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Atomic and molecular scattering at semiconductor interfaces plays a central role in

surface chemistry and catalysis, yet predictive simulations remain challenging due to

strong nonadiabatic effects causing the breakdown of the Born–Oppenheimer approx-

imation. Here, we present fully quantum simulations of H-atom scattering from the

Ge(111)c(2×8) rest site using the hierarchical equations of motion (HEOM) with ma-

trix product states (MPS). The system is modeled by mapping a density functional

theory (DFT) potential energy surface onto a Newns–Anderson Hamiltonian. Our

simulations reproduce the experimentally observed bimodal kinetic energy distribu-

tions, capturing both elastic and energy-loss channels. By systematically examining

atom–surface coupling, incident energy, and isotope substitution, we identify the

strong-coupling regime required to recover the experimental energy-loss profile. This

regime suppresses the elastic peak, implying additional site-specific scattering chan-

nels in the observed elastic peak. Deuterium substitution further produces a subtle

shift in the energy-loss peak, consistent with experiment. These results establish

HEOM as a rigorous framework for quantum surface scattering, capable of capturing

nonadiabatic dynamics beyond electronic friction and perturbative approaches.
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b)Electronic mail: victor.batista@yale.edu
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I. INTRODUCTION

The Born–Oppenheimer approximation (BOA)1 is a cornerstone of modern quantum

chemistry. It assumes a separation of nuclear and electronic motion, with nuclei evolving

on a potential energy surface determined by the electrons. The BOA has been so suc-

cessful that it is often regarded as a paradigm of molecular science. Despite its success,

the BOA breaks down in many important scenarios, including nonadiabatic transitions at

conical intersections,2,3 polaron formation in solids,4–6 and ultrafast photoinduced dynamics

in chemical and biological systems.7–12 Another critical case arises in molecular interactions

with solid surfaces, where the dense manifold of surface electronic states necessitates explicit

treatment of electronic excitations in nuclear dynamics. Since such processes are central to

heterogeneous catalysis, understanding them is essential for advancing chemical theory and

optimizing catalytic processes.13

Scattering experiments provide a direct quantification of the interactions of atoms and

molecules with solid surfaces. The simplest atom, H atom, has already revealed numerous

nonadiabatic effects beyond the BOA in scattering experiments with metal surfaces.14–17

While momentum and energy conservation predict that in a binary elastic collision with a

much heavier atom an H atom would rebound with nearly its initial velocity–—valid for in-

sulating surfaces–—scattering from a clean Au(111) surface shows pronounced translational

energy loss.15 This loss originates from electron transfer and the creation of electron–hole

pairs in the metal, which carry away energy from the scattered atom.

These observations of scattering experiments can be explained by the electronic friction

theory, which approximates the effect of surface excitations as frictional and stochastic forces

acting on nuclei.13,16,18–23 Within this framework, nuclei evolve on the adiabatic BOA sur-

face, while nonadiabatic effects enter perturbatively. The electronic friction theory provides

an explicit expression for the friction coefficient, which can be computed using ab initio

methods. For H-atom scattering from Au(111), the local density friction approximation

(LDFA)24 combined with Langevin molecular dynamics successfully reproduced experimen-

tal energy-loss distributions.15

However, electronic friction has been found to be valid only when nonadiabatic effects

primarily involve low-energy excitations. In this perturbative regime, deviations from BOA

are modest. When high-energy excitations dominate, the theory fails to make reliable
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predictions.14,25–28 This failure is more pronounced on semiconductors, where electron–hole

pair excitations require energies above the band gap. In particular, Krüger et al.27,29 ob-

served bimodal energy-loss distributions in H-atom scattering from Ge(111)c(2×8), reveal-

ing two distinct channels. One channel reflected adiabatic dynamics well described by BOA

molecular dynamics, while the second exhibited an energy-loss onset at the Ge band gap.

In contrast, the electronic friction theory predicted only one single peak between the two

experimental peaks, and failed to capture the correct onset of energy loss at the gap energy.

Recent theoretical studies have provided further insights. Zhu et al.30 combined density

functional theory (DFT) with time-dependent nonadiabatic molecular dynamics (NAMD),

showing that nonadiabatic electronic transitions are site-specific and occur selectively at rest

sites within a specific spin manifold, although the single-electron treatment limits quantita-

tive comparison with experiment. Lu et al.31 examined independent electron surface hopping

(IESH) and Ehrenfest dynamics, finding that Ehrenfest incorrectly predicts energy loss even

for incident energies below the band gap, whereas IESH correctly enforces the gap threshold,

with the minimum energy loss equal to the band gap, but the resulting energy-loss profiles

increasingly deviate from experiment at higher incident energies.

Here, we employ the hierarchical equations of motion (HEOM) method32–35 to inves-

tigate the scattering dynamics of the H atom on Ge(111)c(2×8) surfaces. HEOM is a

non-perturbative, numerically exact framework for open quantum systems that has been

widely applied to molecular–metal problems.36–43 Unlike approximate approaches such as

electronic friction theory, HEOM rigorously accounts for atom–surface interactions and cap-

tures strong nonadiabatic effects. Its high computational cost, however, has historically

limited its application to realistic systems.

Two recent advances have enabled the application of HEOM to simulate scattering dy-

namics on semiconductor surfaces. First, with the remarkable success of tensor network

techniques in representing high-dimensional quantum states, matrix product state (MPS)

representations have been introduced into HEOM,44–47 greatly improving its computational

efficiency and enabling applications to more complex scenarios. In particular, the recently

developed mpsqd package by Guan et al.46 provides an efficient and user-friendly implementa-

tion of MPS-HEOM, substantially facilitating practical simulations. More recently, Preston

et al.43 used MPS-HEOM to investigate vibrational energy relaxation in NO scattering from

the Au(111) surface, another system where strong nonadiabatic effects render electronic fric-
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tion theory inadequate. Zhang et al.47 further developed a multiset MPS-HEOM approach

to provide a more detailed study on the effect of molecule-metal coupling strength, and

compared with the scattering of NO from the Ag(111) surface.

