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KERNEL-ELASTIC AUTOENCODER

CROSS-REFERENCE TO RELATED
APPLICATIONS

[0001] This application claims priority to U.S. Provisional
Application No. 63/505,152 filed on May 31, 2023, incor-
porated herein by reference in its entirety.

STATEMENT REGARDING FEDERALLY
SPONSORED RESEARCH OR DEVELOPMENT

[0002] This invention was made with government support
under Grant No. 2124511 awarded by the National Science
Foundation. The government has certain rights in the inven-
tion.

BACKGROUND OF THE INVENTION

[0003] With the idea of generation, a variety of applica-
tions for drug discovery and Chemistry are made available
[Maziarka et al., Journal of Cheminformatics, 2020; Moret
et al., Nature Machine Intelligence, 2020; Skalic et al.,
Journal of chemical information and modeling, 2019; Wang
et al., Nature Machine Intelligence, 2021]. Variational Auto-
encoder (VAE) [Diederik P Kingma and Max Welling.
Auto-encoding variational bayes. arXiv preprint arXiv:
1312.6114, 2013] stands out as a pioneer of generative
models. Its versatility in molecule generation is explored by
many works formats such as character [Gomez-Bombarelli
et al.,, ACS central science, 2018], grammar [Kusner et al.,
In International conference on machine learning, pages
1945-1954. PMLR, 2017], and graph-based [Jin et al., In
International conference on machine learning, PMLR, 2018]
Variational Autoencoders (VAEs).

[0004] VAE differs from Autoencoder (AE) [Dana H Bal-
lard, In Aaai, volume 647, pages 279-284, 1987] in that it
achieves generation purpose by modeling data as probabi-
listic distributions. Whereas the goal of AE is to efficiently
embed data into a low-dimensional space. However, the
latent space of the AE often has regions that do not corre-
spond to any encoded data and therefore sampling around
encoded latent representations is not feasible. The loss
function for sequence-to-sequence style VAE seeks to recon-
struct cross-entropy terms as implemented in AE, while
treating each latent vector as a distribution. Then by enforc-
ing all latent vectors to prior distribution such as a Gaussian,
decoding latent vectors sampled from this distribution gives
results that resemble training data. Not limited by genera-
tion, VAEs’ potentials are explored widely in molecule
property prediction and optimizations which are important
steps in computational drug discovery.

[0005] VAE performance for molecule generation is mea-
sured in terms of novelty (N), uniqueness (U), validity (V),
and reconstruction (R). Though all VAE models aim to
achieve the highest metrics, they are constrained by a
trade-off between the NUV and reconstruction. A model that
reconstructs well might not be able to achieve high NUV and
vice versa. Whichever gets closer to the optimum, the other
will suffer. For example, in the case of molecule generation,
if a VAE model is capable of reconstructing the input
unambiguously, inferencing on latent vectors that the
decoder has not seen before would be unpractical, being less
likely to produce valid outputs. This trade-off leads to
additional concerns, especially since these models lack the
ability to perform precise optimization around a target
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molecule [Madhawa et al., arXiv preprint arXiv:1905.
11600, 2019]. Being able to reconstruct is important because
it ensures success in interpolating between molecules in
latent representation as well as sampling close molecular
scaffolds for a given target.

[0006] Graph-based VAE methods take the lead in chemi-
cal validity [Jin et al., In International conference on
machine learning, pages 2323-2332. PMLR, 2018; Jin et al.,
In International conference on machine learning, pages
4839-4848. PMLR, 2020]. This is because the molecules are
represented in graphs of motifs and these motifs explicitly
enforce grammar rules onto the molecules, so the generated
molecules are all valid. However, this is not the case without
checking for grammar; during testing, if certain motifs do
not exist in the training dataset, the model would not be able
to reconstruct or sample similar molecules.

[0007] Flow-based generative models, on the other hand,
excel in the reconstruction by memorizing the training
dataset [Zang et al, In Proceedings of the 26 ACM
SIGKDD International Conference on Knowledge Discov-
ery & Data Mining, pages 617-626, 2020; Luo et al, In
International Conference on Machine Learning, pages 7192-
7203. PMLR, 2021]. The models consist of invertible maps
from input data to latent space with the same dimension so
the model can map latent vectors back to the input molecules
exactly. Nevertheless, same-dimensional latent representa-
tions are criticized for not being able to capture features that
are important and tend to overfit. Out-of-distribution prob-
lems could arise during the sampling process and the recon-
struction on the testing dataset remains a concern [Nalisnick
et al., arXiv preprint arXiv:1810.09136, 2018].

[0008] Disclosed herein is a novel self-supervised genera-
tive kernel-elastic autoencoder that enhances the perfor-
mance of traditional VAE by designing both modified maxi-
mum mean discrepancy and weighted reconstruction loss
functions. The disclosed system has the potential to provide
substantial contributions to generative models (e.g. molecu-
lar design and optimization). Thus, there is a need in the art
to address long-standing challenges of generative models
such as achieving superior generation and reconstruction
performances simultaneously. The present invention satis-
fies that need.

SUMMARY OF THE INVENTION

[0009] Aspects of the present invention relate to a system
including a transformer encoder with a compression layer, a
transformer decoder with an expansion layer, the trans-
former encoder configured to transform one or more inputs
into a control latent vector, a noise injection element con-
figured to add noise to the control latent vector to create a
noisy latent vector, a weighting element configured to add
one or more weightings to the control latent vector to create
an exact latent vector, and the transformer decoder config-
ured to transform the noisy latent vector and exact latent
vector into an output.

[0010] In some embodiments, the one or more inputs is
selected from one or more condition-scaled embedding
vectors, one or more Simplified Molecular Input Line Entry
System (SMILES) tokens, one or more SMILES Arbitrary
Target Specification (SMARTS) tokens, one or more center-
labelled products (CLP), reacting sites, reacting centers, or
one or more reaction center labeled target molecules or
compounds.
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[0011] In some embodiments, the output is selected from
one or more Simplified Molecular Input Line Entry System
(SMILES) tokens, one or more SMILES Arbitrary Target
Specification (SMARTS) tokens, one or more synthesis
pathways, one or more retrosynthesis pathways, one or more
labelled molecules or compounds, one or more templates,
one or more reaction templates, one or more site-specific
templates (SST).

[0012] In some embodiments, the system further com-
prises one or more condition-scaled embedding vectors
configured to attach one or more conditions to the output of
the transformer decoder. In some embodiments, the one or
more conditioned-scaled embedding vectors are selected
from molecule properties, SMILES tokens, positional
embeddings, reacting sites, reaction centers, positional
embedding for reacting sites or reaction centers, or molecu-
lar transformation sites.

[0013] In some embodiments, the transformer decoder is
configured to pass the output through a linear layer, and
softmax the output, to produce one or more output distri-
bution probabilities. In some embodiments, the transformer
system is further configured to calculate a distance between
a control latent vector used to generate a first output and a
control latent vector used to generate a second output to
produce a measured distance between the first and second
outputs.

[0014] Aspects of the present invention relate to method
for retrosynthetic planning having the steps of providing one
or more target molecules, specifying one or more reaction
centers on the one or more target molecules, comparing the
one or more target molecules to a database of reference
reactions, measuring a similarity between at least one of the
one or more target molecules and a molecule in the reference
reactions, and generating one or more site-specific templates
based on the measured similarity.

[0015] In some embodiments, the noise is gaussian noise.
In some embodiments, the transformer decoder and the
latent space comprises a lambda-delta loss function.
[0016] In some embodiments, the transformer encoder is
configured to accept one or more positional embedding
inputs for reaction centers. In some embodiments, the output
comprises a reaction template.

BRIEF DESCRIPTION OF THE DRAWINGS

[0017] The foregoing purposes and features, as well as
other purposes and features, will become apparent with
reference to the description and accompanying figures
below, which are included to provide an understanding of
the invention and constitute a part of the specification, in
which like numerals represent like elements, and in which:
[0018] FIG. 1A shows an exemplary transformer-based
architecture (in some examples referred to as Kernel-Elastic
Autoencoder (KAE)) with 6 transformer encoder compo-
nents (grey-red) and 6 decoder components (grey-red-blue).
The gradient color represents the mixing of information
from different sources. Condition is represented as grey and
encoder and decoder inputs as red and blue. The vector after
the compression layers is referred to as the latent vector.
During training, a noise e is added before the expansion
which produces the encoder output. If the Conditional
Autoencoder (CKAE) is used, condition-scaled embeddings
are concatenated to both the latent vector after noise and to
the encoder output. KAE is trained as all conditions being
zero. The decoder performs self-attention on the output
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sequences and obtains information from the encoder output
by performing encoder-decoder attention. The decoder out-
put is finally passed through a linear layer and softmaxed to
produce the output token probabilities for each character in
the size T dictionary.

[0019] FIG. 1B shows a pictorial illustration of an exem-
plary training procedure. Latent information from the
encoder is passed to the decoder twice. One pass being
AE-like without noise and the other pass being Variational
Autoencoder-like (VAE) with added noise. A controls the
shape of the latent vector distribution and the relative
weights between the maximum mean discrepancy (MMD)
term and the Cross-Entropy loss. 6 controls the relative
weights of between the AE and VAE objective.

[0020] FIG. 2 depicts an illustrative computer architecture
for a computer for practicing the various embodiments of the
invention.

[0021] FIGS. 3A, 3B, 3C, and 3D show a performance
comparison of the models trained with modified MMD
(m-MMD) loss, standard MMD (s-MMD) loss, and Kull-
back-Leibler (KL) divergence loss: 901 KL; 902 m-MMD;
903 s-MMD; 904 m-MMD, no noise; 905 s-MMMD, no
noise. The model labelled as KL has one extra layer that
estimates the standard deviation of each latent vector. The
models labelled with m-MMD are trained with the loss

Legﬁ+m—MMD(7\,:l), s-MMD with £(35L+SMMD(7\,:1),

and KL with Ly 4¢ . “No noise” means no noise is added to
the latent vectors during training. Validity, uniqueness, and
novelty are calculated at the end of each epoch from 1 k
randomly sampled latent vectors. The reconstruction rate is
calculated using 1 k molecules from the validation set.

[0022] FIGS. 4A, 4B, 4C, and 4D show the performance
comparison of the models trained with different A values
(and 8=1) using m-MMD loss: 906 [.1D1; 907 L.2D1; 908
L3D1; 909 13.5D1; 910 L4D1. Validity, uniqueness, and
novelty are calculated at the end of each epoch using 1000
randomly generated molecules from each of the models.
And the reconstruction rate is calculated using 1000 mol-
ecules from the validation set. Note that LxDy in the legend
means that the model is trained with A=x and d=y. For
example, the model labelled with L3D1 is trained with
L (=3, 0=1).

[0023] FIGS. 5A through 5F show molecules found by
sampling from a 0.1-SD Gaussian distribution centered
around a specific latent vector 10 times. The noised vectors
are decoded with different beam sizes each time. FIGS. 5A,
5B, 5C, 5D, 5E, and 5F show all the unique molecules found
at these beam sizes. FIGS. 5A, 5B, and 5C shows only one
unique molecule (the original encoded molecule) is found
with the beam size of one despite the added noise. FIGS. 5D,
5E, and 5F shows out of the ten samples, seven different
molecules are found at the beam size of two.

[0024] FIG. 6 shows an exemplary repositioning process.
A Z, is selected around z, if both the produced molecule is
within the allowed threshold (o) for similarity and the
property under optimization is improved. The next repetition
of the search is performed around Z;. By doing reposition-
ing, the search space is expanded for molecules with little
improvements in the condition search.

[0025] FIG. 7 shows the mean values produced from the
model (blue dots) by sampling 1k vectors in the latent space
at different asked conditions. The ground truth values are
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marked as a black line. The dataset’s underlying distribution
for the corresponding properties is rendered as a histogram
background.

[0026] FIGS. 8A through 8D show plots for m-MMD and
s-MMD latent space compared to standard Gaussian distri-
bution. For all subplots, the latent vectors are obtained by
passing 10k ZINC250k molecules to the encoder. They are
then transformed under the same principal components
extracted from the standard Gaussian distribution. FIG. 8A
shows the m-MMD results showing all latent vectors are
well-incorporated in the Gaussian. FIG. 8B shows the
s-MMD loss makes the latent vectors more scattered relative
to the Gaussian. The model is less likely to be able to obtain
valid output by sampling from the Gaussian. For FIG. 8C
and FIG. 8D, the latent noise used during training is added
to visualize the actual vectors passed into decoder in the
training process. FIG. 8A shows the m-MMD-resulted latent
space in orange dots. Most latent vectors are well-incorpo-
rated in the standard Gaussian distribution in the principal
components reference frame. FIG. 8B shows the s-MMD-
resulted latent space in orange dots. The encoded vectors
from the s-MMD model are more scattered than in the
m-MMD case. FIG. 8C shows the m-MMD-resulted latent
space with latent noise added in orange dots. FIG. 8D shows
the s-MMD-resulted latent space with latent noise added in
orange dots.

[0027] FIGS. 9A, 9B, 9C, and 9D show the results for the
performance comparison of the models trained with different
sigma values using modified MMD loss: 911 m-MMD
2ss=5e-4xE; 912 m-MMD 2ss=5e-3xE; 913 m-MMD
2ss=5e-2xH; 914 m-MMD 2ss=5Se-1xE. Note that 2ss (2
sigma squared) in the legend represents the value used for
20% in Equation 3 and E is the embedding dimension.
Validity, uniqueness, and novelty are calculated at the end of
each epochs using 1000 randomly generated molecules from
each of the models. And the reconstruction rate is calculated
using 1000 molecules from the validation set. FIG. 9A
shows the validity of the generated molecules. FIG. 9B
shows the uniqueness of the generated molecules. FIG. 9C
shows the novelty of the generated molecules. FIG. 9D
shows the reconstruction rate of the molecules from the
validation set.

[0028] FIGS. 10A, 10B, 10C, and 10D show the perfor-
mance comparison of the models trained with different
sigma values using standard MMD loss: 911 m-MMD
2ss=5e-4xE; 912 m-MMD 2ss=5e-3xE; 913 m-MMD
2ss=5e-2xH; 914 m-MMD 2ss=5Se-1xE. Note that 2ss (2
sigma squared) in the legend represents the value used for
20 in Equation 3 and E is the embedding dimension.
Validity, uniqueness, and novelty are calculated at the end of
each epochs using 1000 randomly generated molecules from
each of the models. And the reconstruction rate is calculated
using 1000 molecules from the validation set. FIG. 10A
shows the validity of the generated molecules. FIG. 10B
shows the uniqueness of the generated molecules. FIG. 10C
shows the novelty of the generated molecules. FIG. 10D
shows the reconstruction rate of the molecules from the
validation set.

[0029] FIGS. 11A, 11B, 11C, and 11D show the perfor-
mance comparison of the models trained with different
values (and A=1) using modified MMD loss and KL loss:
915 L1D-1; 916 L1D0; 917 L1D1; 918 L1D2; 919 L1D4;
920 KL L1D1. Validity, uniqueness, and novelty are calcu-
lated at the end of each epoch using 1000 randomly gener-
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ated molecules from each of the models. And the recon-
struction rate is calculated using 1000 molecules from the
validation set. Note that LxDy in the legend means that the
model is trained with A=x and d=y. For example, the model
labelled with L1D-1 is trained with £ (A=1, 6=-1). FIG. 11A
shows the validity of the generated molecules. FIG. 11B
shows the uniqueness of the generated molecules. FIG. 11C
shows the novelty of the generated molecules. FIG. 11D
shows the reconstruction rate of the molecules from the
validation set.

[0030] FIGS.12A,12B, 12C, and 12D show an exemplary
reaction template for the SMARTS string: [C: 5]-[O; HO;
D2; +0:6]-[S; HO; D4; +0:1](-[C: 2])(=[O; D1; HO:3])=[O;
D1; HO0:4]>>CI-[S; HO; D4; +0:1](-[C: 2])(=[O; D1; HO:3])
=[0; D1; HO:4]. [C: 5]-[OH; D1; +0:6]. The product CCS
(=0)(=0)OCCBr can be passed into the template to obtain
the reaction SMARTS string: CCS(=—0)(—0)ClL
OCCBr>>CCS(=0)(=0)OCCBr.

[0031] FIGS.13A,13B, 13C, and 13D show an exemplary
conversion from a template to an intramolecular template.
The original template is [C: 3]-[C; HO; D3; +0:2](=[O; HO;
D1; +0:1])-[CH2; D2; +0:4]-[C: 5]>>C-[O; HO; D2;
+0:1]-[C; HO; D3; +0:2](—0)—{[C: 3].1-[CH2; D2; +0:4]-
[C: 5] and the converted template is [C: 3]-[C; HO; D3; +0:
2](=[0; HO; D1; +0: 1])-[CH2; D2; +0: 4]-[C: 5]>>(C-[O;
HO; D2; +0: 1]-[C; HO; D3; +0: 2](—0)-[C: 3].1-[CH2;
D2; +0: 4]-[C: 5]).

[0032] FIGS. 14A & 14B show the data scalability of the
exemplary product-masking model. Note that the validity
here also means that the templates are unique. Trained for an
equivalent-epoch means that the model is trained with the
same number of updates as 1 epoch of full-dataset training.
FIG. 14A shows a unique and valid rate of models with
different training dataset size at 1 equivalent-epoch. FIG.
14B shows a unique and valid rate of models trained with
different training dataset size at different equivalent-epochs.
[0033] FIGS. 15A through 15C show exemplary retrosyn-
thetic routes proposed by commercial platforms and CKAE.
FIG. 15A shows no results from Reaxys. FIG. 15B shows
one of the routes proposed by SciFinder found in 40 min-
utes. FIG. 15C shows one of the routes proposed by CKAE
found in 5 minutes.

[0034] FIGS. 16A through 16C show common machine
learning methods for retrosynthesis as well as an exemplary
method disclosed herein. FIG. 16A is a diagram showing
that reactants and templates can be selected and generated
based on a target compound using different machine learn-
ing models. In one example, template generation is used in
the disclosed method. FIG. 16B is a diagram showing that
latent space is incorporated in one of the models in the
disclosed method according to aspects of the present inven-
tion. In some embodiment, the method comprises sampling
in latent space in order to give different reaction templates.
FIG. 16C shows the results of the disclosed method com-
pared to a previous method, displaying a reduction in
synthesis steps for a key intermediate for active pharmaceu-
tical ingredients (API).

[0035] FIGS. 16D & FIG. 16E show Model A and Model
B workflows and performance according to aspects of the
present invention. FIG. 16D shows that Model B has reac-
tion center embedding and does not have center-labeled
products in the output. FIG. 16E shows the USPTO-Full
Top-K accuracy performance for previous models compared
to the models using the disclosed method.
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[0036] FIGS. 17A & FIG. 17B show an exemplary inter-
polation of templates in the latent space of Model C, and
reactants from Model C outputs, according to various
aspects of the present invention. FIG. 17A is a diagram of an
exemplary interpolation method showing that the interme-
diates of the top and bottom latent representations are
decoded. FIG. 17B shows an aspect of the disclosed method
involving selecting reactants for 2-, 3-, 4-substituted cyclo-
hexanone derivatives as target compounds.

[0037] FIGS. 18A through 18C shows an exemplary ret-
rosynthesis tree for compound 1 and its experimental pro-
cedure. FIG. 18A is a diagram showing that a synthesis route
is selected from the retrosynthesis tree generated by Model
B. FIG. 18B shows an exemplary reference found with
Model C for the allylation step in the disclosed method. FIG.
18C shows a chemical synthesis reaction of the related
experimental procedure for the selected route.

[0038] FIGS. 19A through 19D show exemplary reaction
templates showing RDChiral Template vs Site-Specific
Template. FIG. 19A shows an exemplary Reaction Example.
FIG. 19B shows an exemplary RDChiral Template. FIG.
19C shows an exemplary Site-Specific Template. FIG. 19D
shows a resultant Center-Labeled Product.

[0039] FIG. 20A through 20D show an exemplary reaction
wherein a site-specific template requires a product/target
compound with reaction centers labeled in order to get the
reaction smart string: CCCCC[C@H](O)C—CC1C—CC
(=0)C1CC—CCCCC(—=0)O>>CCCCC[C@H](O)
C—CCI1CCC(—0)C1CC—=CCCCC(=—0). FIG. 20A shows
an exemplary Reaction Example. FIG. 20B shows an exem-
plary RDChiral Template. FIG. 20C shows an exemplary
Site-Specific Template according to aspects of the present
invention. FIG. 20D shows a resultant Center-Labeled Prod-
uct according to aspects of the present invention.

