
FragmentRetro: A Quadratic Retrosynthetic Method
Based on Fragmentation Algorithms

Yu Shee
Department of Chemistry

Yale University
New Haven, CT 06520
yu.shee@yale.edu

Anthony M. Smaldone
Department of Chemistry

Yale University
New Haven, CT 06520

anthony.smaldone@yale.edu

Anton Morgunov
Department of Chemistry

Yale University
New Haven, CT 06520
anton@ischemist.com

Gregory W. Kyro
Department of Chemistry

Yale University
New Haven, CT 06520

gregory.kyro@yale.edu

Victor S. Batista
Department of Chemistry

Yale University
New Haven, CT 06520

victor.batista@yale.edu

Abstract

Retrosynthesis, the process of deconstructing a target molecule into simpler pre-
cursors, is crucial for computer-aided synthesis planning (CASP). Widely adopted
tree-search methods often suffer from exponential computational complexity. In
this work, we introduce FragmentRetro, a novel retrosynthetic method that lever-
ages fragmentation algorithms, specifically BRICS and r-BRICS, combined with
stock-aware exploration and pattern fingerprint screening to achieve quadratic
complexity. FragmentRetro recursively combines molecular fragments and verifies
their presence in a building block set, providing sets of fragment combinations
as retrosynthetic solutions. We present the first formal computational analysis of
retrosynthetic methods, showing that tree search exhibits exponential complex-
ity O(bh), DirectMultiStep scales as O(h6), and FragmentRetro achieves O(h2),
where h represents the number of heavy atoms in the target molecule and b is
the branching factor for tree search. Evaluations on PaRoutes, USPTO-190, and
natural products demonstrate that FragmentRetro achieves high solved rates with
competitive runtime, including cases where tree search fails. The method benefits
from fingerprint screening, which significantly reduces substructure matching com-
plexity. While FragmentRetro focuses on efficiently identifying fragment-based
solutions rather than full reaction pathways, its computational advantages and abil-
ity to generate strategic starting candidates establish it as a powerful foundational
component for scalable and automated synthesis planning.

1 Introduction

Retrosynthetic analysis, the deconstruction of a target molecule into simpler, typically commercially
available precursors, is fundamental to chemical synthesis and drug discovery [1, 2]. Computer-
aided synthesis planning (CASP) aims to automate this complex task. A conventional paradigm in
CASP involves tree-search algorithms, such as Monte Carlo Tree Search (MCTS) [3], A* search
(Retro*) [4], and Depth-First Proof Number (DFPN) search [5]. These methods iteratively apply
single-step retrosynthetic (SSR) models, often machine learning-based [6–9], to explore the vast
combinatorial space of possible synthetic routes. While effective, a primary limitation of such tree-
search approaches is their inherent exponential computational complexity with respect to tree depth,

Preprint. Under review.

ar
X

iv
:2

50
9.

15
40

9v
1

 [
cs

.A
I]

 1
8

Se
p

20
25

https://arxiv.org/abs/2509.15409v1

Building Blocks

A B

C

D
E

F

R4

C

R1

R3

R2

BR0A

R5

R6
D R7 E

R8

R9

F

original fragments

Stage 1

BRICS
or

r-BRICS

proceed if they all
have substructure

matches

valid fragments have
substructure matches

valid fragments have
substructure matches

effective combinations
do not contain invalid

fragments

look up dictionaries of
building block sets

b. Recursive Fragment Combination:
combine fragments and substructure matching

R3

R2

A B

R1

R3

B

C

E

F

R7

R1

R2

R6

B

D

R5

D
E

R8

effective combinations

Stage 2

R3

R2

A B

R1

R3

B

C

E

F

R7

valid

Stage 2

invalid

Stage 2

R1

R2

R6

B

D

R5

D
E

R8

a. Initialization:
fragmentation and substructure matching

effective combinations

Stage 3

R3

A B

C

valid

Stage 3

R3

A B

C

R3

A B

C

E

F

R7
R5

R6
D

solution

E

F

R7
R5

R6
D

R3

R2

A B

R4

C

solution

R0A
R1

R3

R2

B

R4

C

R5

R6
D

R7 E

R8R9

F

solution

…

c. Solution Construction:
solutions consist of sets of valid fragments (combinations)

when no effective
combinations exist, terminate

and construct solutions

…

R3

R2

A B

E

F

R7

…

d. Building Blocks Sets:
each valid fragment has a set of matched BBs

Figure 1: The FragmentRetro algorithm. (a) Cartoon representation of an example molecule processed
by BRICS or r-BRICS to yield initial fragments labeled A to F. (b) The FragmentRetro process: In
Stage 1, all initial fragments have substructure matches in the stock set. In Stage 2, fragments A–B,
B–C, and E–F are valid. In Stage 3, only fragment A–B–C remains valid. Fragments like A–B–D do
not need to be checked, since B–D is invalid and therefore A–B–D cannot have a substructure match.
There is no Stage 4, as no valid combinations of four fragments are possible in this case. (c) Possible
solutions are sorted by the number of fragments, with the most efficient solution on the left. (d) Each
valid fragment is associated with a subset of the stock that has substructure matches.

which can hinder scalability for large and complex targets. Recent advancements aim to mitigate
this, for example, by incorporating graph-based neural networks [10], reinforcement learning [11],
route context [12], or higher-level abstractions of molecular features [13]. However, the underlying
exponential scaling often persists in the worst-case scenario.

Alternative strategies have emerged to address these scalability challenges. DirectMultiStep (DMS)
models, for instance, leverage sequence-to-sequence architectures to generate entire multi-step
pathways directly, bypassing iterative search [14]. While DMS has shown promising performance,
particularly on benchmarks like PaRoutes [15], and exhibits polynomial complexity, itsO(h6) scaling
with molecular size h can still be demanding. Other approaches, such as Double-Ended Synthesis
Planning (DESP) [16], improve efficiency for specific use cases by conducting a bidirectional tree-
search when starting materials are provided by the user, though they still rely on iterative single-step
predictions. This landscape motivates the exploration of fundamentally different algorithmic ap-
proaches to retrosynthesis that offer improved computational efficiency, particularly for unconstrained
initial exploration, without sacrificing solution quality.

In this work, we introduce FragmentRetro, a novel retrosynthetic method that adopts a bottom-
up, fragment-based strategy (Fig. 1). FragmentRetro utilizes molecular fragmentation algorithms
(BRICS [17] and its revision, r-BRICS [18]) to decompose a target molecule. It then recursively
combines these fragments, systematically verifying if the combined fragments exist as substructures
within a provided set of commercially available building blocks (BBs). By integrating efficient
substructure matching, augmented by pattern fingerprint and property screening, FragmentRetro

2

identifies sets of fragment combinations that reconstruct the target. A key contribution of this paper is
the first formal computational complexity analysis comparing these distinct retrosynthetic paradigms.
We demonstrate that while tree-search methods scale exponentially (O(bh)) and DMS polynomially
(O(h6)), FragmentRetro achieves a significantly more favorable quadratic complexity (O(h2)), albeit
with a linear dependency on the stock set size which is effectively managed through parallelization.