Second, HEOM decomposes environmental interactions into a finite set of effective modes,

and the computational cost scales exponentially with the number of effective modes. Tra-

ditionally, this has limited HEOM to relatively simple environmental structures. For semi-

conductors, the complex band structures pose additional challenges for such decomposi-

tions. Significant efforts have been made to reduce the number of effective modes. Re-

cently, our group introduced the barycentric spectrum decomposition (BSD) method,48,49

which employs the adaptive Antoulas–Anderson (AAA) algorithm50,51 based on barycen-

tric rational representation to the decomposition of effective modes. BSD has been shown

to handle fermionic reservoirs effectively and is applicable to, in principle, arbitrary band

structures.49,52

In this work, we adopt a Newns–Anderson Hamiltonian to describe H-atom scattering

on Ge(111), treating both nuclear motion and surface electronic degrees of freedom quan-

tum mechanically. Motivated by experimental and theoretical evidence,29,30 we focus on

the Ge(111) rest site, where nonadiabatic electronic transitions are most likely to occur.

This choice captures the dominant scattering pathway while keeping the HEOM simulations

tractable.

The one-dimensional potential energy surface (PES) for the Ge(111) rest site is obtained

from DFT calculations and fitted to the adiabatic PES of the Newns–Anderson model to

determine the model parameters. The resulting Hamiltonian is solved using the MPS-HEOM

approach, enabling a fully quantum investigation of how the scattering dynamics depend on

atom—surface coupling strength, incident energy, and isotope substitution.

Our simulations reveal that realistic scattering occurs in the strong-coupling regime,

where the energy-loss channel closely matches experimental observations. The results fur-

ther support the interpretation that the two observed scattering channels originate from

collisions at different surface sites, consistent with the experimentally proposed site-specific

mechanism. In addition, isotope substitution produces a systematic shift of the deuterium

energy-loss peak toward higher energy, consistent with the experimental result.

The remainder of this paper is organized as follows. Section II outlines the theoretical

framework, including the Newns–Anderson model and the HEOM methodology. Section III
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describes the computational setup, where the adiabatic PES is fitted to DFT results to

determine model parameters and define the initial kinetic energy distributions. Section IV

presents the scattering dynamics and examines the effects of atom–surface coupling strength,

incident energy, and isotope substitution. Section V compares our simulations with previous

experimental observations and provides additional physical insight. Finally, Section VI

summarizes the conclusions of this work.

II. THEORY

A. Newns–Anderson Model

As in many previous studies,18,53–58 we employ a Newns–Anderson type Hamiltonian to

describe the interaction of a hydrogen atom (the “system”) with the continuum of electronic

states of the Ge(111)c(2×8) surface (the “bath”). The total Hamiltonian is given by (with

ℏ = 1 throughout):

H =
p2

2M
+U0(x)ĉ

†
H ĉH+Ua(x)

(
1− ĉ†H ĉH

)
+
∑
n

ϵnĉ
†
nĉn+

∑
n

g(x)
(
Vnĉ

†
nĉH + V ∗

n ĉ
†
H ĉn

)
, (1)

where ĉ†H and ĉH are the creation and annihilation operators of the H atom electronic state,

while ĉ†n and ĉn correspond to the surface electronic state |n⟩ with energy ϵn. The H atom

nuclear degrees of freedom are described by momentum p, coordinate x, and mass M .

U0(x) and Ua(x) denote the diabatic potential energy surfaces (PESs) governing nuclear

motion of the H atom. U0(x) corresponds to the ground state (|0⟩ state) of the neutral H

atom, whereas Ua(x) represents the state after electron transfer between the H atom and the

Ge surface (|a⟩ state). We choose |a⟩ as the H cation state (so that ĉ†H |a⟩ = |0⟩), consistent

with reports that when H atoms adsorb on the rest atom of the Ge surface, the H atom

loses its electron.30,59,60 The function g(x) accounts for the position-dependent H–surface

interaction, and Vn denotes the coupling constant between the surface continuum electronic

state |n⟩ and the H atom electronic state.

The system–bath coupling is characterized by the hybridization function,

Γ(ϵ) = 2π
∑
n

|Vn|2 δ(ϵ− ϵn) , (2)

which encodes the interaction between the H atom and the Ge surface electronic continuum.
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B. Adiabatic Potential Energy Surface

To obtain a physically meaningful parameterization of the Newns–Anderson model, we

fit its adiabatic potential energy surface (PES) to density functional theory (DFT) results.

In our previous work,61 we developed a method to compute the adiabatic potential energy

surfaces of the Newns–Anderson model based on the Hellmann–Feynman theorem. The key

steps are summarized below.

First, fixing the nuclear position x, the electronic Hamiltonian of Eq. (1) reduces to

He(x) = Ua(x) +
[
U0(x)− Ua(x)

]
ĉ†H ĉH +

∑
n

ϵnĉ
†
nĉn +

∑
n

(
Vn(x)ĉ

†
nĉH + V ∗

n (x)ĉ
†
H ĉn

)
, (3)

where Vn(x) = g(x)Vn. This corresponds to a resonant-level model (RLM) with a hybridiza-

tion function

Γ(ϵ,x) = g2(x) Γ(ϵ) , (4)

which can be solved exactly using the Green’s function formalism.62,63

The retarded Green’s function is defined as63,64

Gr(ϵ,x) =
[
ϵ− ϵH − Σr(ϵ,x)

]−1

,

Σr(ϵ,x) =

∫
dϵ′

2π

Γ(ϵ′,x)

ϵ− ϵ′ + i0+
,

(5)

where ϵH = U0(x)− Ua(x) and Σr(ϵ,x) is the electronic self-energy.

