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QOBRA: A Quantum Operator-Based
Autoencoder for De Novo Molecular Design
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We introduce a variational quantum autoencoder tailored for de novo molecular design named QOBRA (Quantum Operator-Based Real-Amplitude autoencoder). QOBRA leverages quantum
circuits for real-amplitude encoding and the SWAP test to estimate reconstruction and latent-space regularization errors during back-propagation. Adjoint encoder and decoder operators enable
unitary transformations and a generative process that ensures accurate reconstruction as well as novelty, uniqueness, and validity of the generated samples. We showcase the capabilities of
QOBRA as applied to de novo design of Ca2+-, Mg2+-, and Zn2+-binding metalloproteins after training the generative model with a modest dataset.

quantum machine learning | molecular design | generative network | quantum computation

The design of molecular compounds for targeted functions and applications has
long been a cornerstone of chemical research (1, 2). With the rise of computational
methods, computer-aided molecular design (CAMD) has advanced significantly,
though it continues to face key challenges (3, 4). Early efforts on leveraging
structure–function relationships (5, 6) enabled applications ranging from drug
delivery to materials science. However, CAMD has remained quite limited due to
the complexity of correlating molecular structure with molecular properties in the
vast chemical space with a combinatorial number of possible molecules (7, 8).

In recent years, deep learning has driven a new wave of algorithms for molecular
design (9, 10). Neural networks (NNs) can now extract complex, hidden patterns
from datasets of lead compounds, enabling the generation of novel molecules with
structures and properties informed by those of the training set. In fact, popular AI
libraries (e.g., DeepChem (11)) are routinely used to predict molecular properties
directly from structure. On the generative side, architectures such as generative
adversarial networks (GANs) (12) and reinforcement learning (RL) frameworks (13)
can achieve excellent performance for the generation of valid molecules.

Specifically, deep learning models have focused on protein design (9, 14). Proteins
are fundamental to life, carrying out a wide range of functions including cataly-
sis (15), transport (16), signaling (17), and regulation (18). They are also implicated
in numerous human diseases such as cancer (19), diabetes (20), and Alzheimer’s
disease (21), making protein engineering a central challenge in biochemistry. De novo
design of proteins thus holds promise for advances in a wide range of applications,
including targeted interventions in personalized medicine (22). It has been shown
that neural networks can uncover hidden patterns in natural protein sequences and
structures, enabling the generation of artificial proteins with enhanced properties
and biologically plausible architectures (23, 24). To date, most models have focused
on modifying or improving existing protein scaffolds (22), while the space of fully
de novo protein design remains comparatively much less explored (23). Greener et
al. (25) have reported one application of a classical variational autoencoder (VAE)
for protein generation, capable of producing novel peptide sequences that bind
metal ions by modifying input sequences of up to 140 amino acids.

Despite recent advances, classical machine learning models remain constrained by
rather demanding computational encoding schemes, large neural networks, extensive
training data requirements, and significant memory demands. These limitations
hinder their scalability and efficient retuning for broader applicability. Quantum
machine learning (QML) promises an alternative, introducing a paradigm shift in
computation by leveraging variational quantum circuits that can be trained with
back-propagation (24). QML models can exploit the encoding efficiency of quantum
superposition states with intrinsic parallelism, potentially providing significant
efficiency gains.

Superposition states and quantum entanglement should offer key advantages since
they can enable the encoding of correlations that are fundamentally unattainable
in classical systems (26, 27). Quantum machine learning (QML) models have also
demonstrated improved generalization performance and reduced data requirements
compared to classical models (28). Moreover, quantum systems can efficiently
represent and manipulate exponentially large state spaces. An N -qubit system
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Recent advancements in classical
generative machine learning have
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lar design for targeted applications.
Nonetheless, these advancements
are fundamentally limited by clas-
sical computation based on binary
units. We introduce a quantum
computation-based ML framework
employing qubits, which exhibits the
ability to synthesize de novo molec-
ular instances with specified prop-
erties from limited datasets. Quan-
tum networks require exponentially
fewer parameters than classical
ones, enhancing their trainability
and efficiency. While our demon-
stration focuses on metalloprotein
primary sequences, the paradigm
is adaptable to diverse molecular
designs. This integration of AI and
quantum computing holds potential
to expand the scientific and tech-
nological frontiers of both domains
within a practical framework.
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Fig. 1. Panel I: Schematic comparison of classical (A) and quantum (B) variational autoencoders. Both architectures
include an encoder (orange), a latent space (red), and a decoder (yellow). Panel II: Overview of the QOBRA model. (A)
During training, input peptide sequences are embedded into a quantum circuit (encoder), mapped to a latent space, and
reconstructed via the decoder—defined as the adjoint of the encoder. (B) After training, new peptide sequences can be
generated by sampling from the learned latent space.