We evaluate FragmentRetro on established benchmarks, including PaRoutes and USPTO-190, as
well as challenging natural products. Our results show that FragmentRetro, particularly when
using r-BRICS, achieves high solved rates, competitive with or exceeding those of tree-search
and DMS methods in certain scenarios, often with substantially reduced runtimes. For instance,
on USPTO-190 with a large BB set, FragmentRetro with r-BRICS attains the highest solved rate
(78.4%) and demonstrates excellent parallelization for substructure matching. While FragmentRetro
currently outputs sets of reconstructive fragments rather than fully elaborated reaction pathways
in the form of directed acyclic graphs (DAGs), it provides a computationally efficient and scalable
foundation for identifying viable precursor sets. This positions it as a powerful tool for initial
synthesis exploration, potentially complementing other methods in a tiered approach to retrosynthesis.
Our main contributions are: (1) the FragmentRetro algorithm, a novel fragment-based retrosynthetic
method with quadratic complexity; (2) a comprehensive computational complexity analysis of major
retrosynthetic paradigms; and (3) empirical validation demonstrating FragmentRetro’s competitive
performance and scalability.

2 Related work

The automation of retrosynthetic analysis has been a long-standing goal, evolving from rule-based
systems to sophisticated machine learning-driven approaches. Understanding this landscape highlights
the unique positioning of FragmentRetro.

2.1 Tree-search based retrosynthesis

The predominant approach to CASP involves constructing a search tree or graph. Early systems relied
on expert-defined chemical rules [1]. Modern methods typically integrate machine learning models
for SSR predictions with advanced search algorithms. These SSR models can be template-based,
utilizing predefined reaction patterns [6–9, 19–23], or template-free, directly predicting reactants
from products [24]. Popular search algorithms include Monte Carlo Tree Search (MCTS) [3, 25], A*
search Retro* [4], and Proof-Number Search derivatives like DFPN [5].

Recent advancements in tree search focus on improving efficiency and prediction quality. For
example, Xie et al. proposed RetroGraph, using graph neural networks to guide search on an explicit
graph representation of intermediates to avoid redundant computations [10]. Reinforcement learning
techniques, such as in GRASP [11], train agents to learn optimal search policies. FusionRetro [12]
aims to improve SSR predictions by incorporating contextual information from the partially built
synthetic route. Roh et al. introduced a higher-level retrosynthesis strategy (Higherlev) that abstracts
molecular details to simplify the search space, using substructure matching against BBs as a stopping
criterion [13]. Despite these innovations, a fundamental challenge for tree-search methods is their
worst-case exponential scaling with the size of the target molecule or the depth of the synthetic route,
as formally analyzed in this work (Section B).

2.2 Direct pathway generation and constrained search

To circumvent the iterative nature and potential scalability issues of tree search, methods that directly
generate entire multi-step synthetic pathways have been developed. DirectMultiStep (DMS) [14]
employs transformer-based sequence-to-sequence models to predict a full retrosynthetic route, rep-
resented as a linearized string, from a target molecule. DMS models have demonstrated strong
performance on benchmarks like PaRoutes [15], particularly in recovering known routes, and can
incorporate constraints such as desired starting materials or route lengths. As shown in our complexity
analysis (Section B), DMS exhibits polynomial complexity(O(h6)), offering an improvement over
the exponential scaling of tree search.

Addressing the common real-world scenario where specific starting materials must be utilized, Yu
et al. introduced Double-Ended Synthesis Planning (DESP) [16]. DESP employs a bidirectional

3

tree-search approach, simultaneously exploring retrosynthetic steps from the target and forward
synthetic steps from user-specified starting materials. This method, guided by a learned synthetic
distance cost function, has shown improved efficiency in solving such constrained problems compared
to purely unidirectional search. However, like many tree-search methods, DESP combines explicit
graph search with learned single-step predictors, and critically, it requires prior human specification of
starting materials. Our work, in contrast, aims to identify potential starting material sets automatically
as part of its core fragment-based exploration.

2.3 Molecular fragmentation in chemistry

Molecular fragmentation, the process of breaking molecules into smaller, chemically meaningful
pieces, is a well-established technique in cheminformatics. It finds applications in drug design for
identifying pharmacophores, in quantitative structure-activity relationship (QSAR) modeling, and as
a preprocessing step for various machine learning tasks. The BRICS (Breaking of Retrosynthetically
Interesting Chemical Substructures) algorithm [17] is a widely used rule-based method that cleaves
molecules at bonds deemed retrosynthetically labile, effectively identifying potential synthons or
key disconnections. BRICS has been noted for sometimes producing large, inflexible fragments. To
address this, r-BRICS (revised BRICS) was recently developed by Zhang et al., extending the original
rule set to enable more granular fragmentation, particularly for challenging structures like fused rings
and long aliphatic chains [18]. Our work, FragmentRetro, leverages these fragmentation algorithms
not merely for analysis, but as the core engine for a bottom-up retrosynthetic search.

2.4 Substructure searching

A critical component of FragmentRetro, as well as methods like Higherlev [13], is substructure
searching: determining if a given molecular fragment (query) exists within a larger molecule (target,
often from a database of BBs). This is a subgraph isomorphism problem. Efficient algorithms
like VF2 [26] are commonly used in cheminformatics toolkits such as RDKit [27]. The practical
performance of substructure searching can be significantly enhanced by pre-filtering candidates using
molecular fingerprints (e.g., pattern fingerprints) or simple property checks (e.g., heavy atom count,
ring count), as employed in FragmentRetro. While worst-case complexity for subgraph isomorphism
is exponential, these heuristics and optimized algorithms make it feasible for large-scale database
searching in practice [28].

3 Algorithm

FragmentRetro introduces a distinct paradigm for retrosynthetic analysis. Unlike top-down tree-search
methods that recursively break bonds based on reaction predictions, or direct generation methods that
learn entire pathway sequences, FragmentRetro operates bottom-up. It first decomposes the target
into elementary fragments and then systematically explores combinations of these fragments that are
present as substructures in a BB inventory. This stock-aware exploration of fragment combinations,
combined with effective pruning and efficient screening, allows FragmentRetro to achieve quadratic
computational complexity O(h2). While it does not directly output a sequence of reactions forming
a DAG, it identifies sets of precursor fragments from which such a route could be constructed.
This focus on computational efficiency and a novel search strategy distinguishes FragmentRetro
from existing approaches, offering a scalable alternative for identifying potential synthetic BBs,
particularly for complex targets or when exploring large chemical spaces. The formal complexity
analysis presented herein further clarifies the theoretical advantages of this approach compared to
established methods. In what follows, we defineM as the set of all molecules and B ⊂M as the set
of available BBs. For a formal statement of the retrosynthesis problem, refer to Section A.

3.1 Fragment-based retrosynthesis

Building upon the principles of molecular fragmentation discussed in the previous section, we
introduce our fragment-based retrosynthetic approach that leverages substructure matching. This
method recursively combines molecular fragments while verifying their presence in B. The process
aims to identify retrosynthetic solutions for a given target molecule p∗ ∈ M. Here, we define a

4

retrosynthetic solution Qi as a set of fragments that reconstruct the target molecule, i.e.
⋃

f∈Qi
f = p∗

where the union is taken over molecular graphs with defined attachment points (fragmented bonds).

Let F1 = {f (1)
1 , f

(1)
2 , . . . , f

(1)
k } represent the set of k molecular fragments obtained from a fragmen-

tation method (e.g., BRICS [17] and r-BRICS [18]), where each fragment f (1)
i ∈ F corresponds

to a SMILES [29] string. These SMILES strings contain ‘any’ atoms (dummy atoms ‘*’, which
represent any atom in SMARTS [30] expressions) each attaching to the fragment bond ends unless
no fragmentation is performed on a given SMILES string.