[0040] FIG. 21 shows exemplary model architectures of
the generative models for retrosynthesis planning according
to aspects of the present invention, comprising columns 501,
502 and 502. Column 501 comprises Model A, which is a
deterministic generative model that takes in target products
and output site-specific templates and labeled products.
Column 502 comprises Model B, a variant of Model A,
incorporating positional embeddings for conditioning on
specific reacting sites. Column 503 comprises Model C, a
sampling generative model based on the conditional kernel-
elastic autoencoder (CKAE) method according to aspects of
the present invention.

[0041] FIG. 22 presents a compilation of the top 5 refer-
ences for the allylation step depicted in FIG. 18B. The
site-specific templates are the same for these 10 references.
Therefore, the products of these reactions are the primary
determinant for the ranking (latent distance) in this particu-
lar case.

[0042] FIGS. 23 A through 23D show a visualization of the
encoder-decoder-attention obtained from the product:
CC(=0)clcce(Cn2ncc(NC(—0)c3nc(C)oc3-c3ccec(C(F)
(F)F)c3)n2)ol. FIG. 23A shows the Encoder Input Product
(centers are from decoder output) according to aspects of the
present invention. FIG. 23B shows the Decoder Output
Template according to aspects of the present invention. FIG.
23C shows the Corresponding Reaction. FIG. 23D shows
the encoder-Decoder Attention Matrix according to aspects
of the present invention.
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[0043] FIG. 24 depicts the synthesis of (R)-2-Allyl-2-
methylcyclohexan-1-one [D. C. Behenna et al., Journal of
the American Chemical Society, 2004].

[0044] FIG. 25 depicts the synthesis of (R)-2-(1-Methyl-
2-oxocyclohexyl)acetaldehyde

[0045] FIG. 26 depicts the synthesis of (R)-2-ethynyl-2-
methylcyclohexan-1-one.

[0046] FIGS. 27A through 27F show the results for exem-
plary queries. FIGS. 27A and 27B are the queries for 'H and
13C NMR of (R)-2-Allyl-2-methylcyclohexan-1-one,
respectively. FIGS. 27C and 27D are the queries for 1H and
13C NMR of (R)-2-(1-Methyl-2-oxocyclohexyl)acetalde-
hyde, respectively. FIGS. 27E and 27F are the queries for 1H
and 13C NMR of ®-2-ethynyl-2-methylcyclohexan-1-one,
respectively.

DETAILED DESCRIPTION

[0047] It is to be understood that the figures and descrip-
tions of the present invention have been simplified to
illustrate elements that are relevant for a clear understanding
of the present invention, while eliminating, for the purpose
of clarity, many other elements found in related systems and
methods. Those of ordinary skill in the art may recognize
that other elements and/or steps are desirable and/or required
in implementing the present invention. However, because
such elements and steps are well known in the art, and
because they do not facilitate a better understanding of the
present invention, a discussion of such elements and steps is
not provided herein. The disclosure herein is directed to all
such variations and modifications to such elements and
methods known to those skilled in the art.

[0048] Unless defined otherwise, all technical and scien-
tific terms used herein have the same meaning as commonly
understood by one of ordinary skill in the art to which this
invention belongs. Although any methods and materials
similar or equivalent to those described herein can be used
in the practice or testing of the present invention, exemplary
methods and materials are described.

[0049] As used herein, each of the following terms has the
meaning associated with it in this section.

[0050] The articles “a” and “an” are used herein to refer to
one or to more than one (i.e., to at least one) of the
grammatical object of the article. By way of example, “an
element” means one element or more than one element.
[0051] “About” as used herein when referring to a mea-
surable value such as an amount, a temporal duration, and
the like, is meant to encompass variations of +20%, +10%,
+5%, 1%, and £0.1% from the specified value, as such
variations are appropriate.

[0052] Throughout this disclosure, various aspects of the
invention can be presented in a range format. It should be
understood that the description in range format is merely for
convenience and brevity and should not be construed as an
inflexible limitation on the scope of the invention. Accord-
ingly, the description of a range should be considered to
have specifically disclosed all the possible subranges as well
as individual numerical values within that range. For
example, description of a range such as from 1 to 6 should
be considered to have specifically disclosed subranges such
as from 1 to 3, from 1 to 4, from 1 to 5, from 2 to 4, from
2 to 6, from 3 to 6 etc., as well as individual numbers within
that range, for example, 1, 2, 2.7, 3, 4, 5, 5.3, 6 and any
whole and partial increments therebetween. This applies
regardless of the breadth of the range.
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Kernel-Elastic Autoencoder for Template Generative
Retrosynthetic Pathways

[0053] Aspects of the present invention relate to a system
and method for improving existing generative models. In
some embodiments, the invention provides a method for
discovery of retrosynthesis pathways to generate a target
chemical product.

[0054] In some embodiments, the disclosed system and
method improves upon existing generative models by ensur-
ing accurate reconstruction as well as rapid generation of a
large set of diverse reaction pathways.

[0055] Existing generative models for retrosynthesis are
not based on reaction templates, and use the whole reaction
strings for input/output definition. In contrast, the novel
disclosed method (in some examples, referred to as a kernel)
focuses only on the encoding/decoding of the molecular
changes in substructures, allowing it to explore a much
larger space than reactant-encoding-only models. One sig-
nificant technical advantage of the novel disclosed kernel is
an exemplary generative method based on templates of
chemical reactions for inputs and outputs. The disclosed
method eliminates the redundant hyperspace that would be
required to encode chemical reactions with complete defi-
nition of molecular structures.

[0056] Another technical advantage is the use of a gen-
erative method for solving the searching problem, rather
than implementing a prediction algorithm based on a tradi-
tional deterministic procedure. An advantage of the genera-
tive method is that both known and novel reactions are
included in the unlimited search space, significantly expand-
ing the range of plausible solutions beyond the capabilities
of deterministic methods.

[0057] Aspects of the present invention relate to a novel
system for a generative transformer architecture. In some
embodiments, the system comprises a novel kernel for a
generative transformer architecture. In some embodiments,
the novel kernel is used to define the loss function of a
generative transformer architecture, in some examples
referred to as Kernel Autoencoder (KAE). In other
examples, the novel kernel is referred to as Kernel-Elastic
Autoencoder (KAE) and/or Anisotropic Kernel Model
(AKM). In some embodiments, the resulting kernel provides
a modified version of a maximum mean discrepancy loss.

[0058] In some embodiments, the generative transformer
kernel is based on a loss function and a beam search
procedure that ensures accurate reconstruction as well as
diverse generation of templates of chemical reaction path-
ways and reactants corresponding to a target molecular
product. In some embodiments, the reactants corresponding
to the generated templates are iteratively processed to gen-
erate a complete multistep retrosynthetic pathway.

[0059] Insome embodiments, the resulting kernel exhibits
state-of-the-art generative performance, while a lambda-
delta (LD) loss function ensures accurate reconstruction.
The loss function affects the output and regularize the latent
space. In some embodiments, the novel kernel is trained to
generate reaction templates rather than complete reactions.
[0060] In some embodiments, a masking strategy is used
to mask exclusively the product side of the template, rather
than implementing random masking schemes. In some
embodiments, a beam search procedure was implemented
for both sampling and multi-step generation. In some
embodiments, an encrypted code was used to confirm the
output was produced by the disclosed novel kernel. Valida-
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tion of the proposed pathways, as well as estimated cost can
be obtained by literature reports of the individual reaction
steps that constitute the predicted reaction pathway.

[0061] Aspects of the present invention relate to a gen-
erative retrosynthetic model. The disclosed generative ret-
rosynthetic model can provide significant economic advan-
tages in applications to research and develop drugs and fine
chemicals by significantly reducing the time for discovery
and development of synthetic procedures, and by reducing
the cost of synthetic procedures based on reaction pathways
with a minimum number of steps.

[0062] Referring now to FIG. 1A, shown is an exemplary
transformer-based system 100 comprising 6 transformer
encoder components (grey-red) and 6 decoder components
(grey-red-blue). It should be noted that the gradient color in
latent space represents the mixing of information from
different sources. The condition is represented as grey, and
encoder and decoder inputs as red and blue. The vector after
the compression layers is referred to as the latent vector. In
some embodiments, during training, a noise e is added
before the expansion which produces the encoder output. If
the conditional system is used, condition-scaled embeddings
are concatenated to both the latent vector after noise and to
the encoder output. The disclosed system is trained as all
conditions being zero. The decoder performs self-attention
on the output sequences and obtains information from the
encoder output by performing encoder-decoder attention.
The decoder output is finally passed through a linear layer
and softmaxed to produce the output token probabilities for
each character in the size T dictionary.

[0063] FIG. 1A depicts an exemplary system 100 archi-
tecture with the option for adding conditions. In some
embodiments, system 100 comprises a transformer encoder
102 comprising a compression layer, and a transformer
decoder 108 comprising an expansion layer. In some
embodiments, transformer encoder 102 and/or transformer
decoder 108 further comprises one or more embedding
layers. In some embodiments, system 100 further comprises
a latent space 110 wherein a Gaussian noise 112 may be
added. In some embodiments, transformer encoder 102
produces a latent vector A 114, which when combined in
latent space 110, forms a noisy latent vector 116 and an exact
latent vector 118. In some embodiments, noisy latent vector
116 and exact latent vector 118 are compressed into trans-
former decoder 108, wherein transformer decoder 108 pro-
duces an output 120.

[0064] In some embodiments, attention operations are
performed with four heads. In some embodiments, for each
input, with specified padding tokens, both the source and
target masks are made to prevent the model from attending
to paddings during training.

[0065] In some embodiments, SMILES tokens 104 and
106 are passed through encoder 102 and decoder 108
embedding layers that transform each token into an E-di-
mensional vector where E is the embedding size and is equal
to 128 for all implementations disclosed herein. In some
embodiments, these vectors are added to the encoder and
decoder specific E-dimensional positional embeddings.
[0066] In some embodiments, system 100 is conditional
(e.g., Conditional KAE (CKAE)), and additional embed-
dings are used just for attached condition(s) such as different
molecule properties. In some embodiments, CKAE’s con-
dition-scaled embeddings are concatenated to both the input
of the encoder and the latent representation along the
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sequence length dimension, allowing the model to generate
molecules by interpolating and extrapolating with asked
properties as conditions.

[0067] In some embodiments, the encoder input is pro-
cessed by the Transformer encoder followed by a compres-
sion in the sequence length dimension. In some embodi-
ments, this latent vector of 10xE dimensions (a
10-dimensional compressed sequence length by E embed-
ding size) is injected with noise during training. In the case
of CKAE, it is concatenated with the property-scaled
embedding vector condition. In some embodiments, this
processed latent vector is mapped back to MxE dimensions
by the expansion layer where M is the maximum sequence
length in the relevant dataset. In some embodiments, this
vector is treated as the final encoder output, fed into the
decoder without supplying encoder masks.

[0068] In some embodiments, each decoder layer attends
to the encoder outputs through the encoder-decoder muti-
head attention operations. In some embodiments, outputs are
contracted by a linear layer along the embedding dimension
to produce a T-dimensional vector per token. In some
embodiments, this T-dimensional character is then soft-
maxed, and interpreted as a probability distribution (P) for
each possible character (c).

Computing Device

[0069] In some aspects of the present invention, software
executing the instructions provided herein may be stored on
a non-transitory computer-readable medium, wherein the
software performs some or all of the steps of the present
invention when executed on a processor.

[0070] Aspects of the invention relate to algorithms
executed in computer software. Though certain embodi-
ments may be described as written in particular program-
ming languages, or executed on particular operating systems
or computing platforms, it is understood that the system and
method of the present invention is not limited to any
particular computing language, platform, or combination
thereof. Software executing the algorithms described herein
may be written in any programming language known in the
art, compiled, or interpreted, including but not limited to C,
C++, C#, Objective-C, Java, JavaScript, MATLAB, Python,
PHP, Perl, Ruby, or Visual Basic. It is further understood that
elements of the present invention may be executed on any
acceptable computing platform, including but not limited to
a server, a cloud instance, a workstation, a thin client, a
mobile device, an embedded microcontroller, a television, or
any other suitable computing device known in the art.
[0071] Parts of this invention are described as software
running on a computing device. Though software described
herein may be disclosed as operating on one particular
computing device (e.g. a dedicated server or a workstation),
it is understood in the art that software is intrinsically
portable and that most software running on a dedicated
server may also be run, for the purposes of the present
invention, on any of a wide range of devices including
desktop or mobile devices, laptops, tablets, smartphones,
watches, wearable electronics or other wireless digital/cel-
Iular phones, televisions, cloud instances, embedded micro-
controllers, thin client devices, or any other suitable com-
puting device known in the art.

[0072] Similarly, parts of this invention are described as
communicating over a variety of wireless or wired computer
networks. For the purposes of this invention, the words
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“network”, “networked”, and “networking” are understood
to encompass wired Ethernet, fiber optic connections, wire-
less connections including any of the various 802.11 stan-
dards, cellular WAN infrastructures such as 3G, 4G/LTE, or
5G networks, Bluetooth®, Bluetooth® Low Energy (BLE)
or Zigbee® communication links, or any other method by
which one electronic device is capable of communicating
with another. In some embodiments, elements of the net-
worked portion of the invention may be implemented over
a Virtual Private Network (VPN).

[0073] FIG. 2 and the following discussion are intended to
provide a brief, general description of a suitable computing
environment in which the invention may be implemented.
While the invention is described above in the general
context of program modules that execute in conjunction with
an application program that runs on an operating system on
a computer, those skilled in the art will recognize that the
invention may also be implemented in combination with
other program modules.

[0074] Generally, program modules include routines, pro-
grams, components, data structures, and other types of
structures that perform particular tasks or implement par-
ticular abstract data types. Moreover, those skilled in the art
will appreciate that the invention may be practiced with
other computer system configurations, including hand-held
devices, multiprocessor systems, microprocessor-based or
programmable consumer electronics, minicomputers, main-
frame computers, and the like. The invention may also be
practiced in distributed computing environments where
tasks are performed by remote processing devices that are
linked through a communications network. In a distributed
computing environment, program modules may be located
in both local and remote memory storage devices.

[0075] FIG. 2 depicts an illustrative computer architecture
for a computer 600 for practicing the various embodiments
of the invention. The computer architecture shown in FIG.
2 illustrates a conventional personal computer, including a
central processing unit 650 (“CPU”), a system memory 605,
including a random-access memory 610 (“RAM”) and a
read-only memory (“ROM”) 615, and a system bus 635 that
couples the system memory 605 to the CPU 650. A basic
input/output system containing the basic routines that help to
transfer information between elements within the computer,
such as during startup, is stored in the ROM 615. The
computer 600 further includes a storage device 620 for
storing an operating system 625, application/program 630,
and data.

[0076] The storage device 620 is connected to the CPU
650 through a storage controller (not shown) connected to
the bus 635. The storage device 620 and its associated
computer-readable media provide non-volatile storage for
the computer 600. Although the description of computer-
readable media contained herein refers to a storage device,
such as a hard disk or CD-ROM drive, it should be appre-
ciated by those skilled in the art that computer-readable
media can be any available media that can be accessed by
the computer 600.

[0077] By way of example, and not to be limiting, com-
puter-readable media may comprise computer storage
media. Computer storage media includes volatile and non-
volatile, removable and non-removable media implemented
in any method or technology for storage of information such
as computer-readable instructions, data structures, program
modules or other data. Computer storage media includes, but
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is not limited to, RAM, ROM, EPROM, EEPROM, flash
memory or other solid state memory technology, CD-ROM,
DVD, or other optical storage, magnetic cassettes, magnetic
tape, magnetic disk storage or other magnetic storage
devices, or any other medium which can be used to store the
desired information and which can be accessed by the
computer.

[0078] According to various embodiments of the inven-
tion, the computer 600 may operate in a networked envi-
ronment using logical connections to remote computers
through a network 640, such as TCP/IP network such as the
Internet or an intranet. The computer 600 may connect to the
network 640 through a network interface unit 645 connected
to the bus 635. It should be appreciated that the network
interface unit 645 may also be utilized to connect to other
types of networks and remote computer systems.

[0079] The computer 600 may also include an input/
output controller 655 for receiving and processing input
from a number of input/output devices 660, including a
keyboard, a mouse, a touchscreen, a camera, a microphone,
a controller, a joystick, or other type of input device.
Similarly, the input/output controller 655 may provide out-
put to a display screen, a printer, a speaker, or other type of
output device. The computer 600 can connect to the input/
output device 660 via a wired connection including, but not
limited to, fiber optic, Ethernet, or copper wire or wireless
means including, but not limited to, Wi-Fi, Bluetooth, Near-
Field Communication (NFC), infrared, or other suitable
wired or wireless connections.

[0080] As mentioned briefly above, a number of program
modules and data files may be stored in the storage device
620 and/or RAM 610 of the computer 600, including an
operating system 625 suitable for controlling the operation
of a networked computer. The storage device 620 and RAM
610 may also store one or more applications/programs 630.
In particular, the storage device 620 and RAM 610 may store
an application/program 630 for providing a variety of func-
tionalities to a user. For instance, the application/program
630 may comprise many types of programs such as a word
processing application, a spreadsheet application, a desktop
publishing application, a database application, a gaming
application, internet browsing application, electronic mail
application, messaging application, and the like. According
to an embodiment of the present invention, the application/
program 630 comprises a multiple functionality software
application for providing word processing functionality,
slide presentation functionality, spreadsheet functionality,
database functionality and the like.

[0081] The computer 600 in some embodiments can
include a variety of sensors 665 for monitoring the envi-
ronment surrounding and the environment internal to the
computer 600. These sensors 665 can include a Global
Positioning System (GPS) sensor, a photosensitive sensor, a
gyroscope, a magnetometer, thermometer, a proximity sen-
sor, an accelerometer, a microphone, biometric sensor,
barometer, humidity sensor, radiation sensor, or any other
suitable sensor.

Template Generation

[0082] Disclosed herein is a novel generation-based
method for retrosynthesis planning that represents a distinct
category, sometimes referred to herein as template genera-
tion. In some embodiments, the disclosed system and
method comprise template generation models that employ a
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Sequence-to-Sequence (S2S) architecture, and that are
trained to translate product information into reaction tem-
plates, as opposed to generating reactants. This system and
method transcends the limitations of template selection-
based approaches, enabling the discovery of novel reaction
rules and expanding the scope of retrosynthesis planning. In
some aspects, the disclosed system and method combine
generated reaction templates and the “RunReactants” func-
tion from RDKit, and offer an efficient means to swiftly
identify templates that yield grammatically coherent reac-
tants from given products. This facilitates the exploration of
previously uncharted chemical reactions and pathways.
[0083] One of the major benefits of using the reaction
template is the ease of checking reaction validity. During the
transformation of a reaction template, the product is guar-
anteed to be converted to the reactant with exact matching
of atoms indices and relevant functional groups from the
description of template. In comparison to reactant generative
models, this benefit greatly reduces the uncertainty in the
produced reactants which might not correspond to any
known reactions or have key atom mismatches due to
problems during decoding.

[0084] FIGS. 16A through 16C show common machine
learning methods for retrosynthesis as well as an exemplary
method disclosed herein. FIG. 16A is a diagram showing
that reactants and templates can be selected and generated
based on a target compound using different machine learn-
ing models. In one example, template generation is used in
the disclosed method. FIG. 16B is a diagram showing that
latent space is incorporated in one of the models in the
disclosed method according to aspects of the present inven-
tion. In some embodiment, the method comprises sampling
in latent space in order to give different reaction templates.
FIG. 16C shows the results of the disclosed method com-
pared to a previous method, displaying a reduction in
synthesis steps for a key intermediate for active pharmaceu-
tical ingredients (API).

[0085] Other aspects of the invention relate to a sampling
generative model (sampling model) for template generation
that applies to a target product. In some embodiments, the
disclosed sampling model has a latent space, enabling the
generation, interpolation, and distance measurement of vari-
ous templates (FIG. 16B). Aspects of the present invention
also relate to deterministic models that take target com-
pounds as input and generate templates. For example, but
without limitation, in some embodiments the encoder of the
model can incorporate positional embedding for reaction
centers, enabling users to specify specific reacting sites
during prediction where the results are benchmarked on the
USPTO-FULL dataset.