encodes 2N states in parallel; for example, 10 qubits represent 1024 states, while 266
qubits represent approximately 1080 states—comparable to the number of atoms
in the observable universe (29). This combination of exponentially scalable state
representation and lower data demands positions QML as a promising approach
for domains such as molecular design, where combinatorial complexity and limited
training data present major bottlenecks.

Quantum variational autoencoders (QVAEs) are emerging as powerful tools for
processing quantum data and simulating quantum systems. These models combine
classical variational autoencoders with quantum components to enable efficient com-
pression, representation learning, and generation of quantum states (30, 31). QVAEs
have demonstrated competitive performance on tasks like image generation and
can be trained using quantum Monte Carlo simulations (30). Recent advancements
include the ζ-QVAE, which utilizes regularized mixed-state latent representations
and can be applied directly to quantum data (31). Additionally, quantum circuit
autoencoders have been developed to compress information within quantum circuits,
with applications in anomaly detection and noise mitigation (32). These quantum
autoencoder models show promise in learning efficient representations of quantum
states, including those that are difficult to simulate classically, suggesting potential
applications in near-term quantum hardware (33).

Here, we introduce a QVAE tailored for de novo molecular design named
QOBRA (Quantum Operator-Based Real-Amplitude autoencoder), schematically
illustrated in Fig. 1IB. QOBRA is a generative model that learns to encode
input data into a continuous, low-dimensional latent space and decode it to
reconstruct the original data. Unlike conventional autoencoders, VAEs impose
a probabilistic structure—typically a multivariate Gaussian—on the latent space.
This regularization enables smooth interpolation between latent representations
and conditional generation of molecules in close chemical proximity to a reference
structure (10, 25, 34). When appropriately trained, VAEs can generate novel
compounds that preserve key characteristics of the training distribution. Prior work
has demonstrated their utility across a range of molecular design tasks, including the
generation of molecules with tailored physico-chemical properties, selective binding
affinities, or compatibility with specific retrosynthetic routes (10, 34, 35), as well as
applications in protein design (23, 25) and molecular structure prediction (12, 36).
QOBRA is agnostic of the specific quantum computing platform, so we describe
how to implement it on conventional qubit-based devices (Part I) as well as on
hybrid qubit-qumode platforms (37).

In this work, we illustrate QOBRA as applied to de novo protein design. Hence,
we demonstrate the effectiveness of QOBRA in generating metalloproteins that
selectively bind divalent metal ions, including Ca2+, Mg2+, and Zn2+. The model
reliably produces appropriate metal-binding sites, as defined by both the primary
amino acid sequence and the spatial arrangement of coordinating side chains.
QOBRA exhibits strong robustness to hyperparameter variation and consistently
delivers high-quality designs using minimal training data and a compact set of
variational parameters.
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Fig. 2. Latent space fitting after training on Zn2+ data with Nq = 7 for different ansatz depths: r = 1 (a), r = 2 (b), and
r = 3 (c). Increased depth leads to improved alignment with the target distribution, reflecting higher model expressivity.

Results & Discussion

This section presents the results of QOBRA-driven de novo generation of Ca2+-,
Mg2+-, and Zn2+-binding proteins. We begin by analyzing the impact of key
hyperparameters on generation performance, with particular focus on the ansatz
unit repetition number (r) and the number of qubits (Nq). Their influence on both
model efficiency and structural quality is systematically investigated.

We then highlight representative metalloproteins generated using the optimal
hyperparameter configurations, demonstrating that QOBRA not only produces
high-quality protein structures but also outperforms its classical counterpart in key
performance metrics.