Fragment combinations are defined as groups of fragments that remain bonded during fragmentation,
forming a connected subgraph of neighboring fragments. For example,F1 represents single fragments,
while Fn represents combinations of n neighboring fragments, which are still represented as single
SMILES strings, possibly with dummy atoms. These combinations expand as the recursion progresses,
increasing the number of fragments combined and refining the search for valid retrosynthetic solutions.
FragmentRetro identifies valid retrosynthetic solutions through the following recursive process:

1. Initialization: For each fragment f (1)
i ∈ F1, check if ∃ b ∈ B s.t. f (1)

i is a substructure of
b, i.e., f (1)

i ⊆ b. Here, strict substructure matches are done using SMARTS patterns to avoid
branchings from non-fragmented sites. Also, the ‘any’ atoms can be hydrogen atoms (no
branching from the fragmented sites). We call f (1)

i a valid fragment if there is a substructure
match. If ∃ f

(1)
i ∈ F1 s.t. f

(1)
i ̸⊆ b ∀ b ∈ B, the process terminates immediately, as

subsequent fragment combinations would also fail to have substructure matches.

2. Recursive Fragment Combination: At each iteration n ≥ 2, obtain combinations of n
neighboring fragments (connected subgraphs with n nodes) from F1. Form a fragment set
Fn = {f (n)

1 , f
(n)
2 , . . . , f

(n)

k(n)}, where each f
(n)
i can be written as f

(1)
j1
∪ . . . ∪ f

(1)
jn

with

j1, . . . , jn ≤ k. For each fragment f (n)
i ∈ Fn, check if ∃ b ∈ B such that f (n)

i ⊆ b. We
also record the subset of B that have a substructure match. When checking larger fragment
combinations, we then take the intersection of these subsets, limiting the substructure
check to a potentially much smaller set of BBs. One can save time by pruning fragments
containing invalid fragments from previous stages to avoid redundant checks. This gives a
subset of Fn that we call it the effective set F ′

n at stage n. For example, if a combination
f
(1)
j1
∪ f

(1)
j2

at stage n = 2 does not have substructure matches in B, any larger combination

containing it (e.g., f (1)
j1
∪ f

(1)
j2
∪ f

(1)
j3

at stage n = 3 is excluded from evaluation). This,
in practice, also prevents the process of finding all connected subgraphs with n nodes, as
one can find the effective combinations from the valid combinations of the n − 1 stage.
Additionally, strategies such as fingerprint screening can be used to filter out BBs that lack
the pattern fingerprints of the fragment SMILES, significantly reducing the number of BBs
that need to be checked for substructure matches (it’s also applicable to the substructure
matching process during the Initialization stage). In this work, FragmentRetro not only
uses fingerprint screening but also utilizes screening based on the number of heavy atoms
and rings, ensuring that BBs have greater than or equal numbers of heavy atoms and rings
compared to the fragment combinations (i.e. property screening).

3. Termination and Solution Construction: The process terminates when either F ′
n =

∅ (indicating no effective or valid combinations exist) or Fn = {p∗} (or n = |F1|).
The final retrosynthetic solutions Q = {Q1, Q2, . . .} consist of sets of fragments Qi =

{f (a)
x , f

(b)
y , . . .}, where each fragment f (a)

x represents a valid combination of original
fragments from F1. Each Qi satisfies the condition

⋃
f∈Qi

f = p∗. The most efficient
solution minimizes the number of fragments in Qi, i.e., |Qi|.

By iteratively expanding and pruning fragment combinations, FragmentRetro balances exhaustive
exploration with computational efficiency, effectively navigating the constraints imposed by the BBs.
This approach provides a robust framework for analyzing retrosynthetic pathways while deferring
the selection of specific reactions to downstream analysis. The reaction selection process itself is
relatively straightforward and depends heavily on the fragmentation algorithm. For instance, if the
fragmentation algorithm (e.g., BRICS, as used in this work) is well-defined and consistent, it is

5

possible to establish a mapping between specific fragment bond breaks and common reaction types
associated with those bond breaks.

Unlike the explicit synthetic routes S generated in tree-search and DirectMultiStep methods, Qi

represents a set of fragments that reconstruct the target molecule p∗ but does not inherently define
the sequence of reaction steps. Without specifying the order of reactions, a DAG representation of
the synthetic route cannot be constructed. For instance, given three fragments f (a)

x , f (b)
y , and f

(c)
z , it

must be determined whether f (a)
x and f

(b)
y react first, or if all three participate in a three-component

reaction. Additionally, intermediate products formed during these reactions must be explicitly defined.
Once the reaction order and intermediate products are specified, the sequence of reactions S can be
constructed, enabling the formation of a DAG that represents the synthetic route.

3.2 Algorithm summary

The FragmentRetro method employs a multi-stage, stock-aware exploration strategy for fragment
combination. Each stage checks feasibility of fragment combinations, reducing the search space by
pruning infeasible combinations. The algorithm is summarized in Algorithm 1 and an illustration is
shown in Fig. 1. Note that the effective combinations at stage n can be found by adding neighboring
fragments to the valid combinations of the n − 1 stage. This prevents the process of finding all
connected subgraphs with n nodes.

Algorithm 1: FragmentRetro(p∗, B, F1 = {f (1)
1 , f

(1)
2 , . . . , f

(1)
k })

p∗: target molecule, B: building blocks, F1: initial fragment set from fragmentation algorithms
for i← 1 to |F1| do

if f (1)
i ̸⊆ b for all b ∈ B then
exit ; /* All initial fragments should be valid to continue */

end
end
for n← 2 to |F1| − 1 do

Obtain Fn = {f (n)
1 , f

(n)
2 , . . . , f

(n)

k(n)} ; /* n neighboring combinations */
Prune to get effective combinations F ′

n ; /* Check for redundancy */
if F ′

n = ∅ or Fn = {p∗} then
/* No valid fragments exist or the target molecule is formed */
break

end
if f (n)

i ⊆ b for some b ∈ B then
/* Fingerprint screening on B can be performed here using f

(n)
i */

Mark f
(n)
i as valid ; /* Check substructure match in B */

else
Mark f

(n)
i as invalid ; /* Help check redundancy in the next stage */

end
end
return solutions Q = {Q1, Q2, . . .}, where Qi = {f (a)

x , f
(b)
y , . . .} satisfies

⋃
f∈Qi

f = p∗

4 Results and discussion

4.1 Computational complexity comparison

The computational complexity analysis is outlined in Section B and summarized in Table 1. The
exponential complexity of tree search also applies to the Higherlev approach [13], which employs a
higher-level retrosynthetic strategy by abstracting functional groups based on their electronegativity.
For the Higherlev method, determining whether a precursor exists in the stock compound set is
formulated as a substructure matching task. Since functional group abstraction increases ∆h, their
approach effectively reduces h/∆h in practice, where h is the number of heavy atoms in the target

6

Table 1: Comparison of retrosynthetic methods.
Method Complexity Feasibility Guarantee Atom Mapping Form DAG
BRICS O(h) No Yes No
Tree Search O(bh) No Yes (template-based) Yes
DirectMultiStep O(h6) No No Yes
FragmentRetro O(h2) No Yes No

molecule and ∆h is the average reduction in heavy atom count per reaction. However, ∆h remains
constant. Consequently, following our derivation in Sections B.1 and B.3, the complexity of their
method is given by O(Cfp · |B| · bh/∆h) = O(bh) where b is the branching factor of the search tree.
For the definition of Cfp, please refer to Section B.