[0086] The disclosed sampling model is partially based on
the conditional kernel-elastic autoencoder (CKAE) also dis-
closed herein, which is the first of its kind in the field of
retrosynthesis. This model conditions on corresponding
products during training, allowing interpolating and extrapo-
lating capabilities of reaction templates in the latent space to
generate templates during the sampling process. The latent
space also provides a measure of distances between reaction
templates, allowing means to identify the closest reaction
reference within the dataset or determine the similarity
between two reactions.

[0087] The disclosed template generation method intro-
duces a novel design and feature where the templates, which
are referred to herein as site-specific templates (SSTs),
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exploit just the reaction centers of the involved molecules.
This results in a concise and informative set of templates
different from the templates available in the RDChiral
repository [Connor W. Coley et al., J. Chem. Inf. Model.,
June 2019]. Additionally, SSTs and target compounds with
reaction centers labeled (center-labeled product, CLP) are
simultaneously encoded/decoded, allowing the model’s
attention mechanism to incorporate reaction centers defined
by atoms in the molecule context. Integrating these features
into the template generation process ensures the relevance
and practicality of the generated templates. In addition, to
resolve the common problem of having new unidentified
reactions, CKAE’s latent space is used to establish distance
measurement which allows the referencing of reactions
within the training set.

[0088] With SSTs and generation methods in place, the
disclosed approach was validated through the practical
application of synthesis. Compound 1b-7 was reported by
Boehringer Ingelheim [Jason ABBOTT et al., U.S. Patent
2023/0212164 A1, 2023] along with a library of analogs, as
a potent Ba/F3 KRASGI12C inhibitor, and potential anti-
cancer agent. The synthetic route for Ib-7 has two key
intermediates (FIG. 16C), a thiophene derivative and its
precursor compound 1. A cyclohexanone with quaternary
chiral center in c-position containing alkyne moiety is
considered a synthetic challenge. A machine learning model
coupled with human intuition was used to determine the
most step-efficient way to synthesize compound 1, thereby
reducing the number of steps from 5 to 3 compared to
previous work [Jason ABBOTT et al., U.S. Patent 2023/
0212164 Al, 2023]. The disclosed experimental examples
provide insights into the practicality and reliability of ret-
rosynthesis predictions, reinforcing the models’ robustness
and their underlying promise to address a wide spectrum of
retrosynthesis problems.

EXPERIMENTAL EXAMPLES

[0089] The invention is further described in detail by
reference to the following experimental examples. These
examples are provided for purposes of illustration only, and
are not intended to be limiting unless otherwise specified.
Thus, the invention should in no way be construed as being
limited to the following examples, but rather, should be
construed to encompass any and all variations which
become evident as a result of the teaching provided herein.
[0090] Without further description, it is believed that one
of ordinary skill in the art can, using the preceding descrip-
tion and the following illustrative examples, make and
utilize the system and method of the present invention. The
following working examples therefore, specifically point out
the exemplary embodiments of the present invention, and
are not to be construed as limiting in any way the remainder
of the disclosure.

Example 1: Kernel-Elastic Autoencoder

[0091] Disclosed herein is an innovative self-supervised
generative approach called Kernel-Elastic Autoencoder
(KAE), which enhances the performance of traditional
Variational Autoencoder by designing both modified maxi-
mum mean discrepancy and weighted reconstruction loss
functions. KAE addresses the long-standing challenge of
achieving superior generation and reconstruction perfor-
mances at the same time. The disclosed Transformer-based
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model encodes molecules as SMILES strings and demon-
strates outstanding results in molecular generation tasks.
The model achieves remarkable diversity in molecule gen-
eration while maintaining near-perfect reconstructions (over
99%) on the testing dataset, surpassing previous molecule-
generating models. The model’s functionality was extended
by enabling conditional generation and implementing beam
search in the decoding phase for improved molecule candi-
date search in constraint optimization tasks, resulting in a
significant 28% improvement over the baseline. Further-
more, the disclosed model shows promise in molecular
docking tasks, enriching the dataset with higher-scoring
candidates and outperforming training set molecules accord-
ing to both AutoDock Vina and Glide. The disclosed work
represents a substantial contribution to generative models
for molecular design and optimization, demonstrating the
strength and potential of the disclosed approach.

[0092] With the idea of generation, a variety of applica-
tions for drug discovery and Chemistry are made available
[Maziarka et al., Journal of Cheminformatics, 2020; Moret
et al, Nature Machine Intelligence, 2020; Skalic et al.,
Journal of chemical information and modeling, 2019; Wang
et al., Nature Machine Intelligence, 2021]. Variational Auto-
encoder (VAE) [Diederik P Kingma and Max Welling.
Auto-encoding variational bayes. arXiv preprint arXiv:
1312.6114, 2013] stands out as a pioneer of generative
models. Its versatility in molecule generation is explored by
many works formats such as character [Gomez-Bombarelli
et al.,, ACS central science, 2018], grammar [Kusner et al.,
In International conference on machine learning, pages
1945-1954. PMLR, 2017], and graph-based [Jin et al., In
International conference on machine learning, pages 2323-
2332. PMLR, 2018] VAEs.

[0093] VAE differs from Autoencoder (AE) [Dana H Bal-
lard. Modular learning in neural networks. In Aaai, volume
647, pages 279-284, 1987] in that it achieves generation
purpose by modeling data as probabilistic distributions.
Whereas the goal of AE is to efficiently embed data into a
low-dimensional space. However, the latent space of the AE
often has regions that do not correspond to any encoded data
and therefore sampling around encoded latent representa-
tions is not feasible. The loss function for sequence-to-
sequence style VAE seeks to reconstruct cross-entropy term
as implemented in AE, while treating each latent vector as
a distribution. Then by enforcing all latent vectors to prior
distribution such as a Gaussian, decoding latent vectors
sampled from this distribution gives results that resemble
training data. Not limited by generation, VAEs’ potentials
are explored widely in molecule property prediction and
optimizations which are important steps in computational
drug discovery.

[0094] The VAE performance for molecule generation is
measured in terms of novelty (N), uniqueness(U), validity
(V), and reconstruction (R). Though all VAE models aim to
achieve the highest metrics, they are constrained by a
trade-off between the NUV and reconstruction. A model that
reconstructs well might not be able to achieve high NUV and
vice versa. Whichever gets closer to the optimum, the other
will suffer. For example, in the case of molecule generation,
if a VAE model is capable of reconstructing the input
unambiguously, inferencing on latent vectors that the
decoder has not seen before would be unpractical, being less
likely to produce valid outputs. This trade-off leads to
additional concerns, especially since these models lack the
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ability to perform precise optimization around a target
molecule [Madhawa et al., arXiv preprint arXiv:1905.
11600, 2019]. Being able to reconstruct is important because
it ensures success in interpolating between molecules in
latent representation as well as sampling close molecular
scaffolds for a given target.

[0095] Graph-based VAE methods take the lead in chemi-
cal validity [Jin et al., In International conference on
machine learning, pages 2323-2332. PMLR, 2018; Jin et al,
In International conference on machine learning, pages
4839-4848. PMLR, 2020]. This is because the molecules are
represented in graphs of motifs and these motifs explicitly
enforce grammar rules onto the molecules, so the generated
molecules are all valid. However, this is not the case without
checking for grammar; during testing, if certain motifs do
not exist in the training dataset, the model would not be able
to reconstruct or sample similar molecules.

[0096] Flow-based generative models, on the other hand,
excel in the reconstruction by memorizing the training
dataset [Zang et al, In Proceedings of the 26th ACM
SIGKDD International Conference on Knowledge Discov-
ery & Data Mining, 2020; Luo et al., In International
Conference on Machine Learning, pages 7192-7203. PMLR,
2021]. The models consist of invertible maps from input
data to latent space with the same dimension so the model
can map latent vectors back to the input molecules exactly.
Nevertheless, same-dimensional latent representations are
criticized for not being able to capture features that are
important and tend to overfit. Out-of-distribution problems
could arise during the sampling process and the reconstruc-
tion on the testing dataset remains a concern [Nalisnick et
al., arXiv preprint arXiv:1810.09136, 2018].

[0097] In this work, a new architecture is designed and is
referred to as Kernel-Elastic Autoencoder (KAE) which
greatly reduces the aforementioned problems. Disclosed is a
new loss function that combines the benefits of both the AE
and VAE objectives. The framework captures both behav-
iors. KAE achieves state-of-the-art performance in the gen-
eration task without any checks of molecule grammar or
chemical rules while reaching near 100% reconstruction on
a 24k-molecule test set. In KAE, the Kullback-Leibler (KL)
divergence loss [James M Joyce. Kullback-leibler diver-
gence. In International encyclopedia of statistical science,
pages 720-722. Springer, 2011] normally used in VAE is
replaced with an MMD-inspired loss function, modified
MMD, to shape the latent space. By incorporating the kernel
used for the MMD-inspired term and allowing weighing
between AE and VAE objectives, it was believed this is
widely applicable as it presents a new way to obtain higher
performance implementable for all other VAE and AE-based
architectures on datasets outside of molecule generations.
[0098] Inthe disclosed work, the performance from a fully
transformer-based [Vaswani et al., Advances in neural infor-
mation processing systems, 30, 2017] architecture was lev-
eraged. Under the same architecture, it was compared and
shown that the modification of either term from the original
VAE loss function leads to better performances. With both
modifications, KAE stands out from other string and graphi-
cal-based models in a variety of performance measures (N,
U, V, R and optimization tasks).

[0099] The KAE architecture and the KAE loss were
presented that optimize model performance by comparing it
to the KL-based loss function. In addition, it was demon-
strated that the result, in combination with beam search
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techniques as adopted by [Moret et al., Angewandte Chemie
International Edition, 2021; Tetko et al., Nature communi-
cations, 2020], rivals the results produced by graphical
models which are known to produce the highest validity
SMILES after grammar checks. It was proposed to use beam
search for the generation process and demonstrate that this
approach can be used to increase sample diversity. It was
further shown that different interpretations for the same
latent vectors can be derived exclusively with beam search.
[0100] The inefficiencies of the existing models were
identified in constraint optimization tasks with less accurate
reconstructions and the performance from state-of-the-art
results were improved [Ryan J Richards and Austen M
Groener. Conditional f-vae for de novo molecular genera-
tion. arXiv preprint arXiv:2205.01592, 2022] by over 28%,
while also exceeding the metric arising from searching
candidates in the training dataset.

[0101] To demonstrate the applicability of the model,
conditioned searches for docking candidates were per-
formed with training dataset obtained from [Bengio et al.,
arXiv preprint arXiv:2111.09266, 2021]. The conclusion of
having better candidates from the baseline is separately
confirmed by both Autodock Vina and Glide.

Model Architecture

[0102] The problem was formatted as a translation task
that takes the source language, which is encoded and com-
pressed as latent vectors, to the decoded target language.
Leveraging the model’s ability for semantic interpretation of
the SMILES grammar rules, the bulk architecture of Trans-
formers were used [Vaswani et al.,, Advances in neural
information processing systems, 30, 2017] that utilized both
self and encoder-decoder attentions. FIG. 1 shows the KAE
model’s architecture with the option for adding conditions.
The disclosed model is composed of a Transformer encoder,
compression layer, expansion layer, and Transformer
decoder. Attention operations are performed with four heads.
For each input, with specified padding tokens, both the
source and target masks are made to prevent the model from
attending to paddings during training. SMILES tokens are
passed through the encoder and decoder embedding layers
that transform each token into an E-dimensional vector
where E is the embedding size and is equal to 128 for all
implementations discussed in this work. These vectors are
added to the encoder and decoder specific E-dimensional
positional embeddings. In Conditional KAE (CKAE), addi-
tional embeddings are used just for attached condition(s)
such as different molecule properties. CKAE’s condition-
scaled embeddings are concatenated to both the input of the
encoder and the latent representation along the sequence
length dimension, allowing the model to generate molecules
by interpolating and extrapolating with asked properties as
conditions.

[0103] The encoder input is processed by the Transformer
encoder followed by a compression in the sequence length
dimension. This latent vector of 10xE dimensions (a 10-di-
mensional compressed sequence length by E embedding
size) is injected with noise during training. In the case of
CKAE, it is concatenated with the property-scaled embed-
ding vector condition. This processed latent vector is
mapped back to MxE dimensions by the expansion layer
where M is the maximum sequence length in the relevant
dataset. This vector is, treated as the final encoder output, fed
into the decoder without supplying encoder masks. Each
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decoder layer attends to the encoder outputs through the
encoder-decoder muti-head attention operations. Outputs are
contracted by a linear layer along the embedding dimension
to produce a T-dimensional vector per token. This T-dimen-
sional character is then softmaxed, and interpreted as a
probability distribution (P) for each possible character (c).

Training Datasets

[0104] On the ZINC250K dataset. The model is trained on
225k (90%) of the entries. Within the other split, 1k mol-
ecules are used for validation and 24k are used for testing.
Depending on the purpose, the training is either using
(molecular properties) or having zero conditions.

[0105] For the dataset with 300k docking candidates from
[Bengio et al., arXiv preprint arXiv:2111.09266, 2021], all
entries are used for training.

KAE Loss Function

[0106] The disclosed loss is different from that for VAE
[Diederik P Kingma and Max Welling. Auto-encoding varia-
tional bayes. arXiv preprint arXiv:1312.6114, 2013] as both
the reconstruction objective and distribution measurement
are modified.

[0107] The original VAE loss is framed with a loss

Lyag = Lepr + Lxr Equation 1

[0108] where the first term [ ., denotes the cross-en-
tropy loss (CEL, reconstruction objective) and the second
term is the Kullback Leibler divergence (KL-divergence,
distribution measurement). The summations over s and ¢ are
for sequence length and the number of tokens in the decod-
ing dictionary. Y is equal to one if the token belongs to the
class c at position s and is zero otherwise.

[0109] The objective was reformulated from £ .z to a
weighted cross-entropy loss (WCEL). The distribution-re-
lated KL loss is changed to a Maximum-Mean-Discrepancy-
inspired (MMD) term which is referred to as modified-
MMD (m-MMD).

[0110] During training, both the decoder output and the
latent vector are retrieved for loss calculations. The decoder
outputs are penalized with the teacher forcing method
[Lamb et al., Advances in neural information processing
systems, 2016]. The latent vectors, however, are penalized
by their difference from 1000 randomly sampled Gaussian

%
vectors (G;) using kernel-based metrics. The WCEL,
denoted as for £ .. sequence is expressed as

Equation 2
Ly, 6) =

- ;+ 1 [ZZYS,Clog(PS,o +Q+9)) Foclog(P m]

[0111] The P, * is the model estimated probability for the
pair of s and c for the latent representation without added
training noises. A is related to the m-MMD term and d is
another hyper-parameter that controls the significance of the
second term or the AE behavior.
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[0112] The weighing ((A+d) € [0, «)) of the second term
allows the learning objective to stay between VAE and AE
objectives. With special cases of the two ends of the bound,
the objective becomes VAE or AE-like. A is included in the
second term because as A becomes larger, the model restricts
latent vectors closer together as penalized by m-MMD loss.
This effect increases the probability of sampling valid latent
vectors but decreases distinctions between vectors. This
effect from A is detailed as described herein.

[0113] A is a scalable parameter that adjusts the weight of
this term relative to the CEL. ¢ is a radial basis function
kernel with

1

-=5" (Gigq — xa)?
‘K(}c', 6",) = exp| M

Equation 3

20

[0114] where D is the size of the latent dimension and is
equal to 10 times the embedding dimension (10xXE). The
value of 26%=0.64 was empirically chosen (model perfor-
mance with different sigma values is described further
herein).

[0115] Overall, the disclosed loss is expressed as:

LA, 6 = Lwcer (A, 8) + m—MMDR). Equation 4

[0116] During training, a noise €€ R? from a gaussian
with a mean of zero and standard deviation of one is added
to the latent vector before the latent vector is sent to the
decoder.

m-MMD and s-MMD

[0117] The original MMD loss between X and T is
calculated as

= - Bl

[0118] where p?xand l?yrepresent the first moments of ({)(?)

and ({)(?) and 0 is a map to space F . The MMD loss can be
expanded as

Equation §

[0119] A function K is defined as the kernel function
. e VES VES .
(Equation 3 such that ¥ (x, y)=0(x),", ¢(y) is the inner

product between X and ? in space F through the transfor-
mation ¢.

[0120] The first moment of X is calculated as

1 &
— >
fx = N § A
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— -
[0121] This allows inner products between p,, and pg to be
written as

Na Np Equation 6

= —ZZaﬁ(%) $(B)).

[0122] In the kernel representation, Equation 6 is written
as:

Na Np Equation 7
—T—s

R - 3L

[0123] When Equation 7 is implemented, since all j are
%
sampled from the target Gaussian distribution, the py,T

%

pterm is not involved in the computational graph during
gradient descent. And, since the kernel function is symmet-
ric, the standard-MMD (s-MMD) loss is reduced to

Nx Nx Ny Ny Equation 8

ZZ« %, %) - NN ZZ

s=MMDQ) =

[0124] In the case of a zero-minimum inner product, the
.. . . = .
minimum of the first term is achieved at p being zero.

%
Minimizing the first term promotes all ¢(x;) to spread out in
the space F while the second term encourages ({)(?) to be

close to the distribution of ({)(?). The m-MMD loss can also
be seen as

Ny Ny Equation 9

m-MMDQ) = |1 - —ZZW =)

Decoding Methods

[0125] To generate a new molecule, a D-dimensional
Gaussian distribution was first sampled to obtain vector v

where v e R %€ In CKAE this vector is then concatenated
with the condition C that is multiplied by its corresponding
embedding vector. The final vector is decompressed by the

expansion layer to Le RMxE. The Decoder translates a
sequence of SMILES string, character-by-character, with
encoder-decoder attention applied to this vector.

[0126] When decoding a single sequence, the “<SOS>”
token is first fed to the decoder. The decoder then performs
multi-headed attention from its input to the encoder output

L and produces a probability distribution over T possible
tokens for each input. At this step, the common method is to
continue the prediction with the token having the maximum
probability by concatenating the token to the next-round
input sequence, and repeating the procedure again to obtain
the next most probable token until the “<EQS>” token is
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produced or the maximum sequence length is reached.
Instead of keeping only the most probable token, with beam
size as a hyper-parameter, beam searches were performed to
derive more possible interpretations from the same vector

T. With a beam size of B, B<=T, there are maximum B
outputs generated from one decoding procedure.

[0127] The beam search algorithm records the probability
of each step for each of the B sequences. For the first step
in beam search, the top B most probable tokens are selected.
For the following steps, the model will decode from B input
sequences at the same time. Since each of the B sequences
have T number of possible outcomes for the next token, the
total number of possible next-step sequences is BXT. These
sequences are then ranked based on the sum of their prob-
abilities for all S characters. In beam search, the probability

of a sequence of tokens indexed from s, s—1,s—2...to 0 can
be represented as
Ps,s—1,5-2,... )= Equation 10

Pi|s-1,5-2,... OxP@s-1,5-2,... 0)

[0128] This expression can then be treated as the product
of the individual probabilities where

Ps,s—1,5-2,... )= Equation 11

Pls|s—1,5=2,... OXPs-1|s=2,5=3 ... O)x ... P(O)

[0129] However, since every term is less than one, when
calculating long sequences, Equation 11 produces intrac-
table small numbers. Therefore, the sum of the log prob-
abilities is calculated instead. For the BXT sequences with
the same sequence length S the probability of the ith
sequence at every position s is denoted as P, ; Without
counting the probabilities of padding tokens, the sum of log
probabilities, P, for the i’th sequence is calculated as:

Equation 12
P= Z Log(P;.)

Jﬁ, et

[0130] where N; is the number of non-padding tokens in
sequence i.

[0131] To encourage the variety of decoding, sequence
lengths are into account while calculating P,. The

1

g

term reduces the preference for shorter sequences over
longer sequences as longer sequence tends to have smaller
sums of log probabilities.