With Gr(ϵ,x) obtained, the H-state occupation

⟨nH⟩(x) = ⟨ĉ†H ĉH⟩ (6)

and the interaction energy

⟨Hint⟩(x) =
〈∑

n

(
Vn(x)ĉ

†
nĉH + V ∗

n (x)ĉ
†
H ĉn

)〉
(7)

can be expressed as55,61–63,65

⟨nH⟩(x) = − 1

π

∫ ∞

−∞
dϵ f(ϵ) Im[Gr(ϵ,x)],

⟨Hint⟩(x) = − 2

π

∫ ∞

−∞
dϵ f(ϵ) Im[Gr(ϵ,x) Σr(ϵ,x)] ,

(8)

where Im[·] denotes the imaginary part and f(ϵ) = [1 + eβ(ϵ−µ)]−1 is the Fermi–Dirac distri-

bution with β = 1/kBT and chemical potential µ.
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The free energy of He(x) in the grand canonical ensemble is defined as

G(x) = −kBT ln Ξ(x), Ξ(x) = Tr e−β(He(x)−µN̂). (9)

Using the procedure in Ref. 61, the free energy can be expressed as

G(x) = Ua(x)− Ua(xref) +

∫ x

xref

dx′

{
∂[U0(x

′)− Ua(x
′)]

∂x′ ⟨nH⟩(x′) +
1

g(x′)

∂g(x′)

∂x′ ⟨Hint⟩(x′)

}
,

(10)

where xref is a reference position far from the surface.

At zero temperature, the free energy G(x) reduces to the adiabatic potential energy

surface of He(x). We therefore denote

Eadia(x) ≡ G(x)
∣∣
T=0

, (11)

as the adiabatic PES of the Newns–Anderson model.

C. HEOM in the MPS Framework

The Newns–Anderson Hamiltonian in Eq. (1) describes an open quantum system, where

the H atom (system) interacts with a fermionic environment consisting of the continuum of

electronic states in the semiconductor surface. The dynamics can, in principle, be solved

exactly using the HEOM method.35,66,67

For semiconductors, however, the complex band structure makes traditional HEOM im-

plementations prohibitively expensive. Shi et al.44 demonstrated that tensor network meth-

ods, in particular matrix product states (MPS), provide a highly efficient representation

of HEOM, significantly reducing computational cost and extending its applicability. Here,

we describe the bath decomposition, HEOM formalism, and MPS representation for MPS-

HEOM propagation.

1. Bath Decomposition

Within HEOM, the effect of the electronic continuum is encoded in a set of effective

modes obtained by decomposing the bath correlation function into a sum of exponentials:

Cσ(t) =

∫ +∞

−∞

dϵ

2π
eσiϵt Γ(ϵ) fσ(ϵ) ≃

K∑
k=1

dσk e
−νσk t , (12)
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where σ ∈ {+,−} distinguishes electrons (+) and holes (−), fσ(ϵ) = [1 + eσβ(ϵ−µ)]−1 is

the Fermi distribution, and Γ(ϵ) is the hybridization function. The coefficients dσk and

frequencies νσk define the effective modes. The decomposition of Cσ(t) for semiconductor-

like Γ(ϵ) is performed using the recently developed BSD method.49

2. HEOM Formalism

After decomposition, the system coupled to an infinite bath is reformulated as a system

interacting with a finite set of effective modes. The density operator ρ̂J is defined in the

composite space

ρ̂J ∈ Fe ⊗F∗
e ⊗Hx ⊗H∗

x ⊗Feff , (13)

where Fe and F∗
e are the electronic Fock space of the H atom and its dual (|0⟩ and |a⟩), Hx

and H∗
x are the nuclear coordinate space of the H atom and its dual, and Feff = {J} contains

all possible effective mode configurations, where each J = {j1j2, ..., jΩ} represents a specific

configuration of occupied effective modes with a given order. Here, each j = (k, σ), and the

maximum number of occupied modes Ω is 2K.

The reduced density matrix of the system is ρ̂0, corresponding to the configuration

where all effective modes are unoccupied. For the Newns–Anderson model with a position-

dependent atom–surface coupling in Eq. (1), the HEOM reads:41,61,68

∂

∂t
ρ̂J(t) = −i[Hmol, ρ̂J]− γJρ̂J − i

Ω∑
m=1

(−1)Ω−mCjm ρ̂J−
m
− i

∑
jΩ+1

Aj̄Ω+1
ρ̂J+ , (14)

where γJ =
∑

(k,σ)∈J
νσk . J

+ denotes {j1j2, ..., jΩ, jΩ+1}, and J−
m denotes {j1, ..., jm−1, jm+1, ..., jΩ},

j̄ = (k, σ̄) with σ̄ = −σ. The molecular Hamiltonian is the system part of Eq. (1):

Hmol =
p2

2M
+ U0(x)ĉ

†
H ĉH + Ua(x)

(
1− ĉ†H ĉH

)
. (15)

The operators Cj and Aj act as “creation” and “annihilation” superoperators for the

effective modes, coupling ρ̂J to ρ̂J−
m

and ρ̂J+ , respectively. Their explicit actions are given

by:

Cj ρ̂J = g(x)dj ĉj ρ̂J − (−1)Ωd∗j̄ ρ̂Jĉjg(x), (16a)

Aj ρ̂J = g(x)ĉj ρ̂J + (−1)Ωρ̂Jĉjg(x). (16b)

For j = (k, σ), we have dj = dσk , and ĉj = ĉσH where ĉ
−(+)
H ≡ ĉ

(†)
H denotes the system

annihilation (creation) operators.
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3. MPS Representation

In practice, the large hierarchy of all density operators ρ̂J is represented compactly using

the MPS ansatz:44,46

ρ̂J ≈
r1∑

α1=1

· · ·
rd−1∑

αd−1=1

A1(n1, α1)A2(α1, n2, α2) · · ·Ad(αd−1, nd), (17)

here, Ai are three-dimensional tensors, except that the first and last tensors are two-

dimensional. ri (i = 1, ..., d) denotes the i-th bond dimension of the MPS. The total di-

mension is d = 2K + 4, covering all spaces included in Eq. (13). Specifically, the first four

tensors correspond to the degrees of freedom for the electronic Fock space, its dual, the nu-

clear coordinate space of the H atom, and its dual, respectively. The remaining 2K tensors

correspond to the degrees of freedom in Feff . In detail, n1 and n2 represent the electronic

states {0, a}, while n3 and n4 correspond to the nuclear coordinate basis {x}. All possible

configurations J in Feff are mapped to the occupation number basis {n5, · · · , n2K+4}, where

ni = 0 or 1 for i = 5, ..., 2K + 4.