Table 1 provides a comparison of FragmentRetro, tree-search, and DMS methods across key metrics,
including computational complexity, feasibility guarantees, and atom mapping capabilities. Notably,
none of these methods can guarantee that the predicted synthetic routes are experimentally feasible.
However, each method has certain advantages that may improve the likelihood of generating viable
routes. Tree-search methods that rely on reaction templates allow them to retrieve references and
metadata from template datasets, which can help assess reaction feasibility. DirectMultiStep employs
a data-driven approach, generating reactions that are statistically closer to experimentally validated
synthetic routes. FragmentRetro leverages fragmentation algorithms that preferentially break bonds
of retrosynthetic interest. Since these bonds are more likely to correspond to feasible reaction
conditions, the resulting fragments can guide retrosynthetic planning effectively. Additionally,
specific bond-breaking patterns can be mapped to known reaction types (similar to how synthons
relate to actual molecules), suggesting that FragmentRetro could be extended to generate a DAG
representation of synthetic routes. This remains an area for future development. Analogous to
FragmentRetro’s use of fragments, Higherlev also necessitates a mapping from abstracted portions to
actual functional groups.

4.2 Search performance evaluation

Table 2: Search performance on PaRoutes test sets with n1 stock or n5 stock as the stock set.

Method Targets Solved Rate Run Time (s)a Clusters/Solutionsb

MCTSc Set-n1 97.16% 303.3 109
Set-n5 96.89% 365.7 113

Retro*c Set-n1 97.28% 300.7 31
Set-n5 97.29% 349.2 26

DFPNc Set-n1 77.86% 347.3 2
Set-n5 67.30% 297.9 2

DMS-Explorer-XLd Set-n1 80.08% 14.7 NA
Set-n5 79.04% 16.3 NA

FragmentRetro + BRICSe Set-n1 69.90% 9.4 (26.2) 4
Set-n5 69.32% 9.7 (27.1) 6

FragmentRetro + r-BRICSe Set-n1 83.32% 11.7 (30.2) 11
Set-n5 82.62% 12.0 (32.2) 12

aAverages over all targets.
bMedians over all targets. NA indicates not available.
cData collected from the 2.0 version of PaRoutes in their GitHub repository [15] under the Apache-2.0 License.
dDMS models are run with a beam size of 50 on a single NVIDIA A100 GPU with half-precision floating point
inference (FP16). The other methods are run with a single CPU (no parallelization)
eRuntimes in parentheses are reported without property and fingerprint screening.

Table 2 presents the search performance of various methods on the PaRoutes test sets n1 and n5. All
methods were evaluated using a single CPU/core (no parallelization), except for the DMS models,
which were run on an NVIDIA A100 GPU. The stock set for each test follows the SMs defined in

7

Table 3: Search performance on USPTO-190 with Buyables as the stock set

Methoda Targetsb,c Solved Rate Run Time (s)d

DMS-Explorer-XL USPTO-190 27.9% 21.9
Original + MCTS [13] USPTO-190 46.3% NA
DMS-Flashe USPTO-190 55.3% 31.3
DMS-Widee USPTO-190 56.8% 105.8
Retro*-0 [4]f USPTO-190 73.2% NA (65.0)
Higherlev + MCTS [13] USPTO-190 73.7% NA
Retro* [4]f USPTO-190 76.8% NA (57.1)

FragmentRetro + BRICSg USPTO-190 53.2% 344.0 (74.2, 49.1, 42.1)
FragmentRetro + r-BRICSg USPTO-190 78.4% 473.1 (102.1, 72.9, 64.5)

a DMS models are run with a beam size of 50 on a single NVIDIA A100 GPU with half-precision floating point
inference (FP16). The other methods are run with a single CPU (no parallelization)
b USPTO-190 is from [4] (downloaded from [31] under the CC BY 4.0 License).
c The stock compounds (Buyables) are from [13] under the CC BY 4.0 License and includes 0.329M buyable
building blocks from eMolecules, Sigma-Aldrich, Mcule, ChemBridge Hit2Lead, and WuXi LabNetwork.
d Averages over all targets. NA indicates that the runtime is not available in the original publication.
e Uses step counts from 2 to 8 (total of 7 DMS model runs per compound).
f Evaluated in this work using Retro*’s [4] official repository. The original checkpoint is used with a maximum
of 500 iterations. Runtimes in parentheses are first-solution times, as the repository lacks search continuation.
g Runtimes in parentheses are from parallelization with 5, 10, and 20 CPU cores (during substructure matching).

n1 or n5, as done in [15]. Among the evaluated methods, Retro*, a tree-search approach, achieved
the highest solved rate. The DMS Explorer-XL model [14] exhibited competitive performance,
solving a significant portion of the test set while providing a 20x speedup compared to tree-search
methods. Similarly, FragmentRetro demonstrated decent performance, particularly with r-BRICS
fragmentation, which outperformed DMS in solved rate while achieving a 30x speedup over tree-
search methods. Table 2 also reports the median number of solutions. Since the PaRoutes paper [15]
clustered synthetic routes using the method in [32] to estimate route diversity, we compare the number
of solutions from FragmentRetro to the number of clusters from PaRoutes. However, these metrics
are not directly comparable, as a single FragmentRetro solution can correspond to multiple synthetic
routes—each valid fragment combination may have substructure matches with different BBs.

Table 3 summarizes the search performance of different methods on the USPTO-190 dataset, using
the Buyables stock set (0.329M BBs) provided by the Higherlev study [13]. This stock set is a more
practical choice than the eMolecule screening compounds (23.1M compounds) used in Retro* [4], as
many screening compounds require custom synthesis. It is important to note that 13 compounds from
USPTO-190 appear as target compounds in the single-step training dataset for Higherlev, while 47
compounds appear as targets or intermediates in the PaRoutes training set used by the DMS models.
The DMS study reports solved rates both with and without these 47 compounds, showing minor
differences. We expect similar results for Higherlev. FragmentRetro with BRICS fragmentation
achieved a comparable solved rate to the best-performing DMS models but did not surpass Higherlev.
However, with r-BRICS fragmentation, FragmentRetro achieved the highest solved rate among all
methods. Despite this, the runtime of FragmentRetro is similar to that of tree-search methods in
Table 2, as execution time scales with the stock set size (|B|), even with the prefactor Cfp. This is due
to substructure matching being the dominant computational bottleneck, as each candidate BB must
be checked against the fragments. Fortunately, these checks are independent and can be efficiently
parallelized across multiple CPU cores. To demonstrate this scalability, we also report FragmentRetro
runtime using 5, 10, and 20 CPU cores. The results show that parallelization significantly reduces
runtime, achieving speeds comparable to or better than DMS models. Notably, 5 and 10 CPU cores
exhibit near-perfect parallelization efficiency, with speedups of 4.6x and 6.9x, respectively. However,
with 20 CPU cores, the speedup is only 8.2x, indicating diminishing returns. This suggests that at
this stock set size, the tradeoff between parallelization efficiency and overhead is optimal around 10
CPU cores.

8

4.3 Case studies

To demonstrate the practical utility of FragmentRetro, we evaluate drugs and natural products, as
shown in Fig. 2 (and Section C). These targets are selected from the Higherlev study [13] and represent
different levels of retrosynthetic difficulty: Narlaprevir, which can be solved without a higher-level
strategy; Martinellic Acid, which requires a higher-level strategy to be solved; and Lennoxamine,
which is not solvable by either approach. For Narlaprevir, we apply BRICS fragmentation rules,
while for Martinellic Acid and Lennoxamine, we use r-BRICS since these compounds contain fused
rings that BRICS would otherwise leave intact. FragmentRetro generates hundreds of solutions for
each of these compounds. Fig. 2 presents a representative solution for each compound, selected to
minimize the number of fragment combinations.