Generation quality is assessed by comparing features of the generated proteins
against those in the training set. Specifically, we examine token frequency distribu-
tions, peptide length distributions, the number of ion binding sites, and the number
of chains per complex. To quantify the alignment between generated and training
data, we compute a relative ratio (RR) for each of these four properties. An ideal
model would yield RR = 1 across all metrics.

In addition, we evaluate the generated sequences using the NUVR metric, which
assesses novelty (N), uniqueness (U), validity (V), and reconstruction accuracy
(R). Each component is scored between 0 and 1, with 1 indicating a sequence that
is entirely novel, unique, chemically valid, and accurately reconstructed. Further
methodological details are provided in the Supporting Information (34).

A. Effect of Ansatz Depth (r) on Model Performance. In classical convolutional neural
networks, model capacity is strongly influenced by both depth and the number
of trainable parameters (38). Analogously, in quantum machine learning (QML),
circuit depth plays a critical role in model expressivity and learning performance.
In QOBRA, this depth is governed by the number of repetitions r of the RA ansatz.

Fig. 2 shows the latent space fitting quality after training QOBRA with r = 1
to 3. The inset highlights the first component of the latent vectors, illustrating how
the “head” of the sequence is embedded in latent space. The main plots display the
fitting behavior of the remaining components. The target latent distribution is a
Gaussian with zero mean and standard deviation σ =

(
1.5 × 2Nq/2)−1.

For r = 1 (Fig. 2a), the model shows limited ability to match the target
distribution. Increasing to r = 2 (Fig. 2b) significantly improves the fit, indicating
that a deeper ansatz enhances learning capacity. A further increase to r = 3
(Fig. 2c) offers only marginal improvements, suggesting that additional depth yields
diminishing returns.

As detailed in Tab. 1, increasing r leads to a linear growth in the number of
trainable parameters and a corresponding increase in training time. Based on
this trade-off between performance and efficiency, we fix r = 2 for all subsequent
experiments.

B. Trade-off Between Qubit Count (Nq) and Model Capacity. Another key hyper-
parameter is the total number of qubits, Nq, which defines the maximum peptide
length that the model can process. Specifically, a network with Nq qubits can
handle sequences of up to 2Nq − 1 residues. If Nq is too small, the model cannot
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r Parameters Training Runtime/h
1 14 3.94
2 21 5.90
3 28 7.03

Table 1. Encoder parameter count and training runtime for Zn2+ data as a function of ansatz depth
r, with Nq = 7. Training was performed using 48 x86 64 Intel CPUs. Only encoder parameters are
reported.

generate sufficiently long or complex sequences to represent functional proteins.
On the other hand, while the theoretical advantage of quantum machine learning
partly stems from scaling with qubit number (39), increasing Nq leads to a linear
growth in the number of trainable parameters. This significantly increases the
computational cost and training time. To balance expressivity and efficiency, we
restrict our exploration to Nq = 6, 7, 8, and 9, as shown in Tab.s 2 and 3.

While the NUVR metric remains relatively consistent across the three ion datasets
(Tab. 2), the relative ratio (RR) results—summarized in Tab. 3—highlight a more
nuanced dependence on the qubit count Nq. In general, performance improves with
increasing Nq, as reflected by RR values approaching the ideal value of 1 across all
training scenarios. This trend is most pronounced for Zn2+ at Nq = 9, as shown

Ion, Nq Parameters N U V Rtrain Rtest NUVRtrain

Ca2+, 6 18 0.98 1.00 0.86 1.00 1.00 0.84
Ca2+, 7 21 0.92 1.00 0.85 1.00 1.00 0.79
Ca2+, 8 24 0.91 1.00 0.82 1.00 1.00 0.75
Ca2+, 9 27 0.93 1.00 0.84 1.00 1.00 0.78
Mg2+, 6 18 0.99 1.00 0.80 1.00 1.00 0.79
Mg2+, 7 21 0.97 1.00 0.83 1.00 1.00 0.81
Mg2+, 8 24 0.96 1.00 0.76 1.00 1.00 0.73
Mg2+, 9 27 0.96 1.00 0.76 1.00 1.00 0.73
Zn2+, 6 18 0.84 1.00 0.81 1.00 1.00 0.68
Zn2+, 7 21 0.81 1.00 0.84 1.00 1.00 0.68
Zn2+, 8 24 0.78 1.00 0.80 1.00 1.00 0.62
Zn2+, 9 27 0.86 1.00 0.80 1.00 1.00 0.69