Time evolution is performed with the time-dependent variational principle (TDVP),69

which integrates the dynamics while maintaining a fixed MPS bond dimension. In practice,

simulations are performed by systematically increasing the bond dimension to ensure con-

vergence of the dynamics. Further details can be found in Refs. 44 and 46. The TDVP-based

HEOM propagation has been implemented in the mpsqd46 package.

III. COMPUTATIONAL SETUP

A. System–Bath Interaction

In this work, the coupling between the H atom and the Ge(111) surface is described by

the following hybridization function:

Γ(ϵ) =
ηγ2

(ϵ− ϵ0)2 + γ2

[
1− 1

1 + e(ϵ−EB/2)/δ

1

1 + e−(ϵ+EB/2)/δ

]
, (18)

where EB = 0.49 eV is the Ge(111) band gap,27 δ = 0.02 eV controls the smoothness of the

band edges, ϵ0 = 0 sets the band center, and γ = 1.5 eV determines the bandwidth. The

overall coupling strength η is treated as a tunable parameter in the range 1–3 eV, reflecting

the uncertainty of its precise value for the realistic surface.
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Physically, Γ(ϵ) characterizes the energy-dependent interaction strength between the H

atom electronic state and the continuum of surface states, thereby determining the proba-

bility of charge transfer and energy dissipation into the surface. This hybridization function,

together with the Fermi distribution, serves as input for the bath correlation function Cσ(t)

[Eq. (12)]. The temperature is set to T = 300 K, which enters via the Fermi function. To

decompose Cσ(t) into exponential terms, we employ the BSD scheme,49 which expands both

the hybridization function and the Fermi distribution into a finite set of effective modes.

Figure 1 illustrates the BSD approximations for Γ(ϵ) and the Fermi distribution. The

relative error of their product Γ(ϵ)fσ(ϵ) remains below 10−3 across the entire energy range.

Such accuracy has been demonstrated to be sufficient for the present type of simulations.49

In practice, 13 effective modes are obtained: 6 from the hybridization function and 7 from

the Fermi distribution.

-4 -2 0 2 4
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ε
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FIG. 1. Accuracy of the BSD approximation for (a) the hybridization function Γ(ϵ) (with η = 1 eV)

and (b) the Fermi distribution at T = 300 K. The relative error of their product Γ(ϵ)fσ(ϵ) is below

10−3 across the full energy range.
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B. Model Parametrization

The potential energy surface (PES) for H-atom scattering at the Ge(111) rest site was

obtained from density functional theory (DFT) calculations using the Vienna Ab Initio Sim-

ulation Package (VASP) with the projector augmented wave (PAW) method.70 Calculations

were carried out at the PBE level71 with D3-BJ dispersion corrections.72,73 A plane-wave

cutoff of 450 eV and a Γ-centered 1× 3× 1 Monkhorst–Pack k-point grid74 were employed.

The Ge(111) slab75 was modeled with four atomic layers, with the bottom two layers fixed

during geometry optimization.

To reproduce the DFT PES within the Newns–Anderson model, we fit the adiabatic PES

using the following analytic forms for U0(x) and Ua(x):

U0(x) = A0

(
e2C0(x−x0) − 2eC0(x−x0)

)
, (19a)

Ua(x) = A1

(
e2C1(x−x1) − 2eC1(x−x1)

)
+B1 +

1

(x−D1)4
. (19b)

Here, U0(x) follows the Morse potential form, while Ua(x) includes an additional short-range

repulsive term 1/(x−D1)
4 to capture the strong repulsion experienced by the H atom near

the Ge(111) surface. The constant offset B1 is fixed at 8.8 eV, corresponding to the difference

between the H atom ionization potential (13.6 eV) and the Ge(111) work function (4.8 eV).76

The position-dependent interaction between the H atom and the surface is described by

a sigmoidal coupling function,

g(x) =
2

1 + e−cg(x−xg)
, (20)

with xg and cg as adjustable parameters.

Using the procedure in Sec. II B, we calculate the adiabatic energy Eadia(x) and occupa-

tion number ⟨nH⟩(x) for a given parameter set. These quantities are then fitted to DFT

reference data: the DFT PES and the spin magnetic moment. The resulting optimized

parameters are summarized in Table I.

Figure 2(a) shows the model potentials U0(x), Ua(x), and the coupling function g(x)

along with the computed Eadia(x) and the DFT PES. Figure 2(b) compares the calculated

occupation number ⟨nH⟩(x) with the spin magnetic moment obtained from DFT. In both

the Eadia(x) and ⟨nH⟩(x) calculations, we use η = 3 eV.

Overall, the Newns–Anderson model captures the essential features of the DFT PES

and the spin magnetic moment transition. While minor deviations arise from the use of
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FIG. 2. (a) Model potentials U0(x), Ua(x), and position-dependent coupling g(x) in the Newns–

Anderson model, together with the computed adiabatic energy Eadia(x) and DFT reference EDFT.

(b) Calculated occupation number ⟨nH⟩(x) compared with the spin magnetic moment µH from

DFT results. All parameters are listed in Table I. For both panels, η is set to 3 eV.

analytical functional forms, our aim is not to reproduce the DFT PES exactly. Rather, the

resulting parameter set provides a physically meaningful basis for simulating the scattering

dynamics.
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C. Kinetic Energy Distribution

The momentum-space distribution at electronic state |i⟩ (i ∈ {0, a}) is defined as

ρii(k) =
1

2π

∫
dx

∫
dx′ e−ik(x−x′) ρii(x, x

′), (21)

where ρii(x, x
′) is the reduced coordinate-space density matrix at state i:

ρii(x, x
′) ≡ ⟨i| ⟨x| ρ̂ |x′⟩ |i⟩ . (22)

Here, ρ̂ is the reduced density operator (i.e., ρ̂0 in HEOM). In other words, ρii(k) corresponds

to the diagonal element of the Fourier transform of the coordinate-space reduced density

operator.