Each fragment combination can match multiple BBs; Fig. 2 displays one representative building
block per fragment combination. Some BBs are directly compatible for coupling, while others
require additional preparation steps, such as functional group interconversion or protective group
manipulation. As a result, the number of fragments in a solution does not directly correlate with the
number of synthesis steps, similar to how higher-level abstraction methods operate.

NHO

N

O

tBu

*Me
Me

*
H
N

O

O

*

*

nBu

*

O

O

OEtnBu
H2N

H
N

O

H
N

tBuO2S

*

H
N

O

H
N

tBuO2S

tBu

HO

O

NHO

N

O

tBu

H
N

Me
Me

CN

O

CF3

HN

O

BRICS: 12 fragments FragmentRetro: 508 solutions

Me

H
N

NH

H
N

N

N
H

O

HO

N
H

Me

Me NH

Me

r-BRICS: 12 fragments

*
N
H

Me

Me NH

Me

H
N

NH

H
N

*
Me

*

N

*

*

*
*

N
H

O

HO *

*
*

OH

HN

OH

O

Me

H
N

NH

H2N Me

NH2
N
H

Me

Me NH

MeN
H

O

HO

Martinellic Acid

Narlaprevir

O

O

C
H2

N

O

O

O

r-BRICS: 9 fragments

Lennoxamine

* O

O*O

O *

*

*
* C

H2

N

O

*

*

O

O

H
N

NH

nBu

O

N

O

tBu

H
N

O

H
NMe

Me

tBuO2S

solution building blocks

FragmentRetro: 1008 solutions

solution building blocks

FragmentRetro: 346 solutions

solution building blocks

HO

HOO

O
OH

Br

C
H2

N

O

OtBu
OH

O

Figure 2: FragmentRetro evaluation on Narlaprevir, Martinellic Acid, and Lennoxamine. The
fragments from BRICS and r-BRICS are highlighted. One solution for each compound from Frag-
mentRetro is shown. The highlighted fragments remain highlighted in both the solutions and
corresponding building blocks, even when some BRICS or r-BRICS cleavage sites are not fragmented
in the solutions.

5 Conclusion

FragmentRetro provides a scalable framework for fragment-based retrosynthesis, achieving quadratic
complexity through stock-aware fragment exploration and pruning. While FragmentRetro does not
explicitly return a DAG, it performs the same core task as other retrosynthetic methods: identifying
chemically valid decompositions of a target molecule into known precursors. DAG construction
is a post-processing step that depends on the fragment connectivity and can be layered atop our
approach. Therefore, comparing the search complexity of FragmentRetro to tree search and DMS
methods is both appropriate and informative. Unlike DMS and tree-search methods that do not rely
on template-based single-step models, FragmentRetro remains compatible with atom mapping tools,

9

making it a flexible approach for retrosynthetic planning. Future work may focus on integrating cost-
aware metrics and experimental validation to further refine its applicability. Additionally, mapping
solutions and BBs to fully elaborated synthetic routes (form DAG) could enable direct route quality
comparisons across different methods, potentially using top-k accuracy as an evaluation metric.

This work also presents the first formal computational analysis of different retrosynthetic approaches.
We establish that tree-search methods scale exponentially as O(bh), DMS has a polynomial com-
plexity of O(h6), and FragmentRetro achieves O(h2) complexity, with the caveat that its runtime
scales linearly with the stock set size. However, we show that substructure matching exhibits strong
parallelization efficiency, particularly when applied to large building block datasets such as Buyables.
Given the trade-offs between computational cost and solved rates, an efficient retrosynthesis pipeline
could adopt a tiered approach: first applying FragmentRetro for rapid exploration, then leveraging
DMS for higher route quality, and finally resorting to tree-search methods when higher solved
rates are required. Overall, FragmentRetro represents a promising direction for fragment-based
retrosynthesis, offering a computationally efficient option that complements existing methods.

Code and Data Availability

The data, code, and accompanying documentation for this work are available at
https://github.com/randyshee/FragmentRetro

Acknowledgments

The authors acknowledge a generous allocation of high-performance computing time from NERSC.
The development of the methodology was supported by the NSF CCI grant (VSB, Award Number
2124511).

References
[1] E. J. Corey and W. Todd Wipke. Computer-Assisted Design of Complex Organic Syntheses:

Pathways for molecular synthesis can be devised with a computer and equipment for graphical
communication. Science, 166(3902):178–192, 1969. ISSN 0036-8075, 1095-9203. doi:
10.1126/science.166.3902.178. URL https://www.science.org/doi/10.1126/science.
166.3902.178.

[2] Sara Szymkuć, Ewa P. Gajewska, Tomasz Klucznik, Karol Molga, Piotr Dittwald, Michał
Startek, Michał Bajczyk, and Bartosz A. Grzybowski. Computer-assisted synthetic planning:
The end of the beginning. Angewandte Chemie International Edition, 55(20):5904–5937, 2016.
doi: https://doi.org/10.1002/anie.201506101. URL https://onlinelibrary.wiley.com/
doi/abs/10.1002/anie.201506101.

[3] Marwin H. Segler, Mike Preuss, and Mark P. Waller. Planning chemical syntheses with deep
neural networks and symbolic ai. Nature, 555(7698):604–610, Mar 2018. doi: 10.1038/
nature25978.

[4] Binghong Chen, Chengtao Li, Hanjun Dai, and Le Song. Retro*: Learning retrosynthetic
planning with neural guided a* search. In The 37th International Conference on Machine
Learning (ICML 2020), 2020.

[5] Akihiro Kishimoto, Beat Buesser, Bei Chen, and Adi Botea. Depth-first proof-number
search with heuristic edge cost and application to chemical synthesis planning. In
H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett, edi-
tors, Advances in Neural Information Processing Systems, volume 32. Curran Associates,
Inc., 2019. URL https://proceedings.neurips.cc/paper_files/paper/2019/file/
4fc28b7093b135c21c7183ac07e928a6-Paper.pdf.

[6] Michael E. Fortunato, Connor W. Coley, Brian C. Barnes, and Klavs F. Jensen. Data augmenta-
tion and pretraining for template-based retrosynthetic prediction in computer-aided synthesis
planning. Journal of Chemical Information and Modeling, 60(7):3398–3407, 2020. doi:

10

https://github.com/randyshee/FragmentRetro
https://www.science.org/doi/10.1126/science.166.3902.178
https://www.science.org/doi/10.1126/science.166.3902.178
https://onlinelibrary.wiley.com/doi/abs/10.1002/anie.201506101
https://onlinelibrary.wiley.com/doi/abs/10.1002/anie.201506101
https://proceedings.neurips.cc/paper_files/paper/2019/file/4fc28b7093b135c21c7183ac07e928a6-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/4fc28b7093b135c21c7183ac07e928a6-Paper.pdf

10.1021/acs.jcim.0c00403. URL https://doi.org/10.1021/acs.jcim.0c00403. PMID:
32568548.

[7] Connor W. Coley, Luke Rogers, William H. Green, and Klavs F. Jensen. Computer-assisted
retrosynthesis based on molecular similarity. ACS Central Science, 3(12):1237–1245, 2017. doi:
10.1021/acscentsci.7b00355. URL https://doi.org/10.1021/acscentsci.7b00355.
PMID: 29296663.