Table 2. NUVR metric components—novelty (N), uniqueness (U), validity (V), and reconstruction
accuracy (R)—for generated sequences, evaluated on training and test sets. Results are shown for
each ion type and qubit count Nq . The composite NUVRtrain score reflects generation quality under
each configuration.

Ion, Nq Parameters Token Freq. Chains Length Binding Sites
Ca2+, 6 18 1.69 ± 2.01 2.75 ± 3.42 9.85 ± 8.21 4.89 ± 8.35
Ca2+, 7 21 2.13 ± 2.23 7.62 ± 8.58 23.71 ± 27.47 3.24 ± 3.85
Ca2+, 8 24 1.82 ± 1.31 9.91 ± 13.06 13.34 ± 23.09 1.12 ± 0.94
Ca2+, 9 27 1.12 ± 0.62 1.05 ± 0.60 5.05 ± 11.28 0.51 ± 0.68
Mg2+, 6 18 4.15 ± 9.20 16.34 ± 14.80 23.12 ± 22.18 27.35 ± 37.99
Mg2+, 7 21 6.06 ± 12.01 30.95 ± 36.58 46.94 ± 47.87 46.26 ± 47.54
Mg2+, 8 24 5.04 ± 5.77 30.38 ± 48.18 23.09 ± 43.33 21.71 ± 26.31
Mg2+, 9 27 2.58 ± 2.20 4.07 ± 4.01 10.07 ± 26.03 4.55 ± 4.04
Zn2+, 6 18 14.43 ± 40.71 2.37 ± 2.91 3.75 ± 2.13 7.72 ± 11.48
Zn2+, 7 21 17.36 ± 40.76 3.40 ± 5.23 4.24 ± 1.89 5.25 ± 5.22
Zn2+, 8 24 11.35 ± 14.92 2.68 ± 5.40 3.36 ± 2.26 3.38 ± 4.31
Zn2+, 9 27 4.52 ± 5.72 1.19 ± 1.51 1.73 ± 1.37 1.01 ± 1.39

Table 3. Relative ratio (RR) metrics for token frequency, number of chains, peptide length, and
binding sites, computed across different ion types and qubit counts (Nq). Each row also lists the
total number of encoder parameters. Higher Nq allows longer sequences but increases model
complexity.

in Fig. 3, where the generated sequences closely match the training distribution
across all evaluated metrics: token frequency, number of chains, complex size, and
number of binding sites. A broader analysis across all three ions reinforces this
pattern. For both Ca2+ and Zn2+, the RR values consistently converge toward
1 as Nq increases—ranging from 0.51 ± 0.68 to 5.05 ± 11.28 for Ca2+, and from

Yu et al. PNAS — July 16, 2025 — vol. XXX — no. XX — 5

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 18, 2025. ; https://doi.org/10.1101/2025.07.15.665010doi: bioRxiv preprint 

https://doi.org/10.1101/2025.07.15.665010
http://creativecommons.org/licenses/by/4.0/


DRAFT

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

1.01 ± 1.39 to 4.52 ± 5.72 for Zn2+. Although Mg2+ exhibits greater variance and
less favorable alignment with the training distribution (RR range: 2.58 ± 2.20
to 10.07 ± 26.03), the underlying trend of improved distributional similarity with
increasing Nq remains consistent. Based on this observation, we fix Nq = 9 in all
subsequent experiments, enabling the model to generate primary sequences of up
to 511 amino acids.

Fig. 3. Histograms for Zn2+ with Nq = 9 of the frequencies of tokens (a), chain numbers (b), peptide lengths (c), and
ion binding sites (d) comparing generated sequences (orange) to the training set (blue). The length is calculated as the
number of AAs plus : in a sequence, while chain number is computed as how many : a sequence contains. A 0 chain
number implies that the sequence is a partial domain within a larger complex. In (a), the inset plot shows the same as the
main plot, but with a log-scale y-axis.