[0132] The top B most probable tokens are selected and
used as the inputs for the next iteration until the maximum
sequence length M is reached or all top B candidates have
produced the “<EOS>” indicating the end of decoding.
[0133] The experimental results are now described herein.
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[0134] Generation performance is measured in terms of
the following three metrics: Novelty (N), Uniqueness (U),
and Validity (V). A valid molecule is novel if it does not
belong to the training dataset, and is unique if it is not
already generated. Valid means the SMILES representation
of a molecule is both syntactically correct and has valid
chemical semantics as checked by RDKit. Reconstruction
(R) is considered successful if the decoder outputs charac-
ters that exactly match those in the input SMILES.

Comparisons Between Different Distribution Constraint
Loss Terms

[0135] The m-MMD was chosen over s-MMD, and over
the traditional KL. term as in the case of a traditional VAE.
Performances of the models with these specifications are
compared during their 200 epochs of training. For all tests
in this section, the A and d terms in all the loss functions are

setto 1 and -1 (when A==3, Lweggis reduced to Legr). In
addition, the effect of latent noise on MMD-based losses was
shown. m-MMD loss injected with Gaussian noise in the
latent space achieves the best result of all the options.

[0136] The performances of models trained with three
different loss functions are compared in FIG. 3. FIGS. 3A,
3B, 3C, and 3D show a performance comparison of the
models trained with modified MMD (m-MMD) loss, stan-
dard MMD (s-MMD) loss, and Kullback-Leibler (KL)
divergence loss: 901 KL; 902 m-MMD; 903 s-MMD; 904
m-MMD, no noise; 905 s-MMMD, no noise. The addition of
noise tests only applies to MMD-related models. The loss

functions are Leg; adding a second term chosen from
m-MMD(}), s-MMD(}), and KL divergence respectively.

The ratios between Lgg, and the second terms are 1:1 for all
cases of A=1 throughout the training process.

[0137] 1k latent vectors are sampled to evaluate the mod-
els’ validity, uniqueness, and novelty at each epoch during
training. Reconstruction rates are calculated based on 1k
molecules from the validation set. It is observed that in cases
where noise is not present, both the s-MMD and m-MMD
models have near-zero validity values which made their
performance significantly worse than their counterparts with
noise added during training.

[0138] The models trained with KL loss noised s-MMD,
and noised m-MMD have dramatic differences in validity
compared to their uniqueness and novelty metrics. Their
reconstruction rates converge and the model with KL loss is
the slowest of all. In conclusion, the performance, as mea-
sured in NUV values at the 200-epoch, of m-MMD is better
than the s-MMD. Adding noise helps sampling valid mol-
ecules; m-MMD with added noise is better than training
with KL divergence loss for the disclosed architecture.

Effects of the A Parameter

[0139] The reason for increasing A is similar to that of
increasing f§ in the case for §-VAE [Higgins et al., In
International conference on learning representations, 2017].
Both A in KAE and f in f-VAE encourage the model to learn
more efficient latent representations and construct smoother
latent space. However, since KAFE has different architecture
and loss objectives from VAE, the aforementioned regular-
ization do not lead to the same result in terms of NUVR as
observed in the case when both A and [} are set to one for
KAE and VAE.
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[0140] For the best model using m-MMD in FIG. 3, all
validities are lower than 90%. This is improved by increas-
ing the A value for the m-MMD term as shown in Table 1.
The models in Table 1 were first trained with A=1 for 85
epochs then with higher values for an additional 1 epoch. &
values were set to —A throughout the training process to
exclude any effects from WCEL in the comparison.

[0141] The higher the A the tighter the model will place the
latent vectors together according to the m-MMD loss. This
is reflected by the increase in the probability of sampling
valid molecules when the latent vectors are drawn from the
same distribution. However, as all latent vectors are becom-
ing closer, it becomes harder for the decoder to differentiate
them, which is reflected by the decrease in reconstruction.
And the decreased uniqueness and novelty with increased A
are due to that the decoder more often identifies different
molecules with overlapping latent representations as the
same ones.

[0142] The overall effects of A are shown by the product
of the N U and V (NUV) as well as the one including
reconstruction (NUVR).

[0143] Table 1 shows the trend of NUV and NUVR as A
is adjusted. It is observed that validity peaks with larger A
and the model trained with A=24.5 has the highest NUV.
However, the reconstruction rate decreases significantly
with increasing A values.

[0144] Table 1 shows the result of sampling 1k latent
vectors after training the model from the same checkpoint
(85 epochs) with the loss function being £ (A=1, &=-1) but
then followed by an additional epoch with different A values
(loss functions are then £ (A=A, d=-1)).

TABLE 1

Model performance with varying A

A Validity Novelty Uniqueness NUV Reconstruction NUVR

1.0 0782 1.000 0995 0778 0.988 0.769

20 0802 1000 1000 0.802 0.978 0.784

50 0849 1000 1000 0.849 0.933 0.792
100 0.847 0999 0999  0.845 0.792 0.669
150 0913 0998 1.000 0911 0.527 0.480
200 0929  1.000 1000 0929 0.246 0.229
245 0961  0.999 0998 0958 0.060 0.057
250  0.940  0.998 1000 0938 0.043 0.040
255 0943 1.000 1000 0943 0.039 0.037
260 0965  0.998 0999 0962 0.029 0.028
275 0962 0.996 0999 0957 0.010 0.010
30.0 0970  1.000 0987 0957 0.000 0.000

[0145] A solution was sought that can increase validity

while maintaining other metrics at the same level. Further
controlling the model via WCEL was the key to this prob-
lem. Model performance was compared with a range of 8
values in S.I. and choose 8=1 in WCEL. Next, different A
values were compared with 0 fixed to 1. In FIG. 4, models
are trained with the loss function £ (A, 8=1) throughout the
training process for 200 epochs. FIGS. 4A, 4B, 4C and 4D
show the performance comparison of the models trained
with different A values (and 8=1) using m-MMD loss: 906
L1D1; 907 L2D1; 908 L3D1; 909 L3.5D1; 910 L4D1. After
each epoch, a sampling of 1k latent vectors was performed
to evaluate NUV, and reconstruction rates were obtained
from 1000 molecules from the validation set. It can be
observed in FIG. 4A that higher A values lead to better final
validity. However, uniqueness in FIG. 4B breaks down for
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the case of when A=4 while novelty and reconstruction rates
converge to around 100% in (FIG. 4C and FIG. 4D).
Therefore, the A=3.5 model is trained for additional 200
epochs (total 400 epochs) to give final performance metrics
in Table 3.

Generation with Beam Search

[0146] The model performance was further measured with
beam search. A single output is selected from the B possible
candidates with a beam size of B based on the criteria
detailed in the decoding method.

[0147] Table 2 shows the model’s generation performance
with various beam sizes by sampling 10k latent vectors each
time. One output is selected out of the interpretations given
by all beam search results for each latent. Beam size of one
is equivalent to not using beam search.

TABLE 2

Model performance with varying beam sizes

Beam Size (B) Novelty Uniqueness Validity NUvV
1 0.996 0.974 0.998 0.968
2 1.000 0.996 1.000 0.996
3 1.000 0.998 1.000 0.998
4 1.000 1.000 1.000 1.000
5 1.000 1.000 1.000 1.000

[0148] Similar to [Jin et al., In International conference on
machine learning, pages 2323-2332. PMLR, 2018; Richards
et al., arXiv preprint arXiv:2205.01592, 2022] that applies
checking methods to improve model performance, it was
proposed to check the final generated results with a round of
beam search. During molecule generation, one of the outputs
was chosen from the B results returned in each beam search.
For example, when using a beam size of two, for the same
latent vector, two possible interpretations are produced. The
B results were iterated through from the top one probable
and if any SMILES is novel, unique, and valid, the check
stops, and the SMILES is kept. Otherwise, keeping valid
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the probability of finding SMILES’ that are novel, unique,
and valid. For each decoding, if all outputs are not valid, the
top one scoring (summed log probabilities) result is
returned.

[0149] In the case where the beam size is equal to one, the
method is identical to greedy search which takes only the
next-step candidate with maximum probability.

[0150] The results done at different beam sizes were
compared. 10k vectors are sampled for each listed beam
size. The result of the beam size of one is used as the control
group.

[0151] Table 2 shows that with increasing beam size, the
model’s performance, measured in NUV scores, is
improved. After using a beam size greater than three, the
performance plateau at 1.0 which is the highest value
possible for this metric.

[0152] Additionally, to demonstrate the beam search’s
capability, it was tested by sampling over a small distribu-
tion for a given latent vector. A molecule was chosen from
the training set and it was encoded into its latent vector. This
latent vector is added with 10 noise vectors that are indi-
vidually sampled from a Gaussian with a tenth of the
standard deviation (0.1-SD) relative to the one used in
training. The noised latent vectors are decoded accordingly.
The result from beam search shows diverse and similar
candidates to the one being sampled around. 6 more candi-
dates were found with the smallest scale beam search (beam
size of two) compared to when beam search was not used
(beam size of one).

Generation Comparison

[0153] The generation performance is measured in terms
of the novelty, uniqueness, and validity. The metric for
generation alone is obtained by the product of the three
(NUV). In addition, especially for VAE-like models, the
ability to reconstruct is used to help finding similar candi-
dates to the encoded ones. Therefore the reconstruction is
taken into account when assessing model’s overall perfor-
mance using NUVR metric.

TABLE 3

The performance comparison between different molecular generation models trained with
ZINC250k dataset. The performance is measured in terms of both the models’ abilities
to generate (NUV) and reconstruct (NUVR) without checking validity. Validity w/o
in the header means that the results have not been post-processed using chemical
knowledge to enforce corrections. Note that the disclosed NUV results are obtained
from averaging over 5 iterations of sampling 10k random latent vectors while the

reconstruction rate is calculated using all molecules from testing dataset.

Validity

Method Novelty Uniqueness w/o  Validity NUV  Reconstruction NUVR
CVAE[6]* 0.980 0.021 0.007 N/A  0.0001 0.446 0.00006
GVAE[7]* 1.000 1.000 0.072 N/A 0072 0.537 0.039
JTVAE[8]¢ 1.000 1.000 0.935 1.000 0935 0.767 0.717
MoFlow[12] 1.000 0.999 0.818  1.000  0.817 1.000% 0.817
Rebalanced[23] 1.000 1.000 0.907 0938  0.907 0.927 0.841
GraphDF[13] 1.000 0.992 0.890  1.000  0.883 1.000% 0.883
ALL 1.000 1.000 N/A 0.985 N/A 0.874 N/A
SMILES[24]%

B-VAE[19] 0.998 0.983 0.983  0.988 0964 N/A N/A
KAE (This work)  0.996 0.973 0.997  1.000  0.966 0.997 0.963

“Results obtained from sampling 1,000 latent vectors.
PR econstruction rates calculated from the training dataset.

[0154] [6] Gémez-Bombarelli et al., ACS central science,
2018; [7] Kusner et al., pages 1945-1954. PMLR, 2017; [8]

molecules is prioritized over unique and novel. Checking
and selecting from all the beam-searched outputs increases
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Jin et al., In International conference on machine learning,
pages 2323-2332. PMLR, 2018; [12] Zang et al., In Pro-
ceedings of the 26th ACM SIGKDD International Confer-
ence on Knowledge Discovery & Data Mining, pages 617-
626, 2020; [13] Luo et al., In International Conference on
Machine Learning, pages 7192-7203. PMLR, 2021; [19]
Richards et al., Conditional B-vae for de novo molecular
generation. arXiv preprint arXiv:2205.01592, 2022; [23]
Yan et al., Journal of Computational Biology, 2022; [24]
Alperstein et al., All smiles variational autoencoder. arXiv
preprint arXiv:1905.13343, 2019.

Constraint Optimization with CKAE (Similarity Search)

[0155] Following the benchmark by Zhou et al [Zhou et
al., Scientific reports, 9(1):1-10, 2019], 800 molecules with
the lowest P log P values from the ZINC250k dataset are
chosen to perform the constraint optimization task where the
optimized molecules are within 0.4 Tonimoto similarities to
the original starting ones. The goal of this task is to find the
molecules that will yield the largest improvement in the P
Log P values within the allowed range. An equation by
Gomez-Bombarelli and Jin was used [Gomez-Bombarelli et
al., ACS central science, 2018; Wengong Jin, Regina Bar-
zilay, and Tommi Jaakkola. Junction tree variational auto-
encoder for molecular graph generation. In International
conference on machine learning, pages 2323-2332. PMLR,
2018] to calculate P log P:

PlogP(m) = LogP(m) — S4(m) — ring(m) Equation 13

[0156] where, for molecule m, Log P is the octanol-water
partition coefficient calculated with atom contributions
using Crippen’s approach [Wildman et al., Journal of chemi-
cal information and computer sciences, 1999]. SA is the
synthetic accessibility score [Ertl et al., Journal of chemin-
formatics, 2009] and ring is the number of rings in the
molecule that has more than six members.

[0157] The CKAE model trained was used on the same
specifications as disclosed with A and & both set to one.
During the decoding phase, all SMILES are allowed up to
190 maximum character lengths. Longer sequences are
truncated.

[0158] Instead of using optimizers or regressors approach
like [Jin et al., In International conference on machine
learning, pages 2323-2332. PMLR, 2018; et al., arXiv
preprint arXiv:2205.01592, 2022; Ma et al., In Proceedings
of the 30th ACM International Conference on Information &
Knowledge Management, pages 1181-1190, 2021; Yan et
al., Journal of Computational Biology, 2022], a search
procedure was developed called the Similarity Exhaustion
Search (SES). The name comes from the action to perform
repeated samplings across a range of conditions to obtain
chemically similar molecules that are close to the target
molecule in the latent space. SES is empowered by beam
search and it has three hyper-parameters, the beam size B,
interval 8., maximum increase in condition A, and number
of repetitions in Phase-two R. In the disclosed implemen-
tation, parameters B=15, 8,=0.1, A=20, and R=4 are used.
[0159] Condition Search: The SES initializes with each
to-be-optimized molecule m; and their P log P values as
condition c; where i is the index for the i’th molecule. The
corresponding latent vector z; is located by the encoder.
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[0160] For step s;, where j starts from zero, a search was
performed for the vector z, with condition c+jd,. The con-
catenated vector of z; and its new condition vector were fed
to the decoder. With beam search, B results were produced
at each step. The procedures were repeated until jd, is equal
to the maximum increment A. A total of

g B
=
d

candidates were generated for m, from this procedure. All
candidates were filtered such that only the ones that were
within 0.4 Tanimoto similarities were kept. The P log P
values were calculated and ranked. The optimization was
considered successful if the highest P log P value of the
candidate for the i’th molecule was higher than its original
value; The P log P value and corresponding candidate
SMILES were then recorded.

[0161] Repositioning: To encourage sampling further
away from the encoded latent vectors sampling around z; at
c, was performed after the condition search. The sampling
was done by adding a noise e that belonged to the same
Gaussian distribution used for training. If the sampled vector
Z, produced a better result than the previous search, it was
recorded. If there was Z, recorded, the next sampling would
start from Z;. This step was to expand the exploration to
molecules that were further away from z,. [t was especially
useful for re-positioning vectors that had little or no
improvements in the condition search. This repositioning
procedure is repeated 100 times. A pictorial illustration of
this procedure is shown in FIG. 6.

[0162] Phase Two: The condition search and repositioning
resulted in two sets of latent vectors. One contained all
originally encoded z; The other set included repositioned Z.
In phase two, the search was done in parallel with a
combination of the condition search and repositioning. Each
of the two sets was added noise the same way as in
repositioning. However, each time this is done, every c; is
adjusted by c+jd, like in the condition search.

[0163] With the same filtering and selection criteria as in
condition search, the new highest P log P-valued molecules
were recorded for the two sets. Phase two was repeated for
R times. After the R repetitions, for each molecule candi-
date, the better from the two sets was chosen and the final
results were presented in Table 4.

[0164] In addition, to benchmark the model performance
against the training data itself, a search within the training
set ZINC250K was performed. For each of the 800 mol-
ecules, its similarity to all 250k entries was calculated in
order to find the one with the maximum P log P value while
staying within the 0.4 Tanimoto similarity constraint. This
result is marked as ZINC250K in Table 4.

[0165] KAE has close to 100% reconstruction rate, and to
demonstrate this advantage of being able to sample around
accurately encoded vectors, a plain search with randomly
sampled latent vectors at different conditions was per-
formed. The condition P log P from —10 to 10 with step size
of 0.1 was scanned across. At each step, 800 vectors are
sampled from the latent space with each decoded using
beam search with a beam size of 15. This procedure pro-
duced number of candidates equivalent to running phase two
for 800 times for each molecule. The result of this search is
marked as Random Search in Table 4.



US 2024/0404651 Al

[0166] All the disclosed errors denoted after the “+” in the
Table 4 are standard deviations of the corresponding values.
The improvements and similarities measure the mean dif-
ference in the P log P values and the mean of the Tanimoto
similarity of the best candidate molecules and their starting
molecules; The success rate measures the percentage of
molecules that achieved modifications with higher P log P
values within their similarity constraints. All constraint
optimization results including the target molecules and the
improved molecules’ SMILES strings are provided in the SI.

Docking Candidate Search

[0167] To examine the model for diverse applications, its
ability to sample diverse molecules that can be useful for the
task of docking was explored. Following approach by Ben-
gio et al [Bengio et al., arXiv preprint arXiv:2111.09266,
2021], CKAE was trained on the selected dataset of 300k
molecules where each of their binding energies are calcu-
lated from AutoDock [Trott et al., Journal of computational
chemistry, 2010]. The energies are then converted by a
custom scaling function, from the same source, to get to the
metric called reward. Different from Gflownet, CKAE
samples at all training conditions FIG. 7; By asking for
larger conditions, unique, novel and better-binding mol-
ecules were sampled.

TABLE 4

This table compares different methods’ results on constraint
optimization tasks. The performance is measured on the average
improvements for the set of 800 molecules. The success rate
is measured as the percentage of molecules that the algorithm is
able to improve. The ZINC250K is the result obtained by
searching for the highest PlogP improvement against the
ZINC250k dataset itself. Better results were demonstrated than
searching against the training data and the highest performance
was achieved using the disclosed model in combination with
the SES approach. (similarity constraint = 0.4)

Method Improvements Similarities  Success Rate
JT-VAE[8] 0.84 +1.45 0.51 £0.1 83.6%
MHG-VAE[29] 1.00 = 1.87 0.52 = 0.11 43.5%
GCPN[30] 2.49 £1.30 0.47 = 0.08 100%
Mol-CycleGAN[1] 2.89 = 2.08 0.52 £0.10 58.75%
MolDQboot[25] 337 £1.62 N/A 100%
ZINC250K 4.64 = 2.33 0.48 = 0.16 97.88%
(This work)

MoFlow [12] 4.71 £ 4.55 0.61 +0.18 85.75%
Random Search 4.78 £ 2.08 0.43 = 0.03 81.75%
(This work)

MNCE-RL[31] 5.29 £1.58 0.45 £ 0.05 100%
B-VAE [19] 5.67 £2.05 0.42 £ 0.05 98.25%
CKAE (This work) 7.67 = 1.61 0.42 £ 0.02 100%

[1]Maziarka et al., Journal of Cheminformatics, 2020; Moret et al., Nature Machine
Intelligence, 2020;
[8]Jin et al., In International conference on machine learning, pages 2323-2332. PMLR;

[12] Zang et al., In Proceedings of the 26th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, pages 617-626, 2020;

[19] Richards et al., Conditional B-vae for de novo molecular generation. arXiv preprint
arXiv: 2205.01592, 2022;

[25]Zhou et al., Scientific reports, 9(1): 1-10, 2019;

[29]Hiroshi Kajino, In International Conference on Machine Learning, pages 3183-3191.
PMLR, 2019;
[30]You et al., Advances in neural information processing systems, 31, 2018;

[31]Xu et al., Advances in Neural Information Processing Systems, 33: 8366-8377, 2020

[0168] To promote diversity in the candidates, beam
search was not used for this task. 10° NUV molecules were
sampled and the rewards after Autodock Vina calculations
were obtained. The average Tanimoto similarities are mea-
sured using a Morgan Fingerprint with a radius of two.
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TABLE 5

This table compares docking candidates from GFlownet, training
sets and CKAE. The Top 10, 100, and 1000 rewards are the averages
of the rewards for molecules at the corresponding thresholds. The
Top-1000 similarity is the mean of all pair-wise similarities.

For diversity of the generated results, the lower similarity is
interpreted better, and for docking the higher rewards are better.