[8] Shoichi Ishida, Kei Terayama, Ryosuke Kojima, Kiyosei Takasu, and Yasushi Okuno. Prediction
and interpretable visualization of retrosynthetic reactions using graph convolutional networks.
Journal of chemical information and modeling, 59(12):5026–5033, 2019.

[9] Yu Shee, Haote Li, Pengpeng Zhang, Andrea M Nikolic, Wenxin Lu, H Ray Kelly, Vidhyadhar
Manee, Sanil Sreekumar, Frederic G Buono, Jinhua J Song, et al. Site-specific template
generative approach for retrosynthetic planning. Nature Communications, 15(1):7818, 2024.

[10] Shufang Xie, Rui Yan, Peng Han, Yingce Xia, Lijun Wu, Chenjuan Guo, Bin Yang, and Tao
Qin. Retrograph: Retrosynthetic planning with graph search. In Proceedings of the 28th ACM
SIGKDD Conference on Knowledge Discovery and Data Mining, KDD ’22, page 2120–2129,
New York, NY, USA, 2022. Association for Computing Machinery. ISBN 9781450393850. doi:
10.1145/3534678.3539446. URL https://doi.org/10.1145/3534678.3539446.

[11] Yemin Yu, Ying Wei, Kun Kuang, Zhengxing Huang, Huaxiu Yao, and Fei Wu. Grasp:
Navigating retrosynthetic planning with goal-driven policy. In S. Koyejo, S. Mo-
hamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh, editors, Advances in Neu-
ral Information Processing Systems, volume 35, pages 10257–10268. Curran Associates,
Inc., 2022. URL https://proceedings.neurips.cc/paper_files/paper/2022/file/
42beaab8aa8da1c77581609a61eced93-Paper-Conference.pdf.

[12] Songtao Liu, Zhengkai Tu, Minkai Xu, Zuobai Zhang, Lu Lin, Rex Ying, Jian Tang, Peilin
Zhao, and Dinghao Wu. Fusionretro: molecule representation fusion via in-context learning for
retrosynthetic planning. In International Conference on Machine Learning, pages 22028–22041.
PMLR, 2023.

[13] Jihye Roh, Joonyoung F Joung, Kevin Yu, Zhengkai Tu, G Logan Bartholomew, Omar A
Santiago-Reyes, Mun Hong Fong, Richmond Sarpong, Sarah E Reisman, and Con-
nor W Coley. Higher-level strategies for computer-aided retrosynthesis. ChemRxiv
preprint, 2025. URL https://chemrxiv.org/engage/chemrxiv/article-details/
67a367196dde43c908af44a1.

[14] Yu Shee, Anton Morgunov, Haote Li, and Victor S. Batista. Directmultistep: Direct route
generation for multistep retrosynthesis. Journal of Chemical Information and Modeling, 0
(0):null, 0. doi: 10.1021/acs.jcim.4c01982. URL https://doi.org/10.1021/acs.jcim.
4c01982. PMID: 40197023.

[15] Samuel Genheden and Esben Bjerrum. Paroutes: towards a framework for benchmarking ret-
rosynthesis route predictions. Digital Discovery, 1:527–539, 2022. doi: 10.1039/D2DD00015F.
URL http://dx.doi.org/10.1039/D2DD00015F.

[16] Kevin Yu, Jihye Roh, Ziang Li, Wenhao Gao, Runzhong Wang, and Connor W. Coley. Double-
ended synthesis planning with goal-constrained bidirectional search, 2024. URL https:
//arxiv.org/abs/2407.06334.

[17] Jorg Degen, Christof Wegscheid-Gerlach, Andrea Zaliani, and Matthias Rarey. On the art of
compiling and using’drug-like’chemical fragment spaces. ChemMedChem, 3(10):1503, 2008.

[18] Leili Zhang, Vasumitra Rao, and Wendy Cornell. r-brics–a revised brics module that breaks
ring structures and carbon chains. ChemMedChem, 19(4):e202300202, 2024.

[19] Connor W. Coley, Wengong Jin, Luke Rogers, Timothy F. Jamison, Tommi S. Jaakkola,
William H. Green, Regina Barzilay, and Klavs F. Jensen. A graph-convolutional neural net-
work model for the prediction of chemical reactivity. Chem. Sci., 10:370–377, 2019. doi:
10.1039/C8SC04228D. URL http://dx.doi.org/10.1039/C8SC04228D.

11

https://doi.org/10.1021/acs.jcim.0c00403
https://doi.org/10.1021/acscentsci.7b00355
https://doi.org/10.1145/3534678.3539446
https://proceedings.neurips.cc/paper_files/paper/2022/file/42beaab8aa8da1c77581609a61eced93-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/42beaab8aa8da1c77581609a61eced93-Paper-Conference.pdf
https://chemrxiv.org/engage/chemrxiv/article-details/67a367196dde43c908af44a1
https://chemrxiv.org/engage/chemrxiv/article-details/67a367196dde43c908af44a1
https://doi.org/10.1021/acs.jcim.4c01982
https://doi.org/10.1021/acs.jcim.4c01982
http://dx.doi.org/10.1039/D2DD00015F
https://arxiv.org/abs/2407.06334
https://arxiv.org/abs/2407.06334
http://dx.doi.org/10.1039/C8SC04228D

[20] Philipp Seidl, Philipp Renz, Natalia Dyubankova, Paulo Neves, Jonas Verhoeven, Jörg K.
Wegner, Marwin Segler, Sepp Hochreiter, and Günter Klambauer. Improving few- and zero-
shot reaction template prediction using modern hopfield networks. Journal of Chemical
Information and Modeling, 62(9):2111–2120, 2022. doi: 10.1021/acs.jcim.1c01065. URL
https://doi.org/10.1021/acs.jcim.1c01065. PMID: 35034452.

[21] Marwin H. S. Segler and Mark P. Waller. Neural-symbolic machine learning for retrosynthesis
and reaction prediction. Chemistry – A European Journal, 23(25):5966–5971, 2017. doi: https:
//doi.org/10.1002/chem.201605499. URL https://chemistry-europe.onlinelibrary.
wiley.com/doi/abs/10.1002/chem.201605499.

[22] Shuan Chen and Yousung Jung. Deep retrosynthetic reaction prediction using local reactivity
and global attention. JACS Au, 1(10):1612–1620, 2021.

[23] Connor W. Coley, Regina Barzilay, Tommi S. Jaakkola, William H. Green, and Klavs F. Jensen.
Prediction of organic reaction outcomes using machine learning. ACS Central Science, 3
(5):434–443, 2017. doi: 10.1021/acscentsci.7b00064. URL https://doi.org/10.1021/
acscentsci.7b00064. PMID: 28573205.

[24] Wengong Jin, Connor W. Coley, Regina Barzilay, and Tommi S. Jaakkola. Predicting organic
reaction outcomes with weisfeiler-lehman network. In Isabelle Guyon, Ulrike von Luxburg,
Samy Bengio, Hanna M. Wallach, Rob Fergus, S. V. N. Vishwanathan, and Roman Gar-
nett, editors, Advances in Neural Information Processing Systems 30: Annual Conference on
Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA,
pages 2607–2616, 2017. URL https://proceedings.neurips.cc/paper/2017/hash/
ced556cd9f9c0c8315cfbe0744a3baf0-Abstract.html.

[25] Samuel Genheden, Amol Thakkar, Veronika Chadimová, Jean-Louis Reymond, Ola Engkvist,
and Esben Bjerrum. Aizynthfinder: a fast, robust and flexible open-source software for retrosyn-
thetic planning. Journal of cheminformatics, 12(1):70, 2020.

