2_t30_150M_UR50D#
for all sequences; for each sequence, per-position log-likelihoods were averaged to obtain a

single summary value.
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Encoding Scheme
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Token values

Figure S5: Assignment of token values to amino acid sequence characters, illustrated here
using the Zn?*-protein dataset as an example, is conducted as follows. The most frequent
character is mapped to the token with the smallest absolute value, and subsequent characters
are assigned token values of increasing absolute magnitude as their frequencies decrease, with
signs alternating between positive and negative. The smallest absolute value is set to 0.5, and
subsequent values increase in steps of 1.0 in absolute terms, ensuring that no two characters
share the same absolute token value. This construction explicitly accounts for the loss of sign
information in the measurement of quantum state probabilities on real quantum hardware.
Consequently, the encoding scheme obviates the need for quantum state tomography to
recover phase information.
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Entanglement Scheme
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Figure S6: Demonstration of all-to-all qubit entanglement (I, red) used for QO-BRA illus-
trated with three qubits and compared against alternative ladder (IT) and ring (I1T) entangle-
ments. All-to-all allows for maximum exchange of information among the qubits, facilitating
the learning process.
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