The kinetic energy distribution at state |i⟩, denoted as Pi(E), is then given by

Pi(E) = ρii(k)
dk

dE
=
ρii(k)

ℏ

√
M

2E
, (23)

where we use the relation E = ℏ2k2/(2M) for the kinetic energy.

As E → 0,
√

1/E becomes large, resulting in a sharp peak in the numerically obtained

Pi(E) at small E values.61 According to our PES shown in Fig. 2, H atoms with such

low kinetic energies cannot escape from the semiconductor surface and remain trapped

nearby. In contrast, experimental kinetic energy distributions, measured using time-of-flight

techniques,27 should not include contributions from atoms trapped near the surface.

To enable a direct comparison with experiments, we exclude these trapped components

when calculating the kinetic energy distribution. This is achieved by projecting out the

near-surface contributions:

ρ̂pj = P ρ̂P , (24)

where ρ̂ is the reduced density operator and P is a projection operator that removes the

distribution near the surface. In this work, we choose the projection operator as

P = I −
∑
Ei<0

|ψi⟩⟨ψi| (25)

where I is the identity operator, |ψi⟩ and Ei are the i-th eigenstate and eigenenergy of the

adiabatic PES, i.e., Eadia(x) in Eq. (11).

By performing the same procedure as in Eqs. (21)–(23) but using ρ̂pj, we obtain the

kinetic energy distribution with the bound state contributions projected out, denoted as

P pj
i (E).
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IV. RESULTS

A. H-Atom Scattering Dynamics

In all simulations, the nuclear degree of freedom x is represented using the potential

optimized discrete variable representation (PO-DVR).77,78 Unless otherwise noted, the DVR

grid spans x ∈ [−60, 0.2] a.u. The number of PO-DVR basis functions, up to 1000, depends

on the incident kinetic energy, atom–surface coupling strength, and isotope effect. The H

atom is initially prepared in the neutral state |0⟩ with a Gaussian wavepacket centered at

x = −11 a.u. and a spatial width of σx = 1 a.u. In this subsection, we consider an incident

energy Ein = 1.92 eV and coupling strength η = 3 eV.

Figure 3 shows the population dynamics of the H atom in states |0⟩ and |a⟩ during the

scattering process. At t ≈ 20 fs, the wavepacket reaches the Ge surface and electron transfer

from the H atom to the surface begins, seen as a sharp decrease in P0(t) accompanied by an

increase in Pa(t). By t ≈ 30 fs, the electron transfer reaches its maximum, with nearly the

entire wave packet occupying the |a⟩ state. As the atom rebounds, electrons transfer back to

the H atom, driving a transition from |a⟩ to |0⟩. Most of this back-transfer is completed by

t ≈ 50 fs, small oscillations in P0(t) and Pa(t) after 50 fs reflect residual charge exchange near

the surface. After t > 100 fs, the population curves stabilize. By the end of the simulation,

most of the H atom escapes in the |0⟩ state, while a small fraction remains trapped near the

surface in the |a⟩ state.

To further describe the scattering process, we present the evolution of wave packet dis-

tributions P0(x) and Pa(x) in Figure 4. Initially, the wavepacket approaches the Ge surface

from the left (x < 0). Upon reaching the surface at t ≈ 20 fs, electron transfer causes P0(x)

to decrease and Pa(x) to rise. By t ≈ 50 fs, P0(x) begins to propagate away from the surface

and gradually delocalizes, signaling a loss of kinetic energy.

By the end of the simulation, a small peak of P0(x) remains localized near the surface,

reflecting a low-energy component that lacks sufficient kinetic energy to escape. Meanwhile,

a portion of Pa(x) persists, oscillating within the well of Ua(x) near the surface, indicating

that some H atoms become adsorbed on the Ge surface in the |a⟩ state after scattering.

The pronounced oscillatory features of Pa(x) further suggest that this population occupies

excited vibrational levels on the |a⟩ state.
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FIG. 3. Time evolution of H-atom populations in states |0⟩ and |a⟩, denoted P0(t) and Pa(t),

respectively, during the scattering process.

To facilitate comparison with experimental results, we plot in Figure 5 the kinetic energy

distribution of the H atom in the |0⟩ state (H-neutral) at the time of emission (t = 154.8 fs).

The projection technique described in Sec. III C is applied to exclude small contributions

from wavepackets trapped near the surface. The resulting distribution exhibits a bimodal

structure. The dominant peak spans 0–1.5 eV with a maximum near 1 eV, corresponding to

the energy-loss channel. Its shape and position agree well with the experimental observations

reported by Krüger et al.27 In addition, a much weaker Gaussian-like peak appears near the

incident energy 1.92 eV. This peak corresponds to the elastic scattering channel, arising

from a small portion of the H wavepacket that scatters without exchanging electrons with

the surface. Because of its very small weight, this elastic peak is not discernible in Figure 4.

Overall, our simulations capture the bimodal feature observed experimentally. However, the

relative ratio of the two channels differ significantly from experiment, which will be discussed

later in Sec. V.
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FIG. 4. Spatial probability distributions of the H atom in the |0⟩ and |a⟩ states during the scattering

process, denoted as P0(x) and Pa(x), respectively. Panel (a) shows P0(x), and Panel (b) shows

Pa(x).
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FIG. 5. Kinetic energy distribution of the H atom emitted in the |0⟩ state at t = 154.8 fs, projected

using the technique in Sec. III C to exclude some near-surface contributions.
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The dominant energy-loss peak originates from scattering events involving electronic tran-

sitions with the semiconductor, thereby reflecting the band structure characteristics of the

material. Consider the following process: an H atom donates an electron to the conduction

band of Ge(111), and after the collision, it regains an electron from the valence band. Since

the returning electron has lower energy than the donated one, such an electronic transition

is expected to result in an energy loss approximately equal to the band gap. This mechanism

explains why the high-energy edge of the loss peak lies Eg = 0.49 eV below the incident

energy.