[26] Luigi P Cordella, Pasquale Foggia, Carlo Sansone, and Mario Vento. A (sub) graph isomorphism
algorithm for matching large graphs. IEEE transactions on pattern analysis and machine
intelligence, 26(10):1367–1372, 2004.

[27] Greg Landrum et al. Rdkit: Open-source cheminformatics, 2006.

[28] Hans-Christian Ehrlich and Matthias Rarey. Systematic benchmark of substructure search in
molecular graphs-from ullmann to vf2. Journal of cheminformatics, 4:1–17, 2012.

[29] Daylight theory: SMILES. https://www.daylight.com/dayhtml/doc/theory/theory.
smiles.html. Accessed: 2025-03-10.

[30] Daylight theory: SMARTS. https://www.daylight.com/dayhtml/doc/theory/theory.
smarts.html. Accessed: 2025-03-10.

[31] Yu Shee and Anton Morgunov. Data for “DirectMultiStep: Direct Route Generation for
Multistep Retrosynthesis”. https://figshare.com/articles/dataset/Data_for_
DirectMultiStep_Direct_Route_Generation_for_Multistep_Retrosynthesis_
/28629470, 2025. Accessed: 2025-03-25.

[32] Samuel Genheden, Ola Engkvist, and Esben Bjerrum. Fast prediction of distances between
synthetic routes with deep learning. Machine Learning: Science and Technology, 3(1):015018,
2022.

12

https://doi.org/10.1021/acs.jcim.1c01065
https://chemistry-europe.onlinelibrary.wiley.com/doi/abs/10.1002/chem.201605499
https://chemistry-europe.onlinelibrary.wiley.com/doi/abs/10.1002/chem.201605499
https://doi.org/10.1021/acscentsci.7b00064
https://doi.org/10.1021/acscentsci.7b00064
https://proceedings.neurips.cc/paper/2017/hash/ced556cd9f9c0c8315cfbe0744a3baf0-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/ced556cd9f9c0c8315cfbe0744a3baf0-Abstract.html
https://www.daylight.com/dayhtml/doc/theory/theory.smiles.html
https://www.daylight.com/dayhtml/doc/theory/theory.smiles.html
https://www.daylight.com/dayhtml/doc/theory/theory.smarts.html
https://www.daylight.com/dayhtml/doc/theory/theory.smarts.html
https://figshare.com/articles/dataset/Data_for_DirectMultiStep_Direct_Route_Generation_for_Multistep_Retrosynthesis_/28629470
https://figshare.com/articles/dataset/Data_for_DirectMultiStep_Direct_Route_Generation_for_Multistep_Retrosynthesis_/28629470
https://figshare.com/articles/dataset/Data_for_DirectMultiStep_Direct_Route_Generation_for_Multistep_Retrosynthesis_/28629470

A Problem formulation

In this work, we consider two existing retrosynthetic methods—template-based tree search and
DMS—as well as our proposed FragmentRetro method. While their specific approaches differ, their
general objective remains the same: to generate synthetic routes that reconstruct a target molecule
from available BBs.

A.1 Tree search

Here, we adopt the notation introduced in the DESP paper [16] and begin by focusing on template-
based tree-search retrosynthetic approaches. These approaches are compatible with any single-step
retrosynthesis machine learning model, although certain models may not provide atom mappings
for reactions. LetM denote the set of all molecules,R the set of all reactions, and T the set of all
reaction templates. A reaction Ri ∈ R is represented as a tuple (ri, pi, ti), where ri ⊂M is the set
of reactants, pi ∈M is the product, and ti ∈ T is the corresponding retro template. A retro template
t is a function t :M→ 2M that maps a product molecule pi to a set of potential reactants ri, such
that for any given reaction Ri, ri ∈ ti(pi).

Given a target molecule p∗ ∈ M and a set of BBs B ⊂ M, the goal of synthesis planning is to
identify a valid synthetic route, defined as a collection of reactions S = {R1, . . . , Rn} that fulfills
the following constraints:

Constraint 1 (Synthesize all non-BBs). ∀Ri ∈ S, ∀m ∈ ri, m /∈ B ⇒ ∃Rj ∈ S s.t. m = pj

Constraint 2 (Target is final molecule synthesized). ∃Rj ∈ S s.t. pj = p∗ ∧ ∀Rk ∈ S, p∗ /∈ rk

The reactions in S form a directed acyclic graph (DAG), where each product pi is mapped to a node.
This node has a directed edge to a node representing reaction Ri, which in turn has directed edges
to nodes representing the reactants ri. The DAG structure ensures a logical order of reactions and
prevents cyclic dependencies.

For tree-search methods that do not rely on template-based single-step predictions or do not provide
atom mappings, a reaction Ri is represented as a tuple (ri, pi), where ri ∈ θ(pi). Here, θ denotes
the neural network predicting the set of possible reactants for a given product pi. One could argue
that reactions defined with templates (or atom mappings) are valid reactions, while those without
templates may not be valid. However, even the so-called valid reactions are not guaranteed to work
experimentally. Therefore, the actual retrosynthesis problem is more complex than the search problem
formulated here.

A.2 DirectMultiStep

DMS methods [14] approach the retrosynthesis problem differently from tree-search methods. Instead
of representing synthetic routes as sets of reactions, DMS represents an entire synthetic route as a
single string in a recursive dictionary format. ML models are trained to output these route strings
given a target molecule p∗ as input. Valid routes that follow the same two constraints can similarly be
represented as a set of reactions S = {R1, . . . , Rn} that forms a DAG. The Ri here is a tuple (ri, pi)
without a template.

A route s can also be programmatically represented using a recursive dictionary format:

class DMSDict(TypedDict, total=False):
smiles: str
children: List["DMSDict"]

Here, the field smiles contains the SMILES representation of a molecule, and the field children
contains the subroutes leading to the reactants for this molecule. For example, a two-step synthetic
route for a molecule might have the following structure:

{‘smiles’: ‘target_molecule’,
‘children’: [{‘smiles’: ‘reactant_1’},

{‘smiles’: ‘reactant_2’,
‘children’: [{‘smiles’: ‘reactant_3’}]}]}

13

The neural network in DMS is trained to generate such recursive representations, predicting both the
products and reactants for each step of the synthesis as a next token prediction task. This eliminates
the need for explicit tree traversal and instead focuses on learning the structure of valid experimental
routes [15] directly.

B Computational complexity analysis

This section provides the computational complexity analysis for the three retrosynthetic planning
methods: tree search, DMS, and FragmentRetro. For all methods, we denote the number of heavy
atoms in the target molecule as h and the branching factor of the search tree as b. Additional
parameters are defined as needed.

B.1 Tree search complexity analysis

Assuming the computational complexity of single-step retrosynthetic predictions is constant with
respect to h, the tree-search process is the main consideration in the complexity analysis here. The
branching factor b corresponds to the number of possible reactions or templates at each level. The
depth of the tree is approximately h/∆h, where ∆h is the average reduction in heavy atom count per
reaction. Consequently, the tree search explores bh/∆h nodes.

Considering that other operations, such as verifying molecule availability in a commercial compound
stock set, are also constant-time operations, the overall complexity of tree search is dominated by
the exponential factor: O(bh/∆h) = O(bh) as ∆h is constant with respect to h. This also applies
to tree-search methods that use best-first search, as the search space for best-first search remains
exponential.

B.2 DirectMultiStep complexity analysis

DMS employs an attention-based model (a transformer) to predict a synthesis route given a target
compound. The attention mechanism operates with a complexity of O(l2d), where l is the sequence
length and d is the embedding dimension. In this context, sequences can represent either molecular
SMILES strings or synthesis routes, which are represented as strings of recursive dictionaries (see
Section A.2).