Top 10 Top 100 Top 1000 Top-1000
Method reward reward reward similarity
Gflownet 8.36 8.21 7.98 0.44
Training Data 9.62 8.78 7.86 0.58
CKAE 11.15 10.46 9.63 0.63
[0169] The result of the mean reward for the top 10, 100,

and 1000 best molecule candidates is listed in Table 5.
CKAE sampled more similar molecules than reported by
GFlownet. However, the rewards of the sampling candidate
were considered better. In the training database, the maxi-
mum reward is 10.72 comparing to the maximum of 11.45
found from CKAE samples. This result shows the CKAE’s
extrapolation capability.

Discussion for Constraint Optimization

[0170] CVAE interpolates the condition and produces
molecules that have conditions correlating to the ones used
as input. Each point in FIG. 7 is the average produced from
1,000 samples in the latent space. For every 1,000 samples,
different conditions are attached. The corresponding P log P
values are calculated from the SMILES output from the
decoder. The correlation between the mean values produced
from the model to the concatenated condition (condition
asked) is 0.9997. This correlation to the asked conditions is
affected by the underlying training data distribution. Better
correlation is expected when training data is abundant and
vice versa.

[0171] It is expected that with increasing P log P as a
condition, corresponding molecules with properties close to
the values that are asked can be produced.

[0172] The search using CKAE yields a better result than
either the rudimentary ZINC250k search or the Random
Search. Especially the Random Search samples approxi-
mately ten times more molecules per molecule target than in
the CKAE Phase Two search. This is credited to the accurate
reconstruction of the model. The encoder is able to deter-
mine the most accurate representation of the molecule in the
latent space. This makes searching results around them
much more efficient.

[0173] The purpose of condition search is to look for a set
of candidates with similar encoder-estimated z, but with
higher P log P conditions. However, this procedure does not
guarantee good samplings around some vectors as there
were 8 molecules that were not exactly reconstructed. This
means these molecules would have had starting points that
make the decoded molecules dissimilar or even out of the
similarity constraints from the encoded targets. Despite the
correct reconstruction, because these molecules represent
the tail of the distribution of the P log P conditions in the
training data, they could have “rough” latent space around
them. This can cause a similar problem to poor reconstruc-
tion where better candidates within the constraint cannot be
found due to a decrease in either or a combination of
validity, uniqueness, and novelty. Therefore, the resampling
step is to ensure all molecules, especially for those z, that
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cannot be reconstructed correctly, can explore possibly
better-starting points in the later search (FIG. 6).

[0174] In phase two, the purpose of having two sets of
latent vectors during the search is to ensure better and
various starting points in the latent space.

[0175] It was found that the mean improvement from the
z and 2 sets are 7.52 and 7.34 separately. However, by
choosing the better of the two, the result is increased to 7.67.

Discussion of Beam Search Results

[0176] With larger beam sizes, it is expected the output of
the top one probable SMILES will have higher validity but
lower uniqueness. This is likely because molecules with
specific character combinations appear more often in the
dataset. However, this is compensated with more possible
candidates from the search results. The effect of beam search
is better sampling efficiency which is not due to the sheer
increase in the number of candidates. It was believed that the
beam search can help differentiating two latent vectors that
are similar by providing more interpretations per vector.

Latent Space and Model Performance

[0177] In m-MMD, with the RBF-kernel function, it was

believed that removing the ;Z,T ;Txterm is helpful since this
allows the distributions of individual molecules to be closer
together. This makes the sampling region have fewer places
where the decoder cannot infer valid molecules. A demon-
stration and a comparison with the latent spaces of s-MMD
and m-MMD are presented in FIG. 8.
[0178] The validity of the molecule is related to both
syntactic and semantics. Syntactic correctness is to have the
correct SMILES grammar; Semantic correctness means
chemically meaningful. The probability P, was denoted
which depends on the decoder’s ability to comprehend the
SMILES and make the generated molecule both syntacti-
cally and semantically correct when given a latent vector
outside of the training set.
[0179] The other relevant probability is referred to as
samp- Psamp 15 the probability of sampling valid molecules
in the latent space assuming the decoder is trained to
recognize inputs from the target Gaussian distribution. All
molecules can be interpreted as a “region” due to the
addition of the Gaussian noise. When two or more regions
overlap, a continuous interpolation between them can be
generated. However, for example, when the sampled vectors
land in the “holes” within the latent space or too far away
from the target distribution, the model will be less likely to
produce valid outputs. The sampling in latent space affects
the output through the encoder-decoder attention.

[0180] To increase the probability of having valid outputs,
the product of P, ,-and P,,,,,, should be considered together.
[0181] P, term is learned by the decoder through the

reconstruction process. The P, however, can be raised by
scaling the A parameter in the loss function in Equation 9 so
that all latent vectors are more likely to be within the target
distribution.

[0182] It can be seen from FIG. 3D that, with or without
noise, the models trained with s-MMD have a faster-con-
verging reconstruction rate than the models trained with

m-MMD. This is because the extra (?, ?) term in
s-MMD promotes the separation of the latent representations
of the data points such that the decoder can easily differen-
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tiate the representations. However, since the latent vectors
that represent valid molecules are far from each other, the
validity is significantly lower for the models trained with
s-MMD.

[0183] Increasing A as an approach was considered to
optimize the model performance in N, U, and V, reducing the
regions with holes while still making individual molecules
distinct from each other.

Self-Optimizing Framework

[0184] As can be seen from both Vina and Glide results,
CKAE produces better results than those in the dataset. It is
therefore, possible to retain the higher-scoring data for new
iterations of training. In this process, the model will be
provided the information of better candidates and therefore
more likely to produce even higher scoring candidates.
[0185] In conclusion, the disclosed architecture, Kernel-
Elastic Autoencoder (KAE), represents a novel integration
of the strengths of both Variational Autoencoder (VAE) and
Autoencoder (AE) frameworks. By replacing the KI.-loss
with a Kernel-inspired loss in the KAE formulation, a
flexible approach was offered that allows tuning of the
model’s characteristics using parameters A and 9, incorpo-
rating varying degrees of VAE and AE features as needed.
The disclosed method has wide-ranging applicability for
problems that require both strong generation and reconstruc-
tion performances.

[0186] In the context of molecule generation, combined
with its unique architecture and training procedure, KAE
outperforms VAE approaches in terms of generation validity
without the need for additional chemical knowledge-based
checks, while achieving reconstruction performance akin to
an AE, with close to 100% accuracy. The model’s generative
performance was further enhanced through the use of beam
search, allowing for the identification of molecules that are
not found otherwise.

[0187] Furthermore, the capabilities of conditioned KAE
(CKAE) were demonstrated, trained on P log P values and
docking scores, in finding superior candidates for constraint
optimization and diverse search tasks. CKAE not only
establishes a new state-of-the-art record but also outper-
forms searching from its training set by impressive margins
of over 65% in constraint optimization and 6.8% in the
docking candidate search. Importantly, the applicability of
KAE and CKAE extends beyond the field of Chemistry,
making them valuable tools for generation tasks and prop-
erty-optimizing generation problems with pair-wise labeled
training data in diverse domains.

[0188] In summary, the disclosed work presents a signifi-
cant advancement in generative modeling, offering a pow-
erful and flexible approach in the form of KAE and CKAE
architectures. These findings highlight the potential of the
disclosed models to bring new insights to molecular design
and optimization and pave the way for future research in
generative models with enhanced performance capabilities.

Data Preparation

[0189] The ZINC-250K dataset was used consistent with
[Rafael Gomez-Bombarelli, Jennifer N Wei, David Duve-
naud, José Miguel Hernandez-Lobato, Benjamin Sanchez-
Lengeling, Dennis Sheberla, Jorge Aguilera-Iparraguirre,
Timothy D Hirzel, Ryan P Adams, and Alan Aspuru-Guzik.
Automatic chemical design using a data-driven continuous
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representation of molecules. ACS central science, 4(2):268-
276, 2018]. During dataset preparation, all SMILES strings
were added to the start of sequence tokens “<SOS>" and the
end of sequence tokens “<EOS>". The two tokens are used
in the testing phase of the model to determine if the
translation is completed. There were 41 unique characters
from the database. They were extracted and put into a
character-to-token dictionary that allows conversions from
characters to tokens. The padding was added at the end as
the 42nd token, making the dictionary size T. A token-to-
character dictionary was created at the same time for the
interpretation of the model output in tokens. With the
character-to-token dictionary, all SMILES representations
were converted to the corresponding tokens. Since the
Transformer architecture was used, model inputs were made
into the same shape for batch training by adding paddings to
all sequences. After padding, all sequences have the same
length. The numerical values of the penalized octanol-water
partition coefficient (P Log P) were concatenated to the end
of the corresponding tokenized molecules. This adds one
extra dimension in the sequence length. The maximum
sequence length for each molecule in the dataset is denoted
as M. The tokenized dataset is then partitioned into 256-size
batches.

o Comparison

[0190] In FIGS. 9A through 11D, the model performance
of different sigma values of the kernel was compared (Equa-
tion 3). FIGS. 9A, 9B, 9C, and 9D show the results for the
performance comparison of the models trained with different
sigma values using modified MMD loss: 911 m-MMD
2ss=5e-4xE; 912 m-MMD 2ss=5e-3xE; 913 m-MMD
2ss=5e-2xE; 914 m-MMD 2ss=5e-1xE. FIGS. 10A, 10B,
10C and 10D show the performance comparison of the
models trained with different sigma values using standard
MMD loss: 911 m-MMD 2ss=5e-4xE; 912 m-MMD
2ss=5e-3xE; 913 m-MMD 2ss=5e-2xE; 914 m-MMD
2ss=5e-1xE. FIGS. 11A, 11B, 11C, and 11D show the
performance comparison of the models trained with different
d values (and A=1) using modified MMD loss and KL loss:
915 L1D-1; 916 LIDO; 917 L1D1; 918 L1D2; 919 L1D4;
920 KL LL1D1. It can be observed that the final uniqueness,
novelty, and reconstruction rate are similar, while there are
clear differences in validity performance. Therefore, the
sigma value that gives the highest final validity rate is
considered optimal. It can be observed that lower 20 values
give higher validity rates and 26°=0.0005xE is the optimal
value for both m-MM and s-MMD models. At the optimal
sigma value, the m-MMD model has higher validity rate
than the s-MMD model. Besides, if models are trained with
even lower sigma values (20°=0.00005xE for example), the
models would break down because they cannot get gradient
information from the MMD loss term (results not shown).

d Comparison

[0191] The & was designed such that when A is 1, and 8 is
greater than -1, the AE-like term is contributing to how the
model reconstructs the inputs. When 8 is large, the model
ignores the regions with added noise and thus is turned into
a pure auto-encoder. When 9 is equal to -1, the model is
VAE-like where each latent vector is treated like a region.
When 9 is in between these two extrema, the model is able
to achieve the AE-like reconstruction rate while obtaining
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better generative performance in NUV metrics. Finally,
since the addition of d is the key to the WCEL, the KL loss
combined with WCEL was again compared with d of 1, as
opposed to the original CEL in VAE. It was shown that the
disclosed formalism of the WCEL is capable of bringing
significant improvements to KL-based models as well in
FIG. 1A.

Example 2: Retrosynthetic Prediction and Reaction
Invention Using Conditional Kernel-Elastic
Autoencoder

[0192] This paper presents a generative transformer model
for retrosynthetic predictions, which comprises of a condi-
tional kernel-elastic autoencoder (CKAE). The disclosed
model uses a loss function and beam search procedure to
ensure accurate reconstruction and diverse generation of
templates for chemical reaction pathways corresponding to
a target molecular product. Furthermore, the reactants cor-
responding to the generated templates are iteratively pro-
cessed to generate complete, multi-step retrosynthetic path-
ways. To train the model, reaction templates are used to
capture the reacting substructures in reactants and products.
The results demonstrate the effectiveness of the proposed
model in accurately and efficiently predicting retrosynthetic
pathways.

[0193] Due to the vastness of chemical space and growing
number of organic synthesis methods, manually designing
molecule synthetic routes is becoming more and more
challenging for experts because they might not be familiar
with the compounds and available reactions. To address this
issue, computer-aided technology has been developed to
help this decision-making process since 1970s. However,
these tools usually rely on hard-coded reaction rules so they
often lack real-world applications. Recently, researchers
have incorporated artificial intelligence (Al) or data-driven
machine learning (ML) models into retrosynthesis tasks.
These methods can be categorized as selection-based or
generation-based. For the selection-based methods,
researchers proposed reactant selection methods and tem-
plate selection methods. Within generation-based methods,
there are semi-template methods and template-free methods.
The input and output of these methods can be molecular
graphs, fingerprints, atom features, bond features, or strings
such as SMILES or SMARTS.

[0194] Reactant selection methods [Guo et al., J. Chem.
Inf. Model., October 2020; Lee et al., June 2021. arXiv:
2105.00795] select molecules from a set of candidates given
products as the input. The advantage is that the molecule
candidates are always valid and can be chosen to be com-
mercially available compounds. However, unless the mol-
ecule candidates include reactants in test set, the model
would not be able to find the correct reactants. On the other
hand, template selection methods [Segler et al., Chem. Eur.
J., May 2017; Coley et al., ACS Cent. Sci., 3(12):1237-1245,
December 2017; Ishida et al., J. Chem. Inf. Model., 59(12):
5026-5033, December 2019; Fortunato et al., J. Chem. Inf.
Model., 60(7):3398-3407, July 2020; Dai et al., January
2020. arXiv:2001.01408; Chen et al., JACS Au, 1(10):1612-
1620, October 2021; Seidl et al., J. Chem. Inf. Model.,
62(9):2111-2120, May 2022] provide the preference of
reaction rules for given products based on a set of reaction
templates. Reaction templates are subgraph patterns that
capture the change in atoms and bonds for the reaction (find
the reaction centers), and reaction templates can be extracted
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in terms of SMART strings by RDChiral [Coley et al., J.
Chem. Inf. Model., 59(6):2529-2537, June 2019]. The
advantages of template selection methods over reactant
selection methods are that only single template has to be
selected instead of multiple reactants and the coverage of
reaction templates/rules is higher than that of reactants.
[0195] Semi-template methods [Yan et al., November
2020. arXiv:2011.02893; Shi et al., August 2021. arXiv:
2003.12725; Somnath et al., June 2021. arXiv:2006.07038;
Wang et al., Chemical Engineering Journal, 420:129845,
September 2021] are generative-based. These methods first
identify the reaction centers or rules then generate the
corresponding reactants based on the given rules. While
template-free methods [Liu et al., ACS Cent. Sci., October
2017; Karpov et al., preprint, Chemistry, May 2019; Chen et
al., October 2019. arXiv:1910.09688; Lee et al., Chem.
Commun., 55(81):12152-12155, 2019; Lin et al., Chem.
Sci., 11(12):3355-3364, 2020; Zheng et al., J. Chem. Inf.
Model., 60(1):47-55, January 2020; Tetko et al., Nat Com-
mun, 11(1):5575, November 2020; Seo et al., AAAIL 35(1):
531-539, May 2021; Mao et al., Neurocomputing, 457:193-
202, October 2021; Sacha et al., J. Chem. Inf. Model.,
61(7):3273-3284, July 2021; Mann et al., Computers &
Chemical Engineering, 155:107533, December 2021; Ucak
et al., ] Cheminform, 13(1):4, December 2021; Kim et al., J.
Chem. Inf. Model., 61(1):123-133, January 2021; Irwin et
al., Mach. Learn.: Sci. Technol., 3(1):015022, March 2022;
Zhong et al., Chem. Sci., 13(31):9023-9034, 2022; Ucak et
al.,, Nat Commun, 13(1):1186, March 2022] address ret-
rosynthesis tasks as sequence-to-sequence (sequences here
can be represented as graphs as well) generation problems.
Given products as input, template-free models have to
reconstruct the corresponding reactants. These generation
based methods have the possibility of inventing novel reac-
tions since these models do not need to select from a set of
candidates.

[0196] Here, a template-generation method was proposed
where the generative model is trained to generate reaction
templates instead of reactants. Unlike template-free meth-
ods, products are used as conditions and templates are used
as input and output. This template-generation method inherit
the template selection methods that have larger coverage
than template-free methods since they are using reactants as
output, while it is also able to search in space that cannot be
accessed by selection-based methods and even invent novel
reaction rules. With the generated templates and the “Run-
Reactants” function from RDKit, reactants can be found
from the given products. This also guarantees the validity of
reactants just like reactant selection methods.

[0197] Conditional Kernel-Elastic Autoencoder (CKAE)
is used as the ML architecture for this work where products
are conditions and templates are the input and output.
State-of-the-art performance of CKAE was shown on
molecular generation tasks and therefore expect this archi-
tecture to work well for reaction templates.

Reaction Template

[0198] In this work, reaction template SMART strings are
extracted from USPTO database in RDChiral. Example of a
reaction template can be seen in FIG. 12. The original
template in FIG. 12A gives the direction from product to
reactants or the direction of retrosynthesis. If a molecule
(product) with the substructure of the left hand side of the
template is passed into the template, RDKit can output the
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molecules (reactants) on the right hand side. For example,
the reaction in FIG. 12C can be obtained by passing the
product in FIG. 12C to the template in FIG. 12A. Even
though the original template strings are used for training, the
format is not intuitive and convenient for readers. Therefore,
the reversed format in FIG. 12B with the direction from
reactants to product will be used to visualize templates and
reactions for the rest of the work.

Model Architecture for Template Generation

[0199] A conditional KAE was trained that is conditioned
on products and the objective is to reconstruct the reaction
template input for the given conditions. The trained model
can thus be taking specific products as conditions and
sample multiple novel single-steps from the latent space.

[0200] For the machine learning architecture, the same
transformer encoder and decoder structures used in previous
work was adopted. However, conditions are no longer
values/properties for molecules, they are instead SMILES
strings of products. Intuitively, the encoder structure was
used as the disclosed conditioner to encode products as
conditions that are concatenated with the latent space.

Training Technique

[0201] In order to gain the best generation power while
maintaining the reconstruction performance, A=1 and &0
was chosen as the KAE training parameters. Similar to KAE
for molecular generation, the generative power can be
measured by novelty, uniqueness, and validity. Note that the
validity definition for template SMARTS strings is slightly
different from the validity for molecule SMILES strings. A
valid template SMARTS string not only has to be a gram-
matically correct SMARTS string, but it also has to contain
substructure of the given product condition. In other words,
even though some generated templates can be visualized just
like in FIG. 12B, the templates might not work for the
specific products fed in the model conditioner. Given the
success of masked-language modeling for BERT, masking
was adopted to the disclosed encoder input (templates) while
the decoder still has to reconstruct the unmasked strings. It
was hypothesized that masking the whole product side
(everything on the left side of >> in template SMARTS
strings) would give us the highest generation performance
because the latent space would contain almost no informa-
tion of the product substructures, and the decoder would
need the information from the conditioner to reconstruct the
unmasked templates. This would give rise to better corre-
lation between conditions and decoded templates and thus
give better generation performance.

Sampling for Single-Step Retrosynthesis

[0202] Since the decoder output is a probability distribu-
tion of the character tokens, adopt beam search was adopted
to get more template strings from sampling. After the
templates are sampled, as ring formation are of chemists’
interest, whether there are ring number changes was moni-
tored to determine if the reactions should actually be intra-
molecular. If there were ring number changes, parentheses
were added on the reactant sides to define intramolecular
reactions. An example can be seen in FIG. 13 where the
sampled template in FIG. 13 A can be converted to FIG. 13C
by putting the reactant side of the template string (every-
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thing on the right side of >> in template SMARTS strings)
between a pair of parentheses.

Multi-Step Retrosynthesis

[0203] Most molecules cannot be synthesized in one step,
so the disclosed single-step retrosynthetic prediction method
was extended to an automated multi-step retrosynthesis
application through beam search. First, a desired product is
fed into the conditioner and several single-step templates
can be sampled to obtain the reactants. A scoring function
was then applied to find the best reactants. For these top
reactants, they are fed into the conditioner again to get
single-step templates for each of the reactants. This process
just continues until a stopping condition like maximum
number of retro-step, computation time, or commercially
available precursors are found.