B. Effects of Atom–Surface Coupling Strength

In the previous simulations, we set the coupling parameter to η = 3 eV. The present

framework allows us to vary η systematically, providing mechanistic insight into how atom–

surface coupling influences scattering dynamics. In earlier work,61 we showed that coupling

strength modulates the degree of adiabaticity: weak coupling favors nonadiabatic transi-

tions, while strong coupling yields more adiabatic behavior, where the electronic friction

theory becomes applicable. Here, we extend this analysis to H-atom scattering from a semi-

conductor surface.

Figure 6 shows the time evolution of the neutral-state population P0(t) for different

atom—surface coupling strengths. As η increases, a larger fraction of the wavepacket un-

dergoes electron transfer to the surface, reflected by the reduced P0(t) around t ≈ 30 fs.

For η > 2 eV, the transfer probability saturates, with nearly complete electronic excitation

during the collision. Stronger coupling also accelerates both the decay and recovery of P0(t),

reflecting faster electron transfer. After scattering, the larger final value of P0(t) at higher

η indicates that more population returns to the neutral state and scatters back, while less

remains trapped in the |a⟩ state.

Figure 7 presents the projected kinetic energy distributions of the H atom in the neutral

state at t = 154.8 fs for various η. At weak coupling, the elastic scattering channel is rela-

tively pronounced, and its relative intensity decreases with increasing η, indicating a higher

probability of electronic transitions, consistent with the population dynamics in Figure 6.

The energy-loss peak also depends strongly on η: for weak coupling, the peak is broader,

decreases in intensity, shifts significantly toward lower energies, and exhibits fine structure.
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FIG. 6. Time evolution of the H-atom population in the neutral state |0⟩ for different coupling

strengths η. The incident energy is Ein = 1.92 eV. All other parameters are identical to those in

Table I.

These fine structures originate from discrete bound states of the excited potential Ua(x) and

higher-order processes such as multiple electron transfers. Specifically, when the H atom is

excited to the |a⟩ state, the bound states of Ua(x) are discretely spaced rather than forming

a continuum. These distinct excitation pathways can modulate the scattering dynamics,

thereby shaping the observed structure in the energy distribution. Such fine structures are

gradually washed out as η increases.

The narrowing of the energy-loss peak and its shift toward higher kinetic energies with

increasing η indicate enhanced adiabaticity of the dynamics. However, unlike H-atom scat-

tering on metal surfaces, where the high-energy edge of the distribution typically approaches

the initial kinetic energy, here the high-energy edge of the energy-loss peak remains around

1.5 eV, roughly one band gap below the initial kinetic energy. Thus, while strong coupling

drives the dynamics toward adiabatic behavior, nonadiabatic effects remain intrinsic due

to the semiconductor band structure. This persistent band-gap-related energy loss explains

why the electronic friction theory fails to capture scattering on semiconductor surfaces.
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FIG. 7. Projected kinetic energy distributions of H atoms in the neutral state |0⟩ at t = 154.8 fs

for various coupling strengths η. All other parameters are identical to those in Table I.

C. Effects of Incident Energy

We now examine how the incident kinetic energy Ein influences the scattering outcome.

Figure 8 shows the projected kinetic energy distributions of the H atom in the neutral state

after scattering at different incident energies. Panel (a) corresponds to η = 1 eV, while panel

(b) corresponds to η = 3 eV. The corresponding times chosen for Ein = 0.37, 0.99, 1.92, and

6.17 eV are t = 164.5, 193.5, 154.8, and 91.9 fs, respectively. For Ein = 0.37 eV, a smaller

box in the range −30 to 0.2 a.u. was employed. In all cases, the outgoing wave packets have

propagated well beyond the scattering region.

For weak coupling (η = 1 eV), the elastic peak persists at all incident energies. The

relative weight of the energy-loss channel increases as Ein increases. At Ein = 0.37 eV

(below the band gap), only elastic scattering is observed, with no energy-loss channel. At

Ein = 0.99 eV, an energy loss feature appears below E ≈ 0.5 eV, consistent with the Ge

band gap. At Ein = 1.92 eV, the energy-loss channel becomes more pronounced compared

to the Ein = 0.99 eV case. In both the Ein = 0.99 and 1.92 eV cases, a substantial near-zero-

energy component is present, originating from wavepacket components with kinetic energies
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FIG. 8. Projected kinetic energy distributions of the H atom in the |0⟩ state after scattering

at different incident energies Ein. (a) η = 1 eV. (b) η = 3 eV. For clarity, the distribution at

Ein = 0.37 eV in panel (b) is scaled by a factor of 3 due to its small magnitude. All distributions

were evaluated at sufficiently long times, when the outgoing wavepacket had moved far from the

scattering region. All other parameters are identical to those listed in Table I.

insufficient to escape from the surface. At the highest incident energy of 6.17 eV, the

distribution in the energy-loss channel rises sharply from E ≈ 5.6 eV toward lower energies,

reaches a maximum, and then gradually decreases. Integration over the energy-loss channel

shows that it contains an even larger contribution than that for Ein = 1.92 eV.

For strong coupling (η = 3 eV), the elastic scattering peak is significantly suppressed

across all incident energies. Note that the distribution at Ein = 0.37 eV in panel (b) is

multiplied by a factor of three for visibility. The energy-loss peak appears only when Ein

exceeds the band gap, and integration over the distributions confirms that the population in
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the energy-loss channel continues to grow with increasing Ein. Consistent with the discussion

in the previous subsection on the effect of atom–surface coupling strength, the profile of the

energy-loss channel undergoes substantial changes with increasing η for different Ein: the

peak becomes smoother, shifts toward higher kinetic energies, and the low-energy component

is reduced.