The sequence length of a SMILES string scales linearly with the number of heavy atoms h. Since a
synthesis route comprises the target SMILES string along with the SMILES representations of its
precursors (including intermediates and SMs), its sequence length is given byO(h ·h/∆h) = O(h2),
where h/∆h corresponds to the number of reaction steps (analogous to tree depth in Section B.1).
This is because, at each step, the total length of the precursor SMILES sequences remains O(h), as
the combined number of heavy atoms in the precursors approximates that of the product.

Thus, for a single molecule, the overall complexity is primarily determined by the sequence length
of the synthetic routes, scaling as O(h4) as d is constant. Additionally, the attention mechanism is
applied iteratively for each predicted token until an end token is reached, meaning that the number
of tokens scales with the sequence length. Consequently, the computational complexity of DMS is
given by O(h2 · h4) = O(h6).

B.3 FragmentRetro complexity analysis

The computational complexity of FragmentRetro consists of the following main components:

1. Fragmentation: The BRICS (and r-BRICS) algorithm examines all bonds in molecules to
generate fragments. The worst case scalesO(h2) assuming molecules are fully connected as
complete graphs where atoms are nodes and bonds are edges. In practice, there are valency
constraints for the number of bonds, for example carbons typically form four bonds, so
BRICS effectively scales as O(h) for organic molecules.

2. Fragment combination: The number of fragments after BRICS is approximately h/∆h,
where ∆h here is similarly defined as the average reduction in heavy atom count per
fragmentation bond. Since the BRICS algorithm only generates acyclic graphs (assuming

14

fragments are nodes and the connecting bonds are edges). The total number of possible
fragment combinations, for up to N = h/∆h, has an upper bound of O(N + (N − 1) +
. . .+ 1) = O(N2) = O(h2) as ∆h is constant. Note that r-BRICS can sometimes generate
cyclic graphs, but the number of edges is still practically O(N). So the number of possible
combinations also scales as O(h2).

3. Substructure search: Searching for each fragment combination in the compound stock set
involves substructure search, which is typically implemented in cheminformatics libraries
like RDKit. The complexity of RDKit’s substructure search depends on the matching
algorithm. Subgraph isomorphism has exponential complexity in the worst case. However,
the use of algorithms like VF2 and Ullman algorithms can significantly bring the practical
scenario for fragment molecular graphs to O(|B| · h3) [26]. This estimate assumes that the
fragment sizes are O(h), though most fragments are considerably smaller. Besides, the
use of SMARTS patterns and fingerprint screening significantly reduces this complexity in
practice [27, 28].

4. Fingerprint screening: To further optimize substructure search, fingerprint screening is
employed as a preprocessing step to rapidly filter out BBs that cannot contain the query
substructure. Pattern fingerprints encode the presence or absence of predefined molecular
fragments into bit vectors, ensuring no false negatives (where "negative" means no match).
This screening step reduces the number of candidate molecules from the compound stock
set before the more computationally expensive substructure matching. The number of
candidates is reduced by an approximate factor of kh, where 1 < k <= 2 depends on
fingerprint specificity. The optimal case of k = 2 occurs when each heavy atom feature is
hashed into the pattern fingerprint, and the fingerprint dimension is large enough to avoid
double hashing. In this case, each feature eliminates half of the BBs on average, leading to
k = 2. Given these constraints, since h has a natural upper bound for organic molecules
and kh grows exponentially, h3/kh rapidly diminishes to a near-constant value in practice,
allowing us to approximate it as a constant Cfp. Intuitively, larger fragments require fewer
substructure matches since they contain more 1’s in their pattern fingerprint bit vectors.

Combining these components, the overall complexity of FragmentRetro is O(h+ Cfp · |B| · h2) =
O(h2), assuming |B| and k are constant. This results in a quadratic complexity, in contrast to the
exponential complexity of tree-search methods. Without fingerprint screening, the complexity of
FragmentRetro would beO(|B| ·h3 ·h2) = O(h5). The efficiency gain is due to fingerprint screening,
which significantly reduces the number of BBs that require substructure matching.

15

C Additional case studies

O

O

H
N

NH

nBu

O

N

O

tBu

H
N

O

H
NMe

Me

tBuO2S

Narlaprevir

Me
N

ON
N

Cl

N

N

N

N

O
F

Adagrasib

Bursehemin

O

O
O

O

MeO

MeO

Savolitinib

Me

N

N

N
N

NN

N
NMe N

solved by the Original tree-search algorithm

Curcuquinone Lennoxamine

Me

Me

Me

O

O Me

Trikentrin B

rBRICS+FR

rBRICS+FR

H
N

Me

Me

Me

Me

MeO

HN

NH

N

MeMe

HO

Me

Pendolmycin

Me

O

O

Me

Me

HO

O
Me

Me

Antofine
Prostaglandin F2α

Albocycline

Pinolidoxin

Me
O

O
Me

O
Me

N

O

O N

O

O

O

Me

O

O

OH

OH
Me

OO

OH

O

OH

HO

HO

solved by the Higher-Level tree-search algorithm

Me

H
N

NH

H
N

N

N
H

O

HO

N
H

Me

Me NH

Me

Martinellic Acid

N

N NH

Me

Me
N

N
Me

Me

Me Me
Me

OH

Cassiol

O

Me

Me

HO
HO

HO

N

HO
O

Me

Lycopladine A

Ricciocarpin A

O

O

Me Me O

Illudinine

Griseusin A

Acaulide

Madumycin IIAgelasimine B

Me O

OHO

N

Me

Me

Me

O
HN

N
O

O
NH

O
O

Me

Me

Me

OH
OH

Me MeO

O
OMe

O
O

HO Me

O

O O

Me

O

O

O

Me

O

O

OH

Me

O

OMe

O

O

O

O

OOH

O

OH

not solved by either the Original or the Higher-Level tree-search algorithms

BRICS+FR
rBRICS+FR

BRICS+FR
rBRICS+FR

rBRICS+FRrBRICS+FR

rBRICS+FR

rBRICS+FR rBRICS+FR rBRICS+FR

BRICS+FR
rBRICS+FR

BRICS+FR
rBRICS+FR

BRICS+FR
rBRICS+FR

rBRICS+FR

rBRICS+FR

Figure 3: Additional evaluation of target compounds using FragmentRetro. This figure adopts the
format and compound set from Extended Data Fig. 5 of the Higher-Level Retrosynthesis paper [13]
to facilitate direct comparison. The smallest box contains targets solved by the “Original” tree-search
algorithm (as defined in [13]); the medium box includes additional compounds solved by the Higher-
Level strategy. Compounds outside both boxes were not solved by either method. Compounds
successfully solved by BRICS + FragmentRetro and r-BRICS + FragmentRetro are marked with
green (BRICS+FR) and blue (r-BRICS+FR) tags, respectively.

16

	Introduction
	Related work
	Tree-search based retrosynthesis
	Direct pathway generation and constrained search
	Molecular fragmentation in chemistry
	Substructure searching

	Algorithm
	Fragment-based retrosynthesis
	Algorithm summary

	Results and discussion
	Computational complexity comparison
	Search performance evaluation
	Case studies

	Conclusion
	Problem formulation
	Tree search
	DirectMultiStep

	Computational complexity analysis
	Tree search complexity analysis
	DirectMultiStep complexity analysis
	FragmentRetro complexity analysis

	Additional case studies