C. Tertiary Structure Prediction and Refinement. In de novo metalloprotein design,
accurate reconstruction of tertiary structure from a generated primary sequence is
essential for assessing functional viability—particularly for identifying and localizing
metal ion binding sites. To enable this, we implemented a structure prediction
pipeline tailored to QOBRA-generated sequences (Fig. 4).

Fig. 4. Schematic overview of the sequence-to-structure pipeline. A generated primary sequence is formatted and
converted to FASTA, processed by the Chai-1 language model to predict a three-dimensional structure (in CIF and PDB
formats), and subsequently equilibrated via molecular dynamics simulation in OpenMM 8 to produce a solvated, biologically
relevant structure.

C.1. Sequence-to-Structure Workflow. Fig. 4 illustrates the computational pipeline
used to convert a generated primary sequence into a fully solvated, structurally
equilibrated protein model suitable for downstream analysis. The workflow consists
of four main stages:

1. Sequence Input and Formatting: The pipeline begins with a peptide se-
quence generated by QOBRA, stored in a plain text file (sequence.txt). This
sequence is converted into a standard FASTA format to ensure compatibility
with structure prediction tools.

2. Structure Prediction (Chai-1): The FASTA file is processed by the Chai-1
structure prediction engine (40), which outputs a predicted 3D conformation
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in .cif format. This file is then converted to a PDB format representing the
protein atomic coordinates in the absence of solvent and ions—referred to as
the dry PDB.

3. Solvation and Molecular Dynamics Simulation (OpenMM 8): The
dry structure is input into OpenMM 8 (41), where it is solvated using the
TIP3P water model and neutralized with counterions. A molecular dynamics
(MD) simulation is then performed to equilibrate the structure under near-
physiological conditions. The resulting output is an equilibrated aqueous PDB
that incorporates solvent and ion coordination effects.

4. Structural Analysis: The equilibrated structure is subsequently subjected
to structural analysis, including RMSD calculations and evaluation of binding
site integrity. These measurements provide insight into the physical plausibility
and stability of the de novo generated protein models.

This modular workflow enables reliable translation of synthetic sequences into
realistic 3D structures for functional and biophysical characterization.

C.2. Three-Dimensional Protein Structures. Three-dimensional structure prediction was
performed using Chai-1 (40), a state-of-the-art deep learning framework for modeling
protein conformations. Representative outputs of Chai-1 applied to QOBRA-
generated sequences are shown in Fig. 5. This task presents a nontrivial challenge:
the generated sequences are synthetic and lack homologs in structural databases,
precluding the use of homology-based modeling. Consequently, Chai-1 infers
structural configurations in a purely ab initio manner. Metal ion placement is
handled iteratively, with ions introduced into the structure until all predicted
coordination sites are saturated based on local residue geometry.

To ensure structural and physicochemical plausibility, all predicted conforma-
tions were subjected to molecular dynamics (MD) refinement in explicit solvent.
Simulations were carried out using OpenMM 8 (41) at a constant temperature of
300 K. Protein interactions were described using the AMBER14 force field (42),
while solvent was modeled using the TIP3P water model (43). Each structure was
solvated in a cubic water box extending 0.5 nm beyond the protein in all dimensions,
and counterions (Na+, Cl−) were added to neutralize net charge.

Systems underwent energy minimization using Langevin dynamics for 50,000
steps, followed by temperature equilibration to 300 K via a Langevin thermostat (44),
employing a 4 fs integration timestep and a friction coefficient of 1 ps−1 over
an additional 50,000 steps. Structural stability and convergence were assessed
throughout the simulation using root-mean-square deviation (RMSD) analysis,
calculated with MDTraj (45).

This refinement pipeline produces solvent-equilibrated structures, allowing direct
comparison to natural metalloproteins and enabling downstream biophysical or
functional analysis.

C.3. Selectivity and Specificity. The primary sequences generated by QOBRA contain
canonical secondary structure elements, including α-helices, β-sheets, and coils—in
proportions comparable to those observed in the training set (α-helices: 30–45 %;
β-sheets: 20–30 %; loops/turns/other: 25–40 %). These sequences fold into
tertiary structures that closely resemble those of natural proteins, as illustrated by
representative examples in Fig. 5A. Furthermore, the predicted metal-binding sites
agree with established principles of coordination chemistry with preferred ligands
of amino acid side chains, distinct for each type of metal.