D. Isotope Effect

We now investigate the effect of isotope substitution on the scattering dynamics. Figure 9

shows the projected kinetic energy distributions P pj
0 (E) for H and D atoms at two incident

energies (Ein = 1.92 and 6.17 eV) and for both weak (η = 1 eV) and strong (η = 3 eV)

atom–surface coupling. The left and right panels correspond to Ein = 1.92 and 6.17 eV,

respectively, while the top and bottom panels correspond to η = 1 and 3 eV, respectively. For

D-atom simulations, all parameters are kept identical to those for H, except that the mass of

D is set to be twice that of H. The distributions are evaluated after the outgoing wavepacket

has propagated well beyond the scattering region: t = 154.8 fs for H and t = 222.5 fs for D

at Ein = 1.92 eV; t = 91.9 fs for H and t = 135.5 fs for D at Ein = 6.17 eV.
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FIG. 9. Projected kinetic energy distributions in the |0⟩ state from scattering simulations of H

and D atoms at two incident energies and two coupling strengths. Panels (a)–(d) correspond to

(Ein, η) = (1.92 eV, 1 eV), (6.17 eV, 1 eV), (1.92 eV, 3 eV), and (6.17 eV, 3 eV), respectively.

Distributions are evaluated when the outgoing wavepacket has moved far away from the scattering

region for each case.

For weak coupling (η = 1 eV), replacing H with D reduces the elastic scattering peak,

enhances the energy-loss channel, and shifts its peak toward higher kinetic energies. For

strong coupling (η = 3 eV), where the elastic peak is already small, isotope substitution

primarily narrows the energy-loss peak, reduces the low-energy component, and shifts the

peak to higher energies. Comparison with Figure 7 indicates that, for different Ein and

η, replacing H with D consistently produces effects similar to increasing the atom–surface

coupling strength.

This trend is physically intuitive. At the same incident energy, the heavier D atom has a

lower velocity, thereby increasing the adiabaticity of the scattering process. According to the

Landau–Zener formula,79–81 the probability of a diabatic transition contains an exponential

term with a factor |Vab|2/v, where Vab is the nonadiabatic coupling between diabatic states

|a⟩ and |b⟩, and v is the velocity. A decrease in v thus has the same effect as an increase in
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|Vab|2. In our model, the coupling strength η plays a role analogous to |Vab|2, so the isotope

effect observed when replacing H with D mimics the effect of increasing η.

V. DISCUSSION

In this work, we present simulations of H-atom scattering on the Ge(111) surface. Our

results show qualitative agreement with recent experimental findings,27,29 while certain dis-

crepancies remain. Since our calculations employ the HEOM approach to obtain numerically

exact solutions within the Newns–Anderson model framework, these deviations are likely

due to intrinsic limitations of the model. This section is devoted to a detailed comparison

between our theoretical predictions and the recent experimental observations.

A. H-Atom Scattering: Simulation and Experiment

Our calculations predict a bimodal structure in the kinetic energy distribution of the

scattered H atom, although the elastic scattering channel in this bimodal structure becomes

less pronounced under strong coupling. This behavior originates from the gapped band

structure of the semiconductor surface, indicating that the HEOMmethod provides a reliable

nonperturbative description of H-atom scattering on semiconductor surfaces. Since the

employed Newns–Anderson model accounts solely for interactions with surface electronic

states and neglects surface phonons, this further supports that the bimodal structure arises

from valence-to-conduction band excitations, producing high-energy electron–hole pairs.

Experiments have shown that the energy-loss channel is strongly promoted by the incident

translational energy.27 Our results exhibit the same trend: for both η = 1 eV and η = 3 eV,

the integrated population of the energy-loss channel in Figure 8 increases with increasing

incident energy. Analysis of the integrated population further indicates that the outgoing

population grows with incident energy, consistent with the experimental observation that

sticking probability decreases as the incident energy increases.27,29

However, despite capturing this qualitative trend, the simulations do not reproduce the

experimentally observed quantitative branching ratio between the elastic and energy-loss

channels. We attribute this discrepancy to two factors. First, our model focuses on scat-

tering at the Ge(111) rest site, whereas the experimental branching ratios reflect statistical
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averages over multiple surface sites. Second, as shown in Figure 7, the atom–surface cou-

pling parameter η significantly influences the relative weights of the two channels. Yet, as a

model parameter, its precise value has not been definitively quantified.

Then, what magnitude of η best corresponds to the actual case? Based on the results

in Figs. 7 and 8, we identify η = 3 eV (strong coupling) as most representative, as the

resulting energy-loss channel closely reproduces both the peak position and overall lineshape

observed experimentally.27 This value of η also aligns with previous HEOM simulations of

H scattering on Au(111),61 suggesting a relatively consistent atom–surface coupling across

different surfaces.

To further validate this assessment, Figure 10 compares the simulated energy-loss distri-

butions at η = 3 eV for different incident energies with the experimental data from Fig. 1 of

Ref. 27. Overall, our simulations reproduce the key features of the experimental energy-loss

channel. In particular, all curves correctly show that the minimum energy loss corresponds

to the gap energy. Some deviations remain: at Ein = 0.99 eV, the simulation overestimates

the high energy-loss intensity due to contributions from low-energy distribution near E → 0.

This effect diminishes at higher incident energies as these components become less signifi-

cant. At Ein = 1.92 eV, the simulated distribution nearly coincides with the experiment.

For Ein = 6.17 eV, the results slightly overestimate the low-energy-loss intensity, whereas

beyond the peak the distribution closely matches the experimental data. These deviations

may reflect limitations of our model PES and parameters, yet the overall agreement demon-

strates that our simulations capture the essential mechanisms of the energy-loss process.