Comparisons of Different Masking Strategies

TABLE 6

Performance comparison of different masking strategies. The
performance is measured by the number of valid and unique templates
generated by sampling 150 times using beam size of 10. Note that
Product Mask means that the encoder input templates are masked on
the product side, Reactant Mask means that the encoder input
templates are masked on the reactant side, and Random Mask means
that the characters of the whole strings are randomly masked.

Method Epoch 1 Epoch 2 Epoch 3 Epoch 4 Epoch 5
No Mask 67 180 165 210 218
Random Mask (15%) 64 155 181 NA NA
Random Mask (30%) 72 115 NA NA NA
Random Mask (50%) 65 28 NA NA NA
Reactant Mask 145 167 134 NA NA
Product Mask 167 241 266 275 302
[0204] The generative performance of different masking

strategies for training was investigated. In Table 6, shown
are the results of sampling 150 times with beam search of
beam size 10 with different training strategies. It can be seen
that masking the product side of the templates for encoder
input has significantly higher rate of sampling unique and
valid templates. Therefore, this training strategy was used
for further testing.

Novel Measures

[0205] New chemistry was defined as new types of bond
connection/disconnection found on either side of the tem-
plate. The design of a generative approach is opposite to
having predictions only for the likely reactions but also to
consider those that are less likely but novel. These reactions
can be valuable, especially in the design of multi-step
reactions which could have a significant reduction in the
number of total steps by having one or few novel discon-
nections. It was first shown that the model learns about the
task of retrosynthesis by benchmarking using the
USPTOS0k dataset. Then, the valid, novel, and unique
connectivity obtained from the model was showcased. With
the novel disconnections, the disclosed search space for
possible next-step reactants is dramatically enlarged. To
demonstrate this, the disclosed results were first bench-
marked on the multi-step synthesis metrics, and the reduc-
tion in the number of steps was shown. Then experimental
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evidence was shown using the disclosed method which led
to a reduction in the total number of steps required for
synthesizing cyclohexanone.

Why Generative Model

[0206] Generative model allows the mingling of different
motifs which is not defined in the case of sampling by beam
search. Generation from beam search does not lead to
knowledge of the percent of possible outcomes explored
until all possible outcomes are exhausted. A generative
model with a well-defined latent space structure suffers less
from such concern. Latent space has distance measures,
which makes sampling around a target motif much easier
than using beam search. Given a target template, beam
search may only find variations of it without similarity
constraints. Generative model can have similar types of
outputs but different in terms of the sequence composition.

Data Scalability

[0207] Given the success of product-masking models, the
same model was trained with different training dataset size
to research the data scalability. It can be seen in FIG. 14A
that with 10% of the training dataset size, the model has
reached the same unique and valid rate for sampling at 1
equivalent-epoch of training. However, with more epochs of
training, the full dataset has better growth in performance.
Therefore, it was predicted that the model can still be scaled
significantly with larger dataset size. The current dataset size
is around 1.5 million entries while Reaxys database has 34
million reactions.

Comparisons with Reaxys and SciFinder

[0208] Here, the advantage of generative model over com-
mercial retrosynthesis platforms, Reaxys and SciFinder was
demonstrated in FIG. 15 for the same molecule (((4aR,9aS)-
2,3,4,4a,9,9a-hexahydro-1H-indeno[2,1-b|pyridin-6-y1)
methanamine, an intermediate of 113-HSD inhibitor). It can
be seen in FIG. 15A that Reaxys cannot come up with any
routes for this molecule. SciFinder finds some routes after 40
minutes as shown in FIG. 15B. Interestingly, in just 5
minutes, the disclosed model has come up with more alter-
native reaction routes with one example shown in FIG. 15C.
The results show the benefit of using this generative model
comparing to methods using defined search space. This is
because generative model can provide a more efficient
search and explore in novel regions in the latent space.
[0209] A generative transformer model based on a loss
function and a beam search procedure was designed that
ensure accurate reconstruction as well as diverse generation
of templates for chemical reaction pathways corresponding
to a target molecular product. The reactants corresponding to
the generated templates are iteratively processed to generate
complete, multi-step retrosynthetic pathways.

Example 3: Site-Specific Template Generative
Models for Retrosynthetic Planning

[0210] Retrosynthesis, the process of designing synthesis
routes for molecules by working backward from the target
compound, has been a central focus of organic chemistry
research. However, its effectiveness has been limited by the
vastness of chemical space and the scarcity of training data.
Disclosed herein is a new generative machine learning (ML)
method for retrosynthesis planning: template generation.
The disclosed approach includes three essential features.
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First, unlike previous generation methods that generate
reactants or synthons, the disclosed models generate reac-
tion templates. This approach enhances the level of abstrac-
tion in single-step retrosynthesis predictions. Second, a
dedicated component in the disclosed methodology enables
precise specification of reaction centers, granting control
over molecular transformation sites. Third, generative ML
models have intrinsic uncertainty in chemical feasibility for
the generated reactions. Therefore, a separate model, pow-
ered by the conditional kernel-elastic autoencoder (CKAE)
architecture, incorporates a latent space to provide a distance
measure for reaction templates. This latent space distance
measure allows for referencing generated reactions to reac-
tions in the training dataset and provides valuable insights
into chemical feasibility for the reactions. These features
establish a coherent framework for retrosynthesis planning.
In addition to building the ML models, a unique aspect of the
disclosed work lies in the incorporation of experimental
validation. Showcased herein is an ML -aided design of a
complete retrosynthesis route that was subject to rigorous
experimental testing. The successful reduction of synthesis
steps in comparison to previous routes for the target com-
pound from the experiments not only supports the model’s
robustness but also shows its potential for addressing a wide
array of retrosynthesis problems.

[0211] Retrosynthesis is the design of breaking down
complex molecules into simpler building blocks, a concept
formalized by Corey and colleagues in the 1960s [E. I.
Corey et al., Science, October 1969]. This laid the founda-
tion for the development of Computer-Aided Synthesis
Planning (CASP), a field that emerged to assist chemists in
navigating various paths of synthesis. In the 1970s, tools like
LHASA and SYNCHEM [W. Todd Wipke et al., AMERI-
CAN CHEMICAL SOCIETY, June 1977, H. L. Gelernter et
al., Science, September 1977] were introduced, relying on
expert rules and heuristics to offer guidance. While these
systems could not design entirely new reactions, they were
invaluable in helping chemists overcome their inherent
biases. In the 1980s, the IGOR software [Johannes Bauer et
al., Tetrahedron Computer Methodology, 1988] utilized
electronic redistribution patterns to discover novel reactions
based on pattern matrices. By the 1990s, Hanessian and
others [S. Hanessian et al., Pure and Applied Chemistry,
January 1990] demonstrated the potential of collaboration
between human expertise and machine guidance in propos-
ing total synthesis routes, highlighting the inherent con-
straints of human relying on stored knowledge and prec-
edents, and demonstrating how computers could
complement these limitations.

[0212] Computational assistance in chemical synthesis is
used to mitigate human bias and shortsightedness. However,
early systems, rooted in expert rules, still carried traces of
human subjectivity. Furthermore, as the field of organic
chemistry flourished, the boundaries of known chemical
space and synthetic methods are expanded. Expert rules
struggled to keep pace with this ever-evolving chemistry. In
more recent developments, CASP has transitioned from
rule-based methods to precedent-based approaches [Orr
Ravitz, Drug Discovery Today: Technologies, September
2013; Anders Bogevig et al., Org. Process Res. Dev., Feb-
ruary 2015]. This shift was facilitated by the large-scale
extraction of reaction rules.

[0213] FIGS. 16A through 16C shows common machine
learning methods for retrosynthesis and an exemplary
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approach. FIG. 16A shows reactants and templates can be
selected and generated based on a target compound using
different machine learning models. Template generation is
used in the disclosed approach. FIG. 16B shows that latent
space is incorporated in one of the models in the disclosed
approach. Sampling in latent space can give different reac-
tion templates. FIG. 16C shows a reduction of synthesis
steps for a key intermediate for active pharmaceutical ingre-
dients (API).

[0214] The process progressed from manual creation to
automated extraction from extensive chemical datasets. Sev-
eral extraordinary software had emerged due to this transi-
tion which empowered CASP tools to tap into vast reposi-
tories of historical reaction data [Haote Li et al., arXiv:2310.
08685v1, October 2023]. Grzybowski and others [Chris M.
Gothard et al., Angew Chem Int Ed, August 2012; Mikolaj
Kowalik et al., Angew Chem Int Ed, August 2012; Tomasz
Klucznik et al., Chem, March 2018] further introduced
user-purpose-driven tools for route optimization, demon-
strating remarkable success through experimental valida-
tions. Furthermore, the integration of machine learning
(ML) methods has marked the latest chapter in the ongoing
evolution of CASP. ML models offer promising alternatives
and can be broadly categorized as selection-based, semi-
template, or generation based methods [Zipeng Zhong et al.,
January 2023](see FIG. 16A).

[0215] Selection-based methods, such as reactant selec-
tion and template selection methods, aim to choose appro-
priate molecules or reaction rules from the given sets.
Reactant selection methods [Zhongliang Guo et al., J. Chem.
Inf. Model., October 2020; Hankook Lee et al., arXiv:2105.
00795, June 2021] involve ranking molecules from a col-
lection of candidates based on the target compounds. While
reactant selection methods have the advantage of ensuring
the chosen molecules are valid, their performance is
impaired if reactants are not available in the candidate sets.
Template selection methods [Marwin H. S. Segler, Chem.
Eur. J., May 2017; Connor W. Coley et al., ACS Cent. Sci.,
December 2017; Shoichi Ishida et al., J. Chem. Inf. Model.,
December 2019; Michael E. Fortunato et al., J. Chem. Inf.
Model., July 2020; Hanjun Dai et al., arXiv:2001.01408 [cs,
stat], January 2020; Shuan Chen et al., JACS Au, October
2021; Philipp Seidl et al., J. Chem. Inf. Model., May 2022]
rank the reaction templates in terms of their applicability to
the target molecules. These templates capture subgraph
patterns representing the change in atoms and bonds during
a reaction. Notably, the RDChiral repository by Coley et al.
[Coley et al., J. Chem. Inf. Model., 59(6):2529-2537, June
2019] offers template extraction methods and a collection of
reaction templates in the form of SMART strings. Template
selection methods offer distinct advantages over reactant
selection methods; These methods simplify the reaction
representation to a single template instead of multiple reac-
tants. Additionally, the same template can be applied to
different products/target compounds instead of having mul-
tiple sets of reactants for the target compounds, which
provides a higher coverage of the reaction space. However,
like reactant selection methods, template selection methods
are also limited by the coverage and diversity of the avail-
able templates within the predefined reaction rules.

[0216] Semi-template methods [Chaochao Yan et al.,
arXiv:2011.02893 [cs, g-bio], November 2020; Chence Shi
et al., arXiv:2003.12725 [cs, stat], August 2021; Vignesh
Ram Somnath et al., arXiv:2006.07038 [cs, stat], June 2021;
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Xiaorui Wang et al., Chemical Engineering Journal, Sep-
tember 2021; Yu Wang et al., Nat Commun, October 2023]]
involve the identification of reaction centers, synthons, or
leaving groups, followed by the prediction of corresponding
reactants based on these rules. Some semi-template methods
[Vignesh Ram Somnath et al., arXiv:2006.07038 [cs, stat],
June 2021; Yu Wang et al., Nat Commun, October 2023] are
akin to selection-based methods, where reactants are
obtained by predicting reaction centers and selecting from a
collection of leaving groups. Other semi-template methods
adopt generation components, in which reactants are gen-
erated from products and identified synthons or rules.

[0217] Generation-based methods is not bound by the sets
of available reactants or templates. These include template-
free methods [Bowen Liu et al., ACS Cent. Sci., October
2017; Pavel Karpov et al., preprint, Chemistry, May 2019;
Benson Chen et al., arXiv:1910.09688 [cs, stat], October
2019; Alpha A. Lee et al., Chem. Commun., 2019; Kangjie
Lin et al., Chem. Sci., 2020; Shuangjia Zheng et al., J. Chem.
Inf. Model., January 2020; Igor V. Tetko et al., Nat Com-
mun, November 2020; Seung-Woo Seo et al.,, AAAL May
2021; Kelong Mao et al., Neurocomputing, October 2021;
Mikotaj Sacha et al., J. Chem. Inf. Model., July 2021; Vipul
Mann et al., Computers & Chemical Engineering, December
2021; Umit V. Ucak et al., ] Cheminform, December 2021;
Eunji Kim et al., J. Chem. Inf. Model., January 2021; Ross
Irwin et al., Mach. Learn.: Sci. Technol., March 2022;
Zipeng Zhong et al., Chem. Sci., 2022; Umit V. Ucak et al.,
Nat Commun, March 2022] that treat reactant generation as
a translation task, aiming to predict the reactants directly
from the given products without having in-dataset reaction
rules. They therefore bear the potential to explore a wider
range of possible reactions.

[0218] In the disclosed study, a new generation-based
method to retrosynthesis planning that represents a distinct
category is introduced: template generation. The conven-
tional template-based methods have faced challenges. The
process of constructing reaction templates often involves
manual encoding or subgraph isomorphism which is com-
putationally expensive [Connor W. Coley et al., Acc. Chem.
Res., May 2018]. Template-based method’s potential to
explore reaction templates within the vast chemical space is
often limited [ Yu Wang et al., Nat Commun, October 2023].
To overcome these constraints, template generation models
that employ Sequence-to-Sequence (S2S) architecture are
trained to translate product information into reaction tem-
plates, as opposed to generating reactants. This method
transcends the limitations of template selection-based
approaches, enabling the discovery of novel reaction rules
and expanding the scope of retrosynthesis planning. The
combination generated reaction templates and the “RunRe-
actants” function from RDKit, offer an efficient means to
swiftly identify templates that yield grammatically coherent
reactants from given products. This facilitates the explora-
tion of previously uncharted chemical reactions and path-
ways.

[0219] One of the major benefits of using the reaction
template is the ease of checking reaction validity. During the
transformation of a reaction template, the product is guar-
anteed to be converted to the reactant with exact matching
of atoms indices and relevant functional groups from the
description of template. In comparison to reactant generative
models, this benefit greatly reduces the uncertainty in the
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produced reactants which might not correspond to any
known reactions or have key atom mismatches due to
problems during decoding.

[0220] The second design is a sampling generative model
(sampling model) for template generation that applies to a
target product. S2S models, such as those employed in the
template-free methods, predict retrosynthesis results deter-
ministically and do not have a sampling process or definition
of latent space. In contrast, the disclosed sampling model
has a latent space, enabling the generation, interpolation,
and distance measurement of various templates (FIG. 16B).
Deterministic models that takes target compounds as input
and generates templates are also developed in the disclosed
work. Importantly, the encoder of the model can incorporate
positional embedding for reaction centers, enabling users to
specify specific reacting sites during prediction where the
results are benchmarked on the USPTO-FULL dataset.
[0221] The disclosed sampling model based on the con-
ditional kernel-elastic autoencoder (CKAE) [Haote Li et al.,
arXiv:2310.08685v1, October 2023] is the first of its kind in
the field of retrosynthesis. This model conditions on corre-
sponding products during training, allowing interpolating
and extrapolating capabilities of reaction templates in the
latent space to generate templates during the sampling
process. The latent space also provides a measure of dis-
tances between reaction templates, allowing means to iden-
tify the closest reaction reference within the dataset or
determine the similarity between two reactions.

[0222] The disclosed template generation method intro-
duces a special design where the templates, which are
referred to herein as site-specific templates (SST), exploit
just the reaction centers. This results in a concise and
informative set of templates different from the templates
available in the RDChiral repository [Connor W. Coley et
al., J. Chem. Inf. Model., June 2019]. Additionally, SSTs and
target compounds with reaction centers labeled (center-
labeled product, CLP) are simultaneously encoded/decoded,
allowing the model’s attention mechanism to incorporate
reaction centers defined by atoms in the molecule context.
Integrating these features into the template generation pro-
cess ensures the relevance and practicality of the generated
templates.

[0223] Through benchmarking with public dataset, the
efficiency of using the template-generative model for robust
retrosynthesis prediction with highly flexible reaction center
controls is demonstrated herein. In addition, to resolve the
common problem of having new unidentified reactions,
CKAFE’s latent space is used to establish distance measure-
ment which allows the referencing of reactions within the
training set.

[0224] With SSTs and generation methods in place, the
disclosed approach was validated through the practical
application of synthesis. Compound 1b-7 was reported by
Boehringer Ingelheim [Jason ABBOTT et al., U.S. Patent
2023/0212164 Al, 2023] along with a library of analogs, as
a potent Ba/F3 KRASGI12C inhibitor, and potential anti-
cancer agent. The synthetic route for Ib-7 has two key
intermediates (FIG. 16C), a thiophene derivative and its
precursor compound 1. A cyclohexanone with quaternary
chiral center in c-position containing alkyne moiety is
considered a synthetic challenge. ML, model coupled with
human intuition is used to determine the most step-efficient
way to synthesize compound 1, thereby reducing the number
of steps from 5 to 3 compared to previous work [Jason
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ABBOTT et al., U.S. Patent 2023/0212164 A1, 2023]. The
disclosed experimental validation provides insights into the
practicality and reliability of retrosynthesis predictions, rein-
forcing the models’ robustness and their underlying promise
to address a wide spectrum of retrosynthesis problems.

Results and Discussion—Site-Specific Templates and
Center-Labeled Products

[0225] Disclosed herein, reaction templates and reaction
centers are analyzed. In the disclosed work, templates are
utilized as concise representations of chemical reactions,
capturing substructure changes during reactions. The focus
of this study is on templates that only apply to reaction
centers within the target compounds, referred to as site-
specific templates (SST). This distinguishes this work from
RDChiral templates, which encompassed a broader struc-
tural context. This distinction is crucial, as SSTs do not take
into consideration of neighboring atoms and special func-
tional groups when matching substructures within the target
compounds. The presence of center-labeled products (CLP)
is a prerequisite for the effective use of SSTs. Since SSTs
could potentially be applied to multiple sites within target
compounds/products, SSTs may result in ambiguity without
such labeling. Examples of SST and CLP are shown in FIG.
16D.

Deterministic Model Performance

[0226] Deterministic generative models, such as those
found in previous template-free methods, adopt a determin-
istic approach for generating templates without relying on a
latent space for sampling. In contrast to generative models
that employ latent sampling methods, deterministic models
focus on proposing viable reactions based on a given prod-
uct. FIG. 16D illustrates the workflow for the disclosed
deterministic models: Model A and Model B. Model A takes
target compounds as input and passes them through a
encoder-decoder architecture, which translates targets into
SSTs and CLPs. CLPs unambiguously specify the applica-
tion of SSTs on target compounds. Model B, instead of
outputting CLPs, takes in reaction centers of the target as
positional embeddings.

[0227] A comparison of Top-K accuracy between the
disclosed deterministic models and other methods are pre-
sented in FIG. 16E. The Top-K accuracy is the percentage of
top K predictions that precisely match the correct reactants
from the test set within K predictions. Both accuracy results
for original and cleaned test set are presented. Cleaned test
set is introduced as problems related to atom-mapping issues
in the USPTO-Full dataset are encountered. The issues result
in solvent and reagent atoms erroneously considered as part
of the templates. To address this problem, reactions contain-
ing the 50 most frequently observed spectators in USPTO-
FULL as participating reactants are removed from the test
set. This removal process led to a decrease in the test set size
to 90.7% of the original size (originally 95k reactions),
which resulted in improved Top-K accuracy. See below for
details of how beam search is used to obtain Top-K results.
[0228] Model A, which does not use reaction centers,
performs comparably to other methods using the original
test set. The removal of the 50 most common spectators for
the cleaned set largely improves the accuracy, but it may
inadvertently exclude some reactions where these common
spectators actually participate as reactants. Unfortunately,
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due to the absence of a systematic approach for identifying
and removing incorrectly labeled reactions, this pragmatic
solution is used. In contrast, Model B leverages reaction
center information. On the cleaned set, Model B reaches a
significant performance milestone, achieving an accuracy
rate of 80% for Top-10 predictions.