We define a Chai-1 prediction as successful if the predicted 3D structure places
a metal ion in close proximity to the residues identified by QOBRA as metal-
coordinating. False positives (FP) occur when predicted coordinating residues lack
nearby metal ions, while false negatives (FN) are residues not predicted by QOBRA
but are located near metal ions in the structure. True positives (TP) and true
negatives (TN) follow the standard definitions. From these, we compute sensitivity
and specificity, as follows:

Sensitivity = TP
TP + FN , Specificity = 1 − FP

FP + TN . [1]
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Fig. 5. (A) Representative artificial metalloproteins generated by QOBRA with Nq = 9 and r = 2. Structures include
Ca2+-binding (green, A1–A3), Mg2+-binding (lime, A4–A6), and Zn2+-binding (gray, A7–A9) proteins. Tertiary structures
were predicted using Chai-1 (40). Highlighted residues indicate predicted ion-coordinating sites identified by the QOBRA
model. Coordinating water molecules are also shown, forming metal-specific coordination geometries—hexahedral for
Ca2+ and Mg2+, tetrahedral for Zn2+. (B) Examples of Zn2+-binding proteins from nature (B1–B3) and from sequences
generated by the VAE model of Greener et al. (B4–B6).

We have evaluated 100 generated structures per metalloprotein type. Coordi-
nation was assessed using metal-specific cutoff distances, identifying coordinating
atoms from side chains or water molecules. Histogram distributions of sensitivity
and specificity are shown in Fig. 9. Overall, the model achieves high specificity,
with most values in the (0.9, 1.0) range across all three ions. Sensitivity, however,
is more variable, often peaking near zero, indicating missed coordinating residues.
Nonetheless, occasional cases of 100% sensitivity demonstrate that the model is
capable of high performance under the right structural conditions.

Simulations involving Zn2+ consistently show coordination pockets composed
of residues known to bind Zn2+ biologically—histidine, cysteine, aspartate, and
glutamate—along with water molecules. These tertiary motifs, consistent with
natural and engineered proteins (46, 47), also emerge in QOBRA-derived structures.
Similar trends are observed for Ca2+ and Mg2+, which preferentially coordinate with
aspartate, glutamate, and water (48, 49). The predicted binding pockets typically
include both QOBRA-predicted residues and additional structural contributors to
the coordination sphere.

C.4. Coordination Number. A more rigorous assessment of the structural quality of the
generated protein models can be obtained by analyzing the coordination number of
the bound metal ions—that is, the number of atoms directly coordinating each ion.
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α-helix β-sheet Coil
Ca2+ 0.30 ± 0.20 0.24 ± 0.15 0.46 ± 0.14
Mg2+ 0.34 ± 0.20 0.21 ± 0.15 0.45 ± 0.15
Zn2+ 0.34 ± 0.20 0.20 ± 0.15 0.46 ± 0.12

Natural [0.3, 0.35] [0.2, 0.25] [0.4, 0.5]
Table 4. Protein secondary structure proportions in three types of generated structural sets vs.
proportions in natural proteins.

Coordination numbers are ion-specific and are influenced by both the identity of the
ion and the nature of its ligands, including water and non-peptidic molecules (50, 51).

In aqueous protein environments, calcium (Ca2+) typically adopts coordination
numbers of 6 to 8, magnesium (Mg2+) commonly coordinates with 6 atoms, and
zinc (Zn2+) generally exhibits coordination numbers between 4 and 6. Each ion also
has characteristic coordination distances that reflect its size and preferred ligand
geometries.

Fig. 10 presents the coordination numbers and corresponding distances observed
in our generated structures. Notably, the computed cutoff distances required
to capture coordinating atoms are consistently shorter than those observed in
experimentally determined protein structures. This suggests that the generated
proteins may exhibit stronger metal-binding affinities in aqueous environments
compared to their natural counterparts, potentially due to tighter coordination
geometries.