Since nearly all of the scattered wavepacket populates the energy-loss channel for η =

3 eV, we further speculate that the two channels observed experimentally originate from col-

lisions at different surface sites. Specifically, collisions of H with the surface rest atoms pre-

dominantly result in scattering through the energy-loss channel, while the elastic scattering

channel mainly arises from collisions with other surface sites. Furthermore, the experimen-

tally observed dependence of the branching ratio on Ein likely reflects the fact that changing

the incident energy alters the relative probabilities of collisions at different surface sites.

This finding provides direct support for the proposed site-specific scattering mechanism.29,30
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FIG. 10. Translational energy-loss distributions for different incident energies. HEOM simulations

(η = 3 eV, from Figure 8; left y-axis) are plotted as a function of energy loss and compared with

experimental data (normalized flux, right y-axis) from Fig. 1 of Ref. 27.

B. Isotope Effects: Simulation and Experiment

Recently, isotope effect measurements29 show that for the adiabatic channel (or elastic

scattering channel in this work), deuterium exhibits a larger energy loss than H, whereas the

energy loss channel shows almost no isotope effect. Our simulation results do not capture

the broadening of the elastic peak with increasing atomic mass. But it is noted that the
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elastic channel is not our main focus, as it can already be reliably described by adiabatic

MD simulations. Moreover, the Newns–Anderson model used here does not include coupling

to surface phonons and is therefore not intended to reproduce adiabatic dynamics involving

phonon interactions quantitatively.

For the more relevant energy-loss channel, which is strongly influenced by atom–surface

interactions and directly linked to surface electronic properties, our simulations offer com-

plementary insights and reveal new aspects of isotope effects. Although the experiment

reports “almost no isotope effect” in this channel, a closer inspection of the energy-loss

spectra (Fig. 2 of Ref. 29) reveals a slight but systematic difference between the H and D

energy-loss peaks, with the D peak shifted toward smaller energy loss. This subtle trend

is fully consistent with our prediction in Figure 9: increasing the atomic mass produces

an effect analogous to a slight increase in the atom–surface coupling strength, shifting the

deuterium peak toward higher energies (i.e., smaller energy loss). The weaker isotope effect

observed experimentally likely arises from the statistical averaging over all surface sites,

which diminishes the features associated with the rest site.

VI. CONCLUSIONS

We have employed the numerically exact hierarchical equations of motion (HEOM)

method to simulate H-atom scattering from the Ge(111) surface. The one-dimensional PES

for the H atom colliding with the rest site of Ge(111) was obtained from DFT calculations and

fitted to the Newns–Anderson model to determine the model parameters. The simulations

reveal two distinct scattering channels: an elastic channel without electron transfer and an

energy-loss channel involving electron–hole excitations across the semiconductor band gap.

These two channels produce a bimodal kinetic energy distribution of the scattered H atom,

with peak separation consistent with the band gap.

Systematic variations of the atom–surface coupling strength, incident energy, and iso-

tope substitution reveal clear mechanistic insights. Increasing the coupling strength drives

scattering predominantly into the energy-loss channel, reduces both the energy loss and

the broadening of the outgoing kinetic energy distribution, and enhances the adiabaticity

of the dynamics. Higher incident energies promote the energy-loss channel, generating the

bimodal structure. Isotope substitution (H → D) produces a similar impact as increasing
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the atom–surface coupling strength.

Importantly, under strong atom–surface coupling, the overall shape and peak position

of the simulated energy-loss peak closely match experimental observations while providing

additional microscopic insight. HEOM captures high-energy electron–hole excitations in the

energy-loss channel that cannot be described by electronic friction theory and other pertur-

bative approaches,27 addressing a key limitation of existing BOA-based methods. However,

under this strong coupling, the elastic scattering channel is underestimated, supporting the

experimentally proposed site-specific scattering mechanism, in which elastic scattering from

other sites also contributes. Furthermore, while the experimental energy-loss peak appears

relatively insensitive to isotope substitution, our results reveal a systematic shift of the deu-

terium peak toward smaller energy loss, highlighting the ability of HEOM simulations to

uncover subtle quantum effects masked in ensemble-averaged measurements.

The fully quantum HEOM approach thus provides a benchmark for understanding

H–semiconductor scattering at a fundamental level. Due to the substantial computational

cost, we have employed a simplified Newns–Anderson model. Extending these simulations

to fully realistic surface environments will require the development of efficient approximate

methods.

Nonetheless, our fully quantum results offer valuable mechanistic insights and guidance

for future modeling. As demonstrated, realistic scattering conditions correspond to a strong

atom–surface coupling regime characterized by relatively adiabatic dynamics, albeit with

characteristic band-gap-controlled energy loss. Incorporating such band-gap effects into

extensions of electronic friction theory and related frameworks represents a promising avenue

for future research.
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Parameter Value

η 1− 3 eV (varied)

ϵ0 0.0 eV

γ 1.5 eV

EB 0.49 eV

δ 0.02 eV

µ 0.0 eV

M 1836.013 au

T 300 K

A0 0.19 eV

C0 1.2 au

x0 −3.8 au

A1 11.81 eV

B1 8.8 eV

C1 0.32 au

D1 0.94 au

x1 −0.898 au

cg 1.1 au

xg −2.8 au

TABLE I. Model parameters for the Newns-Anderson model.
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27K. Krüger, Y. Wang, S. Tödter, F. Debbeler, A. Matveenko, N. Hertl, X. Zhou, B. Jiang,

H. Guo, A. M. Wodtke, et al., “Hydrogen atom collisions with a semiconductor efficiently

promote electrons to the conduction band,” Nat. Chem. 15, 326–331 (2023).

28S. Malpathak and N. Ananth, “A linearized semiclassical dynamics study of the multiquan-

tum vibrational relaxation of no scattering from a au(111) surface,” J. Phys. Chem. Lett.

15, 794–801 (2024), pMID: 38232133, https://doi.org/10.1021/acs.jpclett.3c03041.
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37C. Schinabeck, A. Erpenbeck, R. Härtle, and M. Thoss, “Hierarchical quantum master

equation approach to electronic-vibrational coupling in nonequilibrium transport through

nanosystems,” Phys. Rev. B 94, 201407 (2016).
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