[0229] RetroExplainer [Yu Wang et al., Nat Commun,
October 2023], with semi-template components, has
remarkable prediction accuracy owing to its data modeling
approach and the utilization of a set of leaving groups.
Nonetheless, this approach may encounter variations in
performance when dealing with uncommon scenarios or
leaving groups that are not explicitly represented in the
dataset. Its capacity to generalize to novel situations may be
constrained. R-SMILES [Zipeng Zhong et al., Chem. Sci.,
2022], a template-free generation-based method, introduced
the root-aligned SMILES representation to ensure minimal
edit distances between product and reactant SMILES. With
this custom string representation and data augmentation, the
highest accuracy among template-free methods was
achieved. In this work, data augmentation was not
employed, leaving room for potential improvements in
accuracy for future endeavors.

[0230] FIG. 16D & FIG. 16E depict exemplary Model A
and Model B workflows and performance. FIG. 16D shows
that Model B has reaction center embedding and does not
have center-labeled products in the output. FIG. 16E shows
the USPTO-Full Top-K accuracy performance for previous
models compared to the disclosed models. (*If the correct
reactants contain one of the 50 most commonly seen spec-
tators in the USPTO-Full dataset, the reaction is removed
from the test set. “Reaction centers are provided. *The
maximum number of reaction centers is two) GLN [Hanjun
Dai et al., arXiv:2001.01408 [cs, stat], January 2020], Local-
Retro [Shuan Chen et al., JACS Au, October 2021], and
Neuralsym [Marwin H. S. Segler, Chem. Eur. J., May 2017]
in black are template-based selection methods. GraphRetro
[Vignesh Ram Somnath et al., arXiv:2006.07038 [cs, stat],
June 2021], RetroPrime [Xiaorui Wang et al., Chemical
Engineering Journal, September 2021], and RetroExplainer
[Yu Wang et al., Nat Commun, October 2023] in yellow are
semi-template methods. GTA [Seung-Woo Seo et al., AAAI,
May 2021], Tied-Transformer [Eunji Kim et al., J. Chem.
Inf. Model., January 2021], MEGAN [Mikotaj Sacha et al.,
J. Chem. Inf. Model., July 2021], Transformer [Igor V. Tetko
et al., Nat Commun, November 2020], and R-SMILES
[Zipeng Zhong et al., Chem. Sci., 2022] in green are
template-free generation methods. This work (in red) uses a
template-generation method. Reactant-based selection
methods are not included due to out-of-memory for the
USPTO-FULL dataset [ Zipeng Zhong et al., January 2023].

[0231] In addition, an analysis of the Top-K accuracy
considering different numbers of reaction centers for Model
B was conducted. Over half of the test reactions possess one
or two reaction centers, following the same distribution of
the reaction center counts of the training set. Consequently,
for the test reactions with at most two reaction centers,
Model B achieved the highest Top-K accuracy comparing to
other center counts and the Top-10 accuracy reached 90%
(see last row of FIG. 16E), showcasing exceptional predic-
tive capabilities in scenarios characterized by a limited
number of reaction centers. The high Top-K accuracy
achieved by Model B for reactions with few reaction centers
is particularly significant, as it corresponds to real-world
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applications where a majority of reactions feature a low
number of reaction centers. For instance, 90% of the dataset
comprises reactions with no more than four reaction centers.
Sampling Model with Latent Space

[0232] A sampling generative model, which exploits a
sampling process with a latent space, is different from the
deterministic approach. Prior to this disclosure, the applica-
tion of a sampling model for retrosynthesis planning has not
been explored. Model C is built upon the architecture of
Conditional Kernel-Elastic Autoencoder (CKAE) [Haote Li
et al., arXiv:2310.08685v1, October 2023]. Comparing to
previous CKAE molecular generation models where condi-
tions are represented by specific values or molecular prop-
erties, the CKAE model as applied to Model C utilizes the
SMILES representation of target molecules as conditions.
[0233] In addition to the sampling feature, the encoder of
Model C provides a valuable referencing feature. The
encoder maps the input into a latent space with a distance
regularized by the m-MMD loss [Haote Li et al., arXiv:
2310.08685v1, October 2023]. This distance measure
derived from the latent space provides a quantifiable metric
to assess the similarity between reactions, aiding in evalu-
ating and understanding the differences between chemical
transformations. Such capability enables the identification
and referencing of the most similar reactions within the
dataset, facilitating comparison and analysis.

[0234] FIGS. 17A & FIG. 17B show interpolation of
exemplary templates in the latent space of Model C and
reactants from Model C outputs. FIG. 17A shows that the
intermediates of the top and bottom latent representations
are decoded. FIG. 17B shows the selected reactants for 2-,
3-, 4-substituted cyclohexanone derivatives as target com-
pounds.

[0235] FIG. 17A illustrates the sampling workflow for
Model C. During the sampling process, latent vectors are
sampled and passed into Model C decoder after concatenat-
ing with target compound conditions. This generates SSTs
and CLPs based on the given conditions.

[0236] InFIG.17A, an interpolation process is visualized.
Initially, two reaction templates were selected, represented
by the top and bottom templates and the latent vectors in the
latent space. These templates serve as the starting points to
explore the intermediates. This interpolation allowed the
discovery of the templates corresponding to each of the
latent vectors along the path between the two originals. It
can be observed that the middle templates and reactants
form a blending of the starting templates and reactants. This
observation provides evidence that the latent space captures
chemical information, showing the distance measure
between various chemical transformations.

[0237] To showcase the differences between Model A
(deterministic) and Model C (sampling), both without reac-
tion center information, the single-step predictions of 2-; 3-
and 4-substituted cyclohexanone derivative is examined.
Based on the acquired results, the representative precursors
are chosen for all three target molecules (FIG. 17B). As it
can be deduced from the figure, Model A suggestions are
primarily based on functional group transformations and
protection-deprotection reactions. On the other side, while
Model C does suggest these transformations, diverse pre-
cursors/reactions are also proposed. These examples are not
instinctively reached by humans and therefore, Model C
could be utilized for inspiration in new approaches and
method developments in synthetic chemistry.
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Experimental Validation

[0238] Developing cheap, fast and robust methods for the
synthesis of bioactive molecules and their precursors is one
of the key goals in the pharmaceutical chemistry [M. D.
Eastgate et al., Nature Reviews Chemistry, 2017]. The
disclosed Model B was chosen because of its high accuracy
and reaction center embedding, for establishing the shortest
route for the synthesis of target compound (see FIG. 18A).
Previously synthesized in 5 steps [Jason ABBOTT et al.,
U.S. Patent 2023/0212164 A1, 2023], target molecule can
now be accessed in 3 steps by hand picking the reactants that
the model suggested for each retrosynthetic step. Following
chemical intuition for choosing the molecules, the aldehyde-
group was chosen as a precursor for the alkyne moiety. The
carbonyl functional group can be acquired by ozonolysis of
the corresponding alkene, which can be introduced via
allylation reaction.

[0239] FIG. 18A through 18C shows an exemplary ret-
rosynthesis tree for compound 1 and its experimental pro-
cedure. FIG. 18A shows that a synthesis route is selected
from the retrosynthesis tree generated by Model B. FIG. 18C
shows an exemplary reference found with Model C for the
allylation step. FIG. 18B shows the related experimental
procedure of the selected route.

[0240] FIG. 18B serves as a reference point derived from
Model C. The left-hand side illustrates the allylation step
employed in the disclosed synthesis. On the right-hand side,
the reference is obtained by encoding the allylation template
and the product labeled with the reaction center into Model
C’s latent space. This process allows one to identify the
closest latent vectors from the training dataset, and that
closest reference corresponds to the reaction shown on the
right-hand side of FIG. 18B.

[0241] In order to synthesize enantiomerically pure target
molecule, it was chosen to introduce the chiral center and the
allylic moiety simultaneously, by applying the enantioselec-
tive Pd-catalyzed method reported by Pupo et al. [G. Pupo
et al., Angewandte Chemie-International Edition, 2016].
The corresponding product was treated with ozone in order
to obtain the ketoaldehyde derivative in good yield (see FIG.
18C). For the final step, a modified procedure by Boltukhina
etal. [E. V. Boltukhina et al., Tetrahedron, 2011] was applied
and the target product was isolated in 78 percent yield. The
described experimental procedure demonstrates that the
newly developed machine learning model can significantly
aid in development of synthetic routes for pharmaceutically
important molecules as well as improve the already reported
ones.

[0242] An alternative to the route presented in FIG. 18C,
an even shorter route to compound 1, could be one entailing
direct a-alkynylation of 2-methylcyclohexanone. Methods
for direct introduction of alkyne moiety next to ketone are
scarce and rely on substitution with electrophilic alkyne
species (Selected examples: [A. S. Kende et al., Tetrahedron
Letters, 1982;Y. Nishimura et al., Tetrahedron Letters, 2006;
A. Utaka et al.,, Chemical Communications, 2014; M.
Wegener et al., Organic Letters, 2015; J. Wang et al., Journal
of the American Chemical Society, 2020; D. Jang et al.,
Angewandte Chemie-International Edition, 2021]). Most
commonly used in modern organic chemistry are hyperva-
lent iodine reagents such as Waser’s or Ochiai’s reagent [D.
P. Hari et al., Accounts of Chemical Research, 2018]. While
this method would furnish the target molecule in smaller
number of synthetic steps, it would have to be followed by
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separation of two enantiomers since enantioselective
a-alkynylation of ketones has not yet been reported.

[0243] In this work, a string-based approach for retrosyn-
thesis planning that leverages generative models to address
the challenges posed by the vast chemical space and syn-
thesis complexity is introduced. Notably, this work intro-
duces a novel category in ML, methods for CASP: template
generation. The disclosed work encompassed the develop-
ment and evaluation of two types of generative models:
deterministic generative models (S2S) and a sampling gen-
erative model that utilizes CKAE.

[0244] Model A and Model B are benchmarked on the
USPTOFULL dataset. Notably, Model B can incorporate
reaction centers using positional embeddings, enabling the
generation of SSTs that apply to the reacting sites. On the
other hand, Model C represents a pioneering application of
sampling method from latent space in CASP, capable of
generating diverse reactions. The design of Model C defines
distances between reactions, which allows Model C to
identify the closest reference from the dataset for newly
generated templates, making it a suitable tool for generating
and validating a wide range of potential reactions.

[0245] This work presents two approaches for single-step
synthetic planning: high-accuracy deterministic models and
high-diversity sampling models. The capability of specify-
ing reacting sites, the availability of relevant reaction ref-
erences, and the successful results of experimental valida-
tions make the three models valuable tools in guiding
retrosynthetic analysis.

Methods—Training Details

[0246] 10% dropout was applied to all attention matrices
and embedding vectors. During training, each token in the
input to the encoders has a 15% chance of being replaced by
a mask token. ADAM optimizer [Diederik P Kingma et al.,
Adam: A method for stochastic optimization, 2014] was
used with a learning rate of 5x10-5. Gradient normalization
[Zhao Chen et al., International conference on machine
learning, 2018] was set to 1.0.

Model Architecture

[0247] Model A, B, and C each has six layers of Trans-
former encoders and decoders. For Model A and B, an
embedding size of 256 was used and for Model C, an
embedding size of 512 was used.

Beam Search

[0248] To derive multiple possible predictions, beam
search [Igor V. Tetko et al., Nat Commun, November 2020]
is used across all models. During decoding, the transformer
decoder attends to the encoder output and the sequence that
had been generated. The decoder outputs probabilities of all
possible tokens for the next position in the sequence. Beam
search maintains a fixed-size set of candidate sequences, the
number that the method keeps is called the beam size B. The
top B most probable sequences at each decoding step are
selected to proceed to the next step of decoding until the
stopping criteria of maximum allowed length is reached or
an End Of Sequence (<EOS>) token is output.

[0249] For the Top-K accuracy test, beam search with a
beam size of 50 was used during all decoding processes. At
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each decoding step, the model outputs the 50 most probable
candidate tokens and continues the sequence until the stop-
ping criteria is met.

[0250] The diversity of deterministic models is solely
derived from the beam search process, as this type of model
lacks a latent space for sampling. Consequently, generating
novel reactions using a deterministic model through beam
search can be challenging. In contrast, the sampling model,
equipped with a latent space, can generate diverse and novel
reactions more effectively.

[0251] The 50 most commonly seen spectators are
obtained from the USPTO-Full reaction file on RDChiral
GitHub Repository [Connor W. Coley et al., J. Chem. Inf.
Model., June 2019]. While the train-validation-test split of
the USPTO-Full dataset is obtained from the GitHub reposi-
tory of [Igor V. Tetko et al., Nat Commun, November 2020].

Reaction Template: RDChiral Template Vs Site-Specific
Template

[0252] FIGS. 19A through 19D show exemplary reaction
templates showing RDChiral Template vs Site-Specific
Template. FIG. 19A shows an exemplary Reaction Example.
FIG. 19B shows an exemplary RDChiral Template. FIG.
19C shows an exemplary Site-Specific Template. FIG. 19D
shows an exemplary Center-Labeled Product. Shown in
FIGS. 19A through 19D are a visualization for the reaction
SMARTS string in (FIG. 19A): CCS(=0)—0)Cl.
OCCBr>>CCS(—0)(—0)OCCBr. Using the RDChiral
template in (b): [C:5]-[O;HO;D2;40:6]-[S;H;D4;+0:1](-[C:
2D([0;D1;HO:3])=[0;D1;H0:4]>>C1-[S;H0;D4;+0:1](-
[C:2D(=[0;D1;H0:3])=[O;D1;H0:4].[C:5]-[OH;D1;+0:6]
and the product/target compound: CCS(—O)(—O)OCCBEr,
the reaction SMARTS string in (FIG. 19A) can be obtained.
Alternatively, in this work, the reaction SMARTS string can
be obtained from the site-specific template in (FIG. 19C):
[0:2]-[S:1]>>C1-[S:1].]OH:2] and target compound with
reaction centers labeled in (FIG. 19D): CC*(—0)(=—0)
*CCBr.

[0253] A reaction template is a concise representation of a
chemical reaction, capturing the essential information about
the substructure changes occurring during the reaction. In
the context of retrosynthesis, reaction templates provide a
valuable tool for generating potential pathways to synthesize
target molecules. The format of reaction templates is typi-
cally represented as PRODUCT>>REACTANT in the retro-
direction, indicating the transformation from the product
back to the reactant. However, for the purpose of visualiza-
tion in the disclosed work, the forward-direction format was
adopted since it is more intuitive for understanding the
reaction process. FIGS. 19A through 19D illustrate an
example reaction template visualization for the reaction
SMARTS string in FIG. 19A.

[0254] Previous template-based methods have commonly
utilized template extraction codes from the RDChiral reposi-
tory to extract reaction templates. These templates include
not only the reaction centers but also neighboring atoms and
special functional groups, providing a comprehensive rep-
resentation of the chemical transformations as demonstrated
in FIG. 19B. However, in the disclosed work, the template
extraction process was modified to focus exclusively on the
reaction centers as depicted in FIG. 19C. These modified
templates are referred to herein as site-specific templates
since they specifically apply to the reacting sites (reaction
centers) of the target compounds. To incorporate this speci-
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ficity, additional input was introduced in the form of reaction
center labels. These labels indicate the specific sites within
the target compound where the template should be applied.
FIG. 19D showcases an example of a reaction center-labeled
target molecule.

Specificity from Reaction Center-Labeled Products

[0255] An important aspect of the disclosed site-specific
template approach is that the specificity is given by reaction
center-labeled products. While the site-specific templates
focus exclusively on the reaction centers, they lack the
necessary information to determine the precise locations/
atoms within the target compound where the template
should be applied. FIGS. 20A through 20D provide an
illustrative example of how the reaction center-labeled target
compound plays a crucial role in achieving specificity.
[0256] In FIG. 20A, a specific chemical reaction is pre-
sented involving a carbon-carbon double bond reduction.
The RDChiral template (see FIG. 20B) offers a comprehen-
sive representation of the transformation, including the
reaction centers, neighboring atoms, and special functional
groups. It is evident from the RDChiral template that the
carbon-carbon double bond reduction occurs at a specific
location within the molecule. However, when the site-
specific template (FIG. 20C) is considered, which solely
captures the reaction centers, a lack of specificity is
observed. Multiple carbon pairs in the product can poten-
tially undergo the same transformation, resulting in ambi-
guity.

[0257] FIG. 20A through 20D show an exemplary reaction
wherein a site-specific template requires a product/target
compound with reaction centers labeled in order to get the
reaction smart string: CCCCC[C@H](O)C—CC1C—CC
(=0)C1CC—CCCCC(—=0)O>>CCCCC[C@H](O)
C—CCI1CCC(—0)C1CC—=CCCCC(=—0). FIG. 20A shows
an exemplary Reaction Example. FIG. 20B shows an exem-
plary RDChiral Template. FIG. 20C shows an exemplary
Site-Specific Template. FIG. 20D shows a resultant Center-
Labeled Product.

[0258] To resolve this ambiguity and introduce specificity,
the reaction center-labeled target compound (see FIG. 20D)
was utilized. By labeling the specific reaction centers within
the product molecule, the precise locations were indicated
where the site-specific template should be applied. In this
example, the labeled reaction centers specify the carbon-
carbon double bond that needs to be reduced. By combining
the site-specific template and the labeled product molecule,
the accurate reaction SMARTS string was obtained that
represents the desired chemical transformation.

Template Generation Deterministic Model Architecture

[0259] FIG. 21 shows exemplary model architectures of
the generative models for retrosynthesis planning, compris-
ing columns 701, 702 and 702. Column 701 comprises
Model A, which is a deterministic generative model that
takes in target products and output site-specific templates
and labeled products. Column 702 comprises Model B, a
variant of Model A, incorporating positional embeddings for
conditioning on specific reacting sites. Column 703 com-
prises Model C, a sampling generative model based on the
conditional kernel-elastic autoencoder (CKAE) approach.

[0260] Referring now to FIG. 21, Column 701 illustrates
the model architecture of the disclosed deterministic
approach (Model A). The model employs a transformer
encoder to capture the relevant features and representations
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of the target molecule. Subsequently, these encoded features
are fed into a transformer decoder, which generates the
site-specific template and the product with reaction centers
labeled.

[0261] In the disclosed example, referring back to FIGS.
19A through 19D, we consider the example reaction in FIG.
19A, the site-specific template in FIG. 19C, and the product
with reaction centers labeled in FIG. 19D. The input of the
deterministic model consists of the product molecule
obtained from the reaction, such as CCS(—O)(—0O)OCCBr
in the disclosed example. The output of the deterministic
model is structured in the following format: [0:2]-[S:1]
>>Cl-[S:1].|[OH:2]_CC*(—0)(=—0)*CCBr. Here, the site-
specific template is represented by [0:2]-[S:1]>>Cl-[S:1],
indicating the breaking of the S—C1 bond and the formation
of'an S—O bond. The product with reaction centers labeled,
CC*(—0)(—0)*CCBr, highlights the third and sixth atoms
as the reaction centers using asterisks. With the generated
site-specific template and the labeled product, one can
reconstruct the original reaction depicted in FIG. 19A.
[0262] In addition, the disclosed deterministic generative
model offers the flexibility to control the exact atoms par-
ticipating in reactions by incorporating the relevant infor-
mation within the encoder. This variation, denoted as Model
B in Column 701, introduces a fixed embedding for the “*”
token, representing the positions of the reacting atoms. Such
positional information and the product SMILES input are
passed in as model input. The output of Model B consists
solely of site-specific templates, as the reaction centers are
explicitly provided. This variant model allows researchers to
customize the reaction centers by specifying the atoms
involved. Such unique feature allows for precise control
over retrosynthetic disconnections/transformations.

Template Generation Sampling Model Architecture

[0263] Referring again to FIG. 21, Column 701 illustrates
the model architecture of the disclosed sampling approach
(Model C). Using the example in FIGS. 19A through 19D
again, by incorporating the product CCS(—O)(—0O)OCCBr
as the condition, the transformer encoder processes the
site-specific template and the labeled product ([O:2]-[S:1]
>>Cl-[S:1].|[OH:2]_CC*(—0)(=—0)*CCBr) at the same
time and passes it through the latent space. The decoder is
then tasked with reproducing the same input ([O:2]—([S:1]
>>Cl—[S:1].[OH:2]_CC*(=—0)(—0)*CCBEr) as the output.
This comprehensive encoding and decoding process where
site-specific templates and labeled products are processed at
the same time enables an attention model to capture essential
information for single-step prediction, including the influ-
ence of functional groups on reactivity and regioselectivity.
During the sampling phase (shown as shaded arrows in
Column 703), given target products as conditions and ran-
dom latent vectors, the model can generate a variety of
templates and center-labeled products, leveraging the flex-
ibility of the latent space and the conditioning on target
molecules.