C.5. Secondary Structure Proportions. Table 4 illustrates the proportions of the three
secondary structures of proteins for each ion set, with comparison to the expected
range for natural proteins. The measurements were performed using DSSP (52)
in Biopython (53), which provides a result closely aligning with natural ranges,
notwithstanding the tendency of protein language models such as Chai-1 to predict
helical structures (40, 54, 55). This suggests that QOBRA possesses a degree of
capability to understand protein primary sequence composition to create proxy-
natural proportions of domains.

C.6. Natural vs. Generated. The synergy between the generative capabilities of QOBRA
and the structure prediction provided by Chai-1 demonstrates an effective approach
for designing protein sequences and structures. Both models recover fundamental bio-
physical patterns and generate novel proteins that closely replicate the composition
and architecture of natural systems. This level of performance is especially notable
given the minimal parameter count—only 27 trainable variables—and the modest
training set size of approximately 6,000 sequences per metal ion. In comparison, a
generative classical model employed a conventional variational autoencoder with
912 neurons, four hidden layers, and more than 105,000 sequences to achieve
similar results (Fig. 5B). (25) These outcomes are made possible by the distinctive
architecture and operational principles of QOBRA, which differ substantially from
those of classical machine learning methods.

Materials & Methods

An overview of the QOBRA workflow is shown in Fig. 1IIA. The architecture
consists of two components: a quantum encoder and a quantum decoder. Both are
implemented as parameterized quantum circuits, mirroring the structure of classical
neural networks (cNNs). The circuit variational parameters are optimized during
training by back-propagation.

In our applications for de novo protein design, input peptide sequences are
mapped into quantum amplitudes through a letter-to-number encoding scheme,
followed by normalization. This transforms discrete token sequences into continuous
quantum state vectors suitable for processing by the quantum encoder.

Training jointly optimizes two loss functions in a self-consistent loop, ensuring
regularization into a Gaussian latent space distribution and accurate reconstruction
through direct comparisons with SWAP tests (detailed in Sec. E).

Following training, the decoder operates independently (Fig. 1IIB) to generate
novel peptide sequences. This is achieved by sampling from the latent space,
applying the decoder gates to the sampled vectors, and measuring the output
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quantum state in the computational basis. The resulting probability distribution
is square-rooted and mapped back to the closest amino acid token magnitudes,
enabling the reconstruction of new peptide sequences.

D. Encoding Scheme. QOBRA operates on primary amino acid sequences by
converting each peptide into a unique real amplitude vector. These vectors are then
element-wise square-rooted to produce normalized state vectors, which serve as
quantum inputs to the model. All 20 canonical amino acids are represented in the
encoding. To differentiate between metal-binding and non-binding residues, two
categories are defined: AA refers to an amino acid that is not coordinated to a metal
ion, while AA+ designates a metal-binding variant. Each AA and AA+ is assigned a
unique numeric token.

Two special tokens are also introduced:

• : – Denotes chain breaks in multi-chain peptides.

• :X – Indicates the end of a sequence. Since the number of qubits (Nq)
determines the dimensionality of the quantum state vector, sequences shorter
than 2Nq − 1 residues are padded by appending :X, followed by repeated
copies of the peptide. Sequences exceeding this length are truncated at the
:X marker.

This encoding scheme establishes a consistent and reversible mapping from biological
peptide sequences to fixed-dimension quantum state vectors, enabling efficient
quantum processing of peptides with diverse lengths and structural features.

Many classical machine learning models are invariant to the absolute values and
ordering of input tokens (56, 57). However, the specific choice of token-to-value
mapping significantly impacts the model performance of our quantum encoding.
This is due to the sensitivity of the circuit to the input vector distribution. For
instance, if two tokens with close numerical values—such as free Aspartic acid (
D) and its ion-bound form (D+)—occur at similar frequencies in the training data,
the encoder’s intrinsic noise can lead to ambiguity between them. This results
in an oversampling of the less frequent token due to value overlap in the latent
space. To mitigate this, tokens are assigned numerical values that follow a bell-
shaped distribution centered at zero, as shown in Fig. 7. This ensures sufficient
separation between tokens, especially for low-frequency ones. Additionally, because
quantum measurements return probabilities—i.e., the squared amplitudes—any
phase information (sign of the amplitude) is lost. To address this, all token values
are assigned unique absolute magnitudes to preserve distinguishability.

Amplitude encoding is normalized, but peptide sequences may vary in length
and total token value. To ensure a bijective and decodable representation, we
prepend each vector with a fixed constant n. This scalar acts as an internal
normalization reference, allowing for rescaling and accurate reconstruction of the
original sequence. This format ensures compatibility with amplitude encoding while
retaining biological interpretability. For example, the peptide sequence GC · · · LDAE
is mapped, as follows:

GC · · · LDAE 7→
[
n f(G) f(C) · · · f(L) f(D) f(A) f(E)

]T
,

where f() assigns a distinct real-valued amplitude to each input token, as defined
by a given dictionary.

E. Loss Functions. Within the autoencoder framework, the model must learn to
both encode and decode—that is, to accurately reconstruct—any input sequence
from the training set. At the same time, the distribution of encoded vectors in
the latent space must approximate a well-defined, tractable probability distribution
to enable generative sampling (Fig. 1). To enforce reconstructive symmetry, the
decoder is implemented as the inverse of the encoder ansatz, specifically as its
adjoint operator. This architectural constraint reduces the number of trainable
parameters through optimization of the encoder, ensuring they map inputs into a
latent representation that supports both reconstruction and generation.

In classical autoencoders, alignment of the latent space with a reference distribu-
tion is commonly achieved using the maximum mean discrepancy (MMD) loss (58),
or its modified form (m-MMD) (34). This loss encourages the distribution of latent
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Fig. 6. Panel I: Illustration of the SWAP test mechanism. The circuit ends with a probability measurement (P) of the
auxiliary qubit on top. When P(|0⟩) = 1, the states |ϕ⟩ and |ψ⟩ are identical. Panel II: 6-qubit RealAmplitutes encoder
and decoder ansatz are reported. The state vector input encoding layer (in green for the encoder and in red for the decoder).
Rotation gates with trainable parameters are marked in orange. The repetition unit is highlighted with square brackets and
the hyperparameter r.

vectors—obtained from the training set—to match a predefined prior, typically a
multivariate Gaussian. The m-MMD loss is given by:

L(−→x ,−→y ) = 1 − 1
N2

N∑
i=0

N∑
j=0

K(−→x i,
−→y j), [2]

where x⃗i are latent representations from the encoder, and y⃗j are reference vectors
sampled from the prior. The kernel function K is defined as:

K(−→x i,
−→y j) = exp

[
− 1

2σ2
kernel

· 1
D

D∑
d=0

(−→x id − −→y j d)2

]
, [3]

where D is the dimensionality of the latent space, and σkernel is a tunable
bandwidth parameter. This loss promotes statistical alignment between the
encoded latent distribution and the reference prior, thereby allowing the decoder to
generate meaningful outputs from unseen latent vectors. In practice, all x⃗i vectors
are obtained from the encoder, while the y⃗j vectors are drawn from the target
distribution. To maintain norm consistency, the first element of each y⃗j vector
encodes a normalization factor, ensuring unit-norm latent states.

A challenge arises when trying to implement this framework on quantum devices
since comparing quantum state amplitudes requires quantum state tomography (59)
which would not be practical since it is computationally demanding. Here, we
bypass the need for quantum state tomography by using the SWAP test (60, 61).
As described below, measurements of an ancilla qubit provide an estimate of the
overlap between quantum states without having to determine the quantum state
amplitudes (Fig. 6I). Accordingly, losses involving vector similarity are reformulated
using the SWAP test.

Starting with L, defined according to Eq. 2, we redefine the similarity kernel
function by using the infidelity, as follows:

LSW AP (−→x ,−→y ) = 1
N2

N∑
i=0

N∑
j=0

KSW AP (−→x i,
−→y j), [4]

KSW AP (−→x i,
−→y j) = 1 − |⟨ψ−→x i

|ψ−→y j
⟩|2. [5]

Therefore, the loss implemented by QOBRA is essentially a quantum analogue of
the m-MMD loss implemented by the classical kernel-elastic autoencoder (34).
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