[0264] CKAE incorporates a specially designed loss func-
tion known as modified Maximum Mean Discrepancy
(m-MMD), which enhances the generative power of the
model. CKAE also utilizes a weighted cross-entropy loss,
with the weights controlled by the 6 and X parameters, to
improve the reconstruction capability. Additionally, CKAE
presents exceptional correlations between outputs and given
conditions. Further details on these loss functions and cor-
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relation results can be found in the CKAE paper [Haote Li
et al., arXiv:2310.08685v1, October 2023].

[0265] While both deterministic and sampling models aim
to accurately predict templates and center-labeled products,
the sampling model offers additional capabilities. By incor-
porating a latent space and conditioning on target molecules,
the sampling model has the ability to generate diverse and
novel reactions. Leveraging the latent space, the model can
sample reactions beyond the provided templates, resulting in
a broader range of potential transformations. In contrast,
deterministic models lack a latent space, limiting their
ability to extrapolate and generate innovative reactions. The
CKAE paper [Haote Li et al., arXiv:2310.08685v1, October
2023] showcases the superior interpolation and extrapola-
tion capabilities of the sampling model, highlighting its
capacity to sample a wider range of diverse reactions.

Other References for the Allylation Step

[0266] FIG. 24 presents a compilation of the top 10
references for the allylation step depicted in FIG. 18B. The
site-specific templates are the same for these 10 references.
Therefore, the products of these reactions are the primary
determinant for the ranking (latent distance) in this particu-
lar case.

Encoder-Decoder Attention for Site-Specific Templates and
Center-Labeled Product

[0267] Herein is a demonstration of the disclosed model’s
attention mechanism as shown in FIGS. 25A through 25D,
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FIG. 23C where it is an amide bond formation and a removal
of protection group for the ketone.

[0268]
is shown, where the column labels on top represent the
encoder input product SMILES, and the row labels on the
right represent the decoder output template and labeled
product. The reaction centers from the row labels are high-
lighted in yellow for encoder input for better visualization
(the column labels). The presence of the ketone oxygen,
originating from the protection group removal, significantly
affects the output. Also, the matrix reveals that the influence
on the template output extends beyond the reaction centers.
Furthermore, the product input affects the labeled product
portion of the output, resulting in a distinct diagonal pattern
in the bottom of the matrix. These findings demonstrate the
model’s integration of critical chemical features that
enhance its ability to generate accurate and relevant reaction
templates.

[0269] FIGS. 23 A through 23D show a visualization of the
encoder-decoder-attention obtained from the product:
CC(—=0)clecce(Cn2nec(NC(—0)c3nc(C)oc3-c3ccec(C(F)
(F)F)e3)n2)ol. FIG. 23A shows the Encoder Input Product
(centers are from decoder output). FIG. 23B shows the
Decoder Output Template. FIG. 23C shows the Correspond-
ing Reaction. FIG. 23D shows the encoder-Decoder Atten-
tion Matrix.

In FIG. 23D, the encoder-decoder attention matrix

TABLE 7

USPTO Full Top-K accuracy (in %) comparison.

Method” Model Top-1  Top-3  Top-5 Top-10 Top-20 Top-50
Template-Based ~ GLN[26] 39.3 63.7
LocalRetro[27]” 39.1 533 584 63.7 67.5 70.7
Neuralsym[22]” 42.7 58.7 634 67.9 70.8 72.1
Semi-Template GraphRetro[32]° 24.8 345 36.9 38.7 39.5 39.8
RetroPrime[33]” 45.8 61.6 63.9 70.3 71.2 72.6
RetroExplainer[34] 51.4 70.7 74.7 79.2
Template-Free GTA[43]° 46.6 525 57.9 63.3 67.2 70.4
Tied- 37.7 53.6 58.7 63.7 67.8 71.0
Transformer[481]°
MEGANT[45] 33.6 63.9 74.1
Transformer[42]° 44.7 61.1 66.0 70.7 74.1 76.2
R-SMILES[50] 48.9 66.6 72.0 76.4 80.4 83.1
Template- Model A 34.4 52.2 583 64.5 69.2 72.6
Generation Model A° 37.3 56.2 62.6 68.8 73.3 76.6
(This Work) Model BY 48.1 67.8 72.6 76.4 78.7 80.2
Model B9 51.1 71.6 76.4 80.0 82.0 83.3

“Reactant-based methods are not included due to out-of-memory for USPTO-Full dataset.
PResults obtained from [Shuan Chen et al., JACS Au, October 2021].

“If the correct reactants contain one of the 50 most commonly seen spectators in the USPTO Full dataset, the reaction
is removed from the test set.
Positional embedding of the reaction centers are included.

highlighting its ability to capture essential chemical infor- [0270] Hanjun Dai et al., arXiv:2001.01408 [cs, stat],

mation like functional groups and regioselectivity during the
generation of reaction templates. This is illustrated through
an example using the disclosed deterministic model, without
the inclusion of reaction center information from positional
embedding (Model A). The input of the model is the product
in FIG. 23A (without the labels of reaction centers). The
output of the model is the template shown in FIG. 23B along
with the labeled product where the reaction centers are
labeled in FIG. 23 A. The corresponding reaction is shown in

January 2020; [19] Shuan Chen et al., JACS Au, October
2021; [14] Marwin H. S. Segler, Chem. Eur. J., May 2017,
[24] Vignesh Ram Somnath et al., arXiv:2006.07038 [cs,
stat], June 2021; [25] Xiaorui Wang et al., Chemical Engi-
neering Journal, September 2021; [26] Yu Wang et al., Nat
Commun, October 2023; [34]Seung-Woo Seo et al., AAAI
May 2021; [39] Eunji Kim et al., J. Chem. Inf. Model.,
January 2021; [36] Mikolaj Sacha et al.,, J. Chem. Inf.
Model., July 2021; [33] Igor V. Tetko et al., Nat Commun,
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November 2020; [31] Kangjie Lin et al., Chem. Sci., 2020;
[11] Zipeng Zhong et al., January 2023.

TABLE 8

Top-K accuracy (in %) for different number
of reaction centers using Model B.

Maximum % of
Reaction Top-  Top-  Top- Top- Top-  Top- Test
Centers 1 3 5 10 20 50 Data“®

No Limit®  51.1 71.6 76.4 80.0 82.0 83.3 90.7%

5 53.0 74.1 79.0 82.6 84.6 86.0 85.2%

4 54.7 76.0 80.9 84.5 86.5 87.8 81.5%

3 57.8 78.9 83.8 87.3 89.2 90.4 75.1%

2 61.2 81.7 86.6 89.9 91.7 92.8 58.3%

1 60.1 80.8 86.3 90.3 92.7 93.5 11.6%

“Reactions containing 50 most common spectators as reactants are removed for all these
cases, so no limit does not mean 100% of the test data.

The maximum reaction center count in test set is 18, while the maximum for training set
is 19.

Experimental Section—General

[0271] All reactions were carried out under an inert nitro-
gen atmosphere with dry solvents under anhydrous condi-
tions unless otherwise stated. Stainless steel cannula or
syringe was used to transfer solvent, and air- and moisture
sensitive liquid reagents. Reactions were monitored by
thin-layer chromatography (TLC) carried out on 0.25 mm
Merck silica gel plates (60F254) using UV light as the
visualizing agent and potassium permanganate and an acidic
solution of p-anisaldehyde, on SiO, as developing agents.
Flash column chromatography employed SiliaFlash® P60
(40-60 m, 230-400 mesh) silica gel purchased from Sili-
Cycle, Inc.

[0272] Materials: Pd,(dba); was purchased from Strem.
t-BuXPhos was purchased from Sigma Aldrich. R-TRIP
((R)-3,3"-bis(2,4,6-triisopropylphenyl)-1,1'-binaphthyl-2,2'-
diyl hydrogenphosphate) was purchased from AmBeed. NfF
(nonafluorobutanesulfonyl fluoride) was purchased from
Oakwood Products, Inc. BTTP (tert-butyliminotri(pyrroli-
dino)phosphorane) was purchased from Sigma Aldrich. Dry
cyclohexane and DMF were purchased from Sigma Aldrich.
All other reagents were used as received without further
purification, unless otherwise stated.

[0273] Instrumentation: All new compounds were charac-
terized by means of 'H NMR, *C NMR, FT-IR, and
HR-MS. Optical rotations were measured on Polarimeter
Rudolph Autopol IV at 589 nm, 22° C. Data are reported as:
[a]D?, concentration (¢ in g/100 mL) and solvent. The
absolute configurations were determined by comparison
between the measured optical rotations and the reported
values in literature. Copies of the 'H- and '*C-NMR spectra
can be found after experimental procedures. NMR spectra
were recorded using a Varian 400 MHz NMR spectrometer.
All 'H NMR data are reported in units, parts per million
(ppm), and were calibrated relative to the signals for residual
chloroform (7.26 ppm) in deuterochloroform (CDCl;). All
13C NMR data are reported in ppm relative to CDCl, (77.2
ppm) and were obtained with "H decoupling unless other-
wise stated. The following abbreviations or combinations
thereof were used to explain the multiplicities: s=singlet,
d=doublet, t=triplet, q=quartet, m=multiplet. All IR spectra
were taken on an FT-IR Shimadzu IRTracer-100 (thin film.
High resolution mass spectra (HRMS) were recorded on a
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LC-MS Shimadzu 9030 Quadrupole Time-of-Flight high
resolution mass spectrometer.

Synthesis

[0274] FIG. 24 depicts the synthesis of (R)-2-Allyl-2-
methylcyclohexan-1-one [D. C. Behenna et al., Journal of
the American Chemical Society, 2004]. For the synthesis of
(R)-2-allyl-2-methylcyclohexan-1-one, procedure reported
by Pupo et. al was applied [G. Pupo et al., Angewandte
Chemie-International Edition, 2016]. To a flame-dried
microwave vial equipped with a magnetic stir bar were
added Pd2(dba)3 (75.4 mg, 0.0824 mmol, 5 mol % Pd),
t-BuXPhos (154 mg, 0.362 mmol, 11 mol %), R-TRIP (248
mg, 0.329 mmol, 10 mol %), 3 A molecular sieves (3.3 g),
cyclohexane (33 ml), 2-methylcyclohexanone (400 pl,
3.29 mmol, 1 equiv) after which allyl methyl carbonate (1.12
ml, 9.88 mmol, 3 equiv) was added dropwise. The reaction
vial was capped and placed into a pre-heated 45° C. oil bath
and stirred for 5 days. The reaction mixture was removed
from the oil bath and cooled to ambient temperature before
filtering through a short pad of celite. The celite was washed
with Et,O (30 mL) and the solution was concentrated under
reduced pressure by rotary evaporation. Purification by flash
column chromatography on silica gel (Et,O/pentane=1:99 to
5:95) afforded the product (245 mg, 49%) as a colorless oil.
R 0.50 (EtOAc/Hex=1:9); [@]D*: 40.96 (c=0.166,
CH,CL,); 'H NMR (400 MHz, CDCl,): 5.75-5.63 (m, 1H),
5.10-4.98 (m, 2H), 2.43-2.31 (m, 3H), 2.27-2.18 (m, 1H),
1.91-1.65 (m, 5H), 1.63-1.54 (m, 1H), 1.07 (s, 3H); *C
NMR (100 MHz, CDCl,): 215.5, 133.9, 118.0, 48.6, 42.1,
38.9, 38.7, 27.5, 22.8, 21.2; IR (cm™"): 3076, 2932, 2864,
1704, 1640, 1451, 1437, 1428, 1314, 1124, 993, 912, 613

[0275] FIG. 25 depicts the synthesis of (R)-2-(1-Methyl-
2-oxocyclohexyl)acetaldehyde. To a round-bottom flask
equipped with a magnetic stir were added 2-allyl-2-methyl-
cyclohexan-1-one (80 mg, 0.526 mmol, 1.0 equiv) and
CH,CI, (5.5 mL). The solution was cooled to —78° C. in an
acetone/dry ice bath and ozone was bubbled through until
the solution turned blue. The excess ozone was removed by
bubbling oxygen thorough the solution until it turned clear.
To the solution was added PPh, (275 mg, 1.05 mmol, 2
equiv) at —78° C. and the reaction mixture was allowed to
warm to room temperature and the stirring was continued for
16 h. The solution was concentrated under the reduced
pressure by rotary evaporation. Purification by flash column
chromatography on silica gel (Et,O/pentane=1:9 to 3:7)
afforded the product (70 mg, 86%) as a colorless oil. R: 0.67
(BtOAc/Hex=2:8); [a]D**: -64.52 (c=0.155, CH,CL,); 'H
NMR (400 MHz, CDCL,): 9.77 (t, J=2.1 Hz, 1H), 2.64-2.32
(m, 4H), 2.07-1.96 (m, 1H), 1.88-1.68 (m, 5H), 1.28 (s, 3H);
13C NMR (100 MHz, CDCl,): 214.3,201.5,51.7,47.8,39.1,
38.4, 27.1, 23.7, 21.1; IR (cm™"): 2934, 2862, 1703, 1462,
1448, 1431, 1178, 1159, 1128, 1080, 1042, 1014, 978, 934,
901, 868, 797, 735, 573; HRMS (m/z): calculated for
C,H,50,%: 155.1067; detected: 155.1069.

[0276] FIG. 26 depicts the synthesis of (R)-2-ethynyl-2-
methylcyclohexan-1-one. For the synthesis of (R)-2-ethy-
nyl-2-methylcyclohexan-1-one, procedure reported by
Boltukhina et. al was applied [E. V. Boltukhina et al.,
Tetrahedron, 2011]. To a flame-dried round-bottom flask
equipped with a magnetic stir bar were added 2-(1-methyl-
2-oxocyclohexyl) acetaldehyde (309 mg, 2.00 mmol, 1
equiv), NfF (380 ul,, 2.10 mmol, 1.05 equiv) and dry DMF
(2 mL). The solution was cooled to -30° C. in an acetoni-
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trile/dry ice bath and the BTTP base (3.68 mL, 12.02 mmol,
6 equiv) was added dropwise. The reaction mixture was
allowed to warm to room temperature and the stirring was
continued for 19 h. The reaction was quenched with satu-
rated solution of NH,CI (15 mL) and extracted with Et,O
(3x15 mL). The organic solution was washed with water
(4x15 ml) and brine (15 mL) and dried over anhydrous
Na,SO,. The solution was concentrated under the reduced
pressure by rotary evaporation. Purification by flash column
chromatography on silica gel (Et,O/pentane=1:99 to 3:97)
afforded the product (212 mg, 78%) as a colorless oil. R
0.48 (EtOAc/Hex=1:9); [a]D**: 274.14 (c=0.116, CH,Cl,);
'H NMR (400 MHz, CDCLl,): 3.01-2.90 (m, 1H), 2.38-2.25
(m, 2H), 2.16-2.03 (m, 3H), 1.78-1.49 (m, 3H), 1.31 (s, 3H);
13C NMR (100 MHz, CDCL,): 208.8, 86.4, 72.7, 45.8, 42.1,
38.6, 28.2, 23.3, 22.4; IR (cm-1): 3290, 3271, 2982, 2936,
2864, 2112, 1717, 1462, 1448, 1427, 1375, 1333, 1312,
1277, 1258, 1232, 1155, 1121, 1111, 1090, 1063, 982, 905,
851, 829, 737, 688, 636, 569, 536, 519, 511, 498; HRMS
(m/z): calculated for C H,;0™: 137.0961; detected: 137.
0964.
[0277] FIGS. 27A through 27F show the results for exem-
plary queries. FIGS. 27A and 27B are the queries for 1H and
13C NMR of (R)-2-Allyl-2-methylcyclohexan-1-one,
respectively. 'H NMR (400 MHz, CDCL,): § 5.75-5.63 (m,
1H), 5.10-4.98 (m, 2H), 2.43-2.31 (m, 3H), 2.27-2.18 (m,
1H), 1.91-1.65 (m, 5H), 1.63-1.54 (m, 1H), 1.07 (s, 3H); °C
NMR (100 MHz, CDCl,): § 215.5, 133.9, 118.0, 48.6, 42.1,
38.9,38.7, 27.5, 22.8, 21.2.
[0278] FIGS. 27C and 27D are the queries for 1H and 13C
NMR of ®-2-(1-Methyl-2-oxocyclohexyl)acetaldehyde,
respectively. 'H NMR (400 MHz, CDCL,): 8 9.77 (t, J=2.1
Hz, 1H), 2.64-2.32 (m, 4H), 2.07-1.96 (m, 1H), 1.88-1.68
(m, 5H), 1.28 (s, 3H); '*C NMR (100 MHz, CDCl,): 8
214.3, 201.5, 51.7, 47.8, 39.1, 38.4, 27.1, 23.7, 21.1.
[0279] FIGS. 27E and 27F are the queries for 1H and 13C
NMR of ®-2-ethynyl-2-methylcyclohexan-1-one, respec-
tively. '"H NMR (400 MHz, CDCl,): § 3.01-2.90 (m, 1H),
2.38-2.25 (m, 2H), 2.16-2.03 (m, 3H), 1.78-1.49 (m, 3H),
1.31 (s, 3H); >°C NMR (100 MHz, CDCl,): & 208.8, 86.4,
727,458, 42.1, 38.6, 28.2, 23.3, 22.4.
[0280] The disclosures of each and every patent, patent
application, and publication cited herein are hereby incor-
porated herein by reference in their entirety. While this
invention has been disclosed with reference to specific
embodiments, it is apparent that other embodiments and
variations of this invention may be devised by others skilled
in the art without departing from the true spirit and scope of
the invention. The appended claims are intended to be
construed to include all such embodiments and equivalent
variations.
What is claimed is:
1. A system, comprising:
a transformer encoder with a compression layer;
a transformer decoder with an expansion layer;
the transformer encoder configured to transform one or
more inputs into a control latent vector;
a noise injection element configured to add noise to the
control latent vector to create a noisy latent vector;
a weighting element configured to add one or more
weightings to the control latent vector to create an exact
latent vector; and
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the transformer decoder configured to transform the noisy

latent vector and exact latent vector into an output.

2. The system of claim 1, wherein the one or more inputs
is selected from one or more condition-scaled embedding
vectors, one or more Simplified Molecular Input Line Entry
System (SMILES) tokens, one or more SMILES Arbitrary
Target Specification (SMARTS) tokens, one or more center-
labelled products (CLP), reacting sites, reacting centers, or
one or more reaction center labeled target molecules or
compounds.

3. The system of claim 1, wherein the output is selected
from one or more Simplified Molecular Input Line Entry
System (SMILES) tokens, one or more SMILES Arbitrary
Target Specification (SMARTS) tokens, one or more syn-
thesis pathways, one or more retrosynthesis pathways, one
or more labelled molecules or compounds, one or more
templates, one or more reaction templates, one or more
site-specific templates (SST).

4. The system of claim 1, further comprising one or more
condition-scaled embedding vectors configured to attach
one or more conditions to the output of the transformer
decoder.

5. The system of claim 4, wherein the one or more
conditioned-scaled embedding vectors are selected from
molecule properties, SMILES tokens, positional embed-
dings, reacting sites, reaction centers, positional embedding
for reacting sites or reaction centers, or molecular transfor-
mation sites.

6. The system of claim 1, wherein the transformer decoder
is configured to pass the output through a linear layer, and
softmax the output, to produce one or more output distri-
bution probabilities.

7. The system of claim 1, wherein the transformer system
is further configured to calculate a distance between a
control latent vector used to generate a first output and a
control latent vector used to generate a second output to
produce a measured distance between the first and second
outputs.

8. A method for retrosynthetic planning comprising:

providing one or more target molecules;

specifying one or more reaction centers on the one or

more target molecules;

comparing the one or more target molecules to a database

of reference reactions;

measuring a similarity between at least one of the one or

more target molecules and a molecule in the reference
reactions; and

generating one or more site-specific templates based on

the measured similarity.

9. The system of claim 1, wherein the noise is gaussian
noise.

10. The system of claim 1, wherein the transformer
decoder and the latent space comprise a lambda-delta loss
function.

11. The system of claim 1, wherein the transformer
encoder is configured to accept one or more positional
embedding inputs for reaction centers.

12. The system of claim 1, wherein the output comprises
a reaction